
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7003593/publications.pdf Version: 2024-02-01

Υπι Αι Ηπ

#	Article	IF	CITATIONS
1	Electrochemical Radical Formyloxylation–Bromination, â^'Chlorination, and â^'Trifluoromethylation of Alkenes. Organic Letters, 2019, 21, 3167-3171.	4.6	70
2	Trichloroisocyanuric Acid Promoted Cascade Cyclization/Trifluoromethylation of Allylic Oximes: Synthesis of Trifluoromethylated Isoxazolines. Organic Letters, 2017, 19, 376-379.	4.6	62
3	Thioureaâ€Catalyzed Enantioselective Fluorination of βâ€Keto Esters. Advanced Synthesis and Catalysis, 2012, 354, 515-526.	4.3	59
4	Visible-light induced decarboxylative alkylation of quinoxalin-2(1 <i>H</i>)-ones at the C3-position. Organic and Biomolecular Chemistry, 2019, 17, 6654-6661.	2.8	57
5	[3 + 2] Cycloaddition of <i>para</i> -Quinone Methides with Nitrile Imines: Approach to Spiro-pyrazoline-cyclohexadienones. Journal of Organic Chemistry, 2019, 84, 6719-6728.	3.2	49
6	Cul catalyzed sulfonylation of organozinc reagents with sulfonyl halides. Organic and Biomolecular Chemistry, 2014, 12, 4295-4299.	2.8	36
7	Synthesis of Trifluoroethyl Pyrazolines via Trichloroisocyanuric Acid Promoted Cascade Cyclization/Trifluoromethylation of β,γ-Unsaturated Hydrazones. Journal of Organic Chemistry, 2018, 83, 4365-4374.	3.2	32
8	Phenyliodonium Diacetate Mediated Carbotrifluoromethylation of Quinoxalinâ€2(1 <i>H</i>)â€ones. Asian Journal of Organic Chemistry, 2019, 8, 887-892.	2.7	32
9	Synthesis of trifluoromethylated pyrazolidines by [3 + 2] cycloaddition. Organic and Biomolecular Chemistry, 2017, 15, 6214-6222.	2.8	25
10	Visible-light-promoted acyl radical cascade reaction for accessing acylated isoquinoline-1,3(2 <i>H</i> ,4 <i>H</i>)-dione derivatives. Organic and Biomolecular Chemistry, 2020, 18, 1940-1948.	2.8	25
11	Cascade Oxidation/Halogenoaminocyclization Reaction of Trifluoromethylated Homoallylic <i>N</i> -Acylhydrazines: Metal-free Synthesis of CF ₃ -Substituted Pyrazolines. Journal of Organic Chemistry, 2018, 83, 939-950.	3.2	21
12	Synthesis of Difluoromethylated Pyrazoles by the [3 + 2] Cycloaddition Reaction of Difluoroacetohydrazonoyl Bromides. Journal of Organic Chemistry, 2022, 87, 498-511.	3.2	21
13	Trimethylsilyl chloride promoted synthesis of α-branched amines by nucleophilic addition of organozinc halides to nitrones. Organic and Biomolecular Chemistry, 2012, 10, 7669.	2.8	19
14	Bifunctional Thiourea Catalyzed Asymmetric Mannich Reaction Using Trifluoromethyl Aldimine as Trifluoromethyl Building Blocks. Synlett, 2015, 26, 1725-1731.	1.8	19
15	One-pot preparation of trifluoromethylated homoallylic N-acylhydrazines or α-methylene-γ-lactams from acylhydrazines, trifluoroacetaldehyde methyl hemiacetal, allyl bromide and tin. Organic and Biomolecular Chemistry, 2016, 14, 1492-1500.	2.8	19
16	A self-assembled bisoxazoline/Pd composite microsphere as an excellent catalyst for Suzuki–Miyaura coupling reactions. Green Chemistry, 2016, 18, 967-973.	9.0	19
17	Efficient synthesis of aliphatic sulfones by Mg mediated coupling reactions of sulfonyl chlorides and aliphatic halides. Organic and Biomolecular Chemistry, 2017, 15, 2841-2845.	2.8	19
18	Phenyliodonium diacetate mediated carbotrifluoromethylation of N-acylhydrazones. Organic and Biomolecular Chemistry, 2016, 14, 11162-11175.	2.8	18

#	Article	IF	CITATIONS
19	Cul promoted sulfenylation of organozinc reagents with arylsulfonyl chlorides. RSC Advances, 2017, 7, 6018-6022.	3.6	18
20	Synthesis of Benzimidazolones via One-Pot Reaction of Hydroxylamines, Aldehydes, and Trimethylsilyl Cyanide Promoted by Diacetoxyiodobenzene. Journal of Organic Chemistry, 2017, 82, 1600-1609.	3.2	15
21	Regioselective synthesis of spiro naphthofuranone-pyrazoline via a [3+2] cycloaddition of benzoaurones with nitrile imines. Tetrahedron, 2020, 76, 131355.	1.9	14
22	Trimethylchlorosilane-Mediated Mild α-Chlorination of 1,3-Dicarbonyl Compounds Promoted by Phenyliodonium Diacetate. Synthesis, 2016, 48, 1359-1370.	2.3	13
23	Tin powder-promoted one-pot synthesis of 3-spiro-fused or 3,3′-disubstituted 2-oxindoles. Organic and Biomolecular Chemistry, 2016, 14, 9533-9542.	2.8	12
24	Diastereoselective synthesis of spiro-cyclopropanyl-cyclohexadienones <i>via</i> direct sulfide-catalyzed [2 + 1] annulation of <i>para</i> -quinone methides with bromides. Organic and Biomolecular Chemistry, 2020, 18, 4257-4266.	2.8	12
25	Trichloroisocyanuric Acid Mediated Oxidative Dehydrogenation of HydrazinesÂ: A Practical Chemical Oxidation To Access Azo Compounds. Synthesis, 2020, 52, 1103-1112.	2.3	12
26	A Facile Synthesis of CF ₃ -Substituted Pyrazolidines and Pyrazolines. Chinese Journal of Organic Chemistry, 2018, 38, 1469.	1.3	12
27	Regioselective Synthesis of 3â€Trifluoromethyl 4â€Subtituted Pyrazoles by [3+2] Cycloaddition of Trifluoroacetonitrile Imines and Nitroalkenes. Asian Journal of Organic Chemistry, 2022, 11, .	2.7	12
28	One-Pot Transition-Metal-Free Synthesis of Weinreb Amides Directly from Carboxylic Acids. Synthesis, 2014, 46, 320-330.	2.3	11
29	Tin Powder-Promoted One-Pot Construction of α-Methylene-γ-lactams and Spirolactams from Aldehydes or Ketones, Acylhydrazines, and 2-(Bromomethyl)acrylate. Journal of Organic Chemistry, 2015, 80, 12224-12233.	3.2	11
30	Tinâ€Mediated Oneâ€Pot Preparation of βâ€Trifluoromethylâ€Î² <i>â€</i> acylhydrazonyl Carbonyl Compounds. Asian Journal of Organic Chemistry, 2019, 8, 716-721.	2.7	11
31	[3+2] Cycloaddition of Trifluoromethylated <i>N</i> â€Acylhydrazones with Azomethine Ylides: Synthesis of Trifluoromethylated Imidazolidines. Asian Journal of Organic Chemistry, 2020, 9, 1036-1039.	2.7	11
32	Synthesis of 3-Trifluoromethyl-1,2,4-triazolines and 1,2,4-Triazoles via Tandem Addition/Cyclization of Trifluoromethyl <i>N</i> -Acylhydrazones with Cyanamide. Journal of Organic Chemistry, 2022, 87, 5882-5892.	3.2	11
33	Photoinduced Trifluoromethylation with CF ₃ Br as a Trifluoromethyl Source: Synthesis of α-CF ₃ -Substituted Ketones. ACS Omega, 2022, 7, 14357-14362.	3.5	10
34	Cu(acac)2-Catalyzed Synthesis of Functionalized Bis(arylmethyl)zinc Reagents and Their Olefination Reaction with Aromatic Aldehydes. Synthesis, 2012, 44, 1030-1036.	2.3	9
35	Snâ€mediated oneâ€pot fourâ€component allylation of aldimines. Applied Organometallic Chemistry, 2014, 28, 286-289.	3.5	9
36	Magnesium salt promoted tandem nucleophilic addition–Oppenauer oxidation of aldehydes with organozinc reagents. Organic and Biomolecular Chemistry, 2016, 14, 9720-9724.	2.8	9

#	Article	IF	CITATIONS
37	[3+2] Cycloaddition of Trifluoromethylated N-Acylhydrazones with Maleates: Synthesis of Trifluoromethylated Pyrazolidines. Synthesis, 2018, 50, 1979-1990.	2.3	9
38	Tin Powder-Promoted Cascade Condensation/Allylation/Lactamization: Synthesis of Isoindolinones and Pyrazoloisoindol-8-ones. Journal of Organic Chemistry, 2019, 84, 6946-6961.	3.2	9
39	<i>N</i> -Arylations of trifluoromethylated <i>N</i> -acylhydrazones with diaryliodonium salts as arylation reagents. Organic and Biomolecular Chemistry, 2019, 17, 2940-2947.	2.8	9
40	Synthesis of Polysubstituted Trifluoromethylpyridines from Trifluoromethyl-α,β <i>-</i> ynones. Journal of Organic Chemistry, 2020, 85, 924-933.	3.2	9
41	Enantioselective fluorination of β-ketoesters catalysed by complexes of new mono-oxazoline ligands. Journal of Fluorine Chemistry, 2015, 175, 6-11.	1.7	7
42	Tin-Powder-Promoted One-Pot Synthesis of 5-Trifluoromethyl-5-aryl-3-methylidenepyrrolidin-2-ones. Synthesis, 2018, 50, 1907-1913.	2.3	7
43	Synthesis of CF ₃ -Substituted 1,6-Dihydropyridazines by Copper-Promoted Cascade Oxidation/Cyclization of Trifluoromethylated Homoallylic <i>N</i> -Acylhydrazines. Journal of Organic Chemistry, 2020, 85, 12304-12314.	3.2	7
44	Tin-Mediated One-Pot Synthesis of α,α-Disubstituted Homoallylic Hydrazides from Ketones, Acylhydrazines and Allyl Bromide. Synthesis, 2016, 48, 293-301.	2.3	5
45	Synthesis of dihydroquinoxalin-2(1H)-ones by tin powder-promoted di- and mono-allylation of quinoxalin-2(1H)-ones. Tetrahedron, 2020, 76, 131185.	1.9	5
46	Tin-Promoted One-Pot Synthesis of Aryl/Trifluoromethyl Group Substituted Homoallylic <i>N</i> -Acylhydrazines. Chinese Journal of Organic Chemistry, 2017, 37, 1764.	1.3	5
47	Synthesis of N-acetoxy-N-arylamides via diacetoxyiodobenzene promoted double acylation reaction of hydroxylamines with aldehydes. Organic and Biomolecular Chemistry, 2017, 15, 5337-5344.	2.8	4
48	Tin powder promoted synthesis of trifluoroethylamine ontaining 3,3′â€disubstituted oxindoles. Applied Organometallic Chemistry, 2019, 33, e4995.	3.5	4
49	Synthesis of 1â€(3 <i>H</i>)isobenzofuranone compounds by tin powder promoted cascade condensation reaction. Applied Organometallic Chemistry, 2021, 35, e6249.	3.5	4
50	Sulfideâ€Catalyzed Diastereoselective Spirocyclopropanation: Constructing Spiroâ€cyclopropanylâ€pyrazolones From αâ€Arylidenepyrazolones. Asian Journal of Organic Chemistry, 2021, 10, 1778-1785.	2.7	4
51	One-Pot Synthesis of Trifluoromethylated Homoallylic <i>N</i> -Acylhydrazines Promoted by Indium Powder. Chinese Journal of Organic Chemistry, 2017, 37, 925.	1.3	4
52	Study on Tin Powder-Promoted Allylation of 3-Aryl-3-hydroxy-2-oxindoles. Chinese Journal of Organic Chemistry, 2020, 40, 2026.	1.3	4
53	Silver-Catalyzed Synthesis of CF ₃ -Substituted 2-Imidazolines. Chinese Journal of Organic Chemistry, 2022, 42, 1509.	1.3	4
54	A novel bisoxazoline/Pd composite microsphere: a highly active catalyst for Heck reactions. RSC Advances, 2015, 5, 76285-76290.	3.6	3

#	Article	IF	CITATIONS
55	Synthesis of homoallylic amines and acylhydrazides by tin powderâ€promoted multicomponent oneâ€pot allylation reactions. Applied Organometallic Chemistry, 2016, 30, 571-576.	3.5	3
56	Trichloroisocyanuric Acid Induced Chlorine Radical Cascade ChlorinationÂ∤Carbocyclization of Acrylamides: Constructing Chlorinated Oxindoles by C–Cl and C–C Bond-Forming Reactions. Synthesis, 2019, 51, 2331-2338.	2.3	3
57	Study on <i>N</i> -Alkylation Reactions of Trifluoromethylated Acylhydrazones. Chinese Journal of Organic Chemistry, 2021, , 2029.	1.3	3
58	Study on the Chlorination Reaction of Hydrazones by Using of Trichloroisocyanuric Acid as Chloride Source. Chinese Journal of Organic Chemistry, 2019, 39, 1396.	1.3	3
59	Tin powderâ€promoted oxidation/allylation of glycine esters: Synthesis of γ , δ â€unsaturated α â€amino acid esters. Applied Organometallic Chemistry, 2022, 36, e6479.	3.5	3
60	Study on the Allylation of Benzol[<i>e</i>][1,2,3]oxathiazine-2,2-dioxides. Chinese Journal of Organic Chemistry, 2022, 42, 507.	1.3	2
61	Tin powderâ€promoted diastereoselective allylation of chiral acylhydrazones. Applied Organometallic Chemistry, 2017, 31, e3731.	3.5	1
62	Tin powder-promoted allylation and cyclization of 2-(benzylideneamino)isoindoline-1,3-diones. Heterocyclic Communications, 2018, 24, 159-163.	1.2	0