
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7003435/publications.pdf Version: 2024-02-01

KADI KAINED

#	Article	IF	CITATIONS
1	Degradable biomaterials based on magnesium corrosion. Current Opinion in Solid State and Materials Science, 2008, 12, 63-72.	11.5	1,537
2	Effect of rare earth additions on microstructure and texture development of magnesium alloy sheets. Scripta Materialia, 2010, 63, 725-730.	5.2	643
3	Magnesium alloys as implant materials – Principles of property design for Mg–RE alloysâ~†. Acta Biomaterialia, 2010, 6, 1714-1725.	8.3	503
4	Recent research and developments on wrought magnesium alloys. Journal of Magnesium and Alloys, 2017, 5, 239-253.	11.9	472
5	Plasma electrolytic oxidation coatings with particle additions – A review. Surface and Coatings Technology, 2016, 307, 1165-1182.	4.8	408
6	A Critical Review of the Stress Corrosion Cracking (SCC) of Magnesium Alloys. Advanced Engineering Materials, 2005, 7, 659-693.	3.5	386
7	General and Localized Corrosion of Magnesium Alloys: A Critical Review. Journal of Materials Engineering and Performance, 2004, 13, 7-23.	2.5	372
8	Review of studies on corrosion of magnesium alloys. Transactions of Nonferrous Metals Society of China, 2006, 16, s763-s771.	4.2	363
9	Effect of rare earth elements on the microstructure and texture development in magnesium–manganese alloys during extrusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 7092-7098.	5.6	344
10	Deformation and texture evolution in AZ31 magnesium alloy during uniaxial loading. Acta Materialia, 2006, 54, 549-562.	7.9	302
11	Study of the structure and corrosion behavior of PEO coatings on AM50 magnesium alloy by electrochemical impedance spectroscopy. Surface and Coatings Technology, 2008, 202, 3513-3518.	4.8	245
12	Plasma electrolytic oxidation coatings on Mg alloy with addition of SiO2 particles. Electrochimica Acta, 2016, 187, 20-33.	5.2	219
13	Microstructure and texture development during hydrostatic extrusion of magnesium alloy AZ31. Scripta Materialia, 2005, 53, 259-264.	5.2	212
14	Intermetallics in Magnesium Alloys. Advanced Engineering Materials, 2006, 8, 235-240.	3.5	204
15	Preparation and properties of high purity Mg–Y biomaterials. Biomaterials, 2010, 31, 398-403.	11.4	170
16	Fatigue of Magnesium Alloys. Advanced Engineering Materials, 2004, 6, 281-289.	3.5	163
17	On the influence of the grain size and solute content on the AE response of magnesium alloys tested in tension and compression. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 462, 302-306.	5.6	154
18	Characterisation of stress corrosion cracking (SCC) of Mg–Al alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 488, 339-351.	5.6	150

#	Article	IF	CITATIONS
19	The role of anions in the formation and corrosion resistance of the plasma electrolytic oxidation coatings. Surface and Coatings Technology, 2010, 204, 1469-1478.	4.8	149
20	Microstructural Investigations of the Mg-Sn-xCa System. Advanced Engineering Materials, 2006, 8, 359-364.	3.5	125
21	Investigations on microstructures, mechanical and corrosion properties of Mg–Gd–Zn alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 595, 224-234.	5.6	120
22	Tensile properties of hot rolled AZ31 Mg alloy sheets at elevated temperatures. Journal of Alloys and Compounds, 2004, 378, 184-187.	5.5	113
23	Corrosion of an extruded magnesium alloy ZK60 component—The role of microstructural features. Journal of Alloys and Compounds, 2011, 509, 4462-4469.	5.5	111
24	Insights into plasma electrolytic oxidation treatment with particle addition. Corrosion Science, 2015, 101, 201-207.	6.6	107
25	Comparison of the linearly increasing stress test and the constant extension rate test in the evaluation of transgranular stress corrosion cracking of magnesium. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 472, 97-106.	5.6	106
26	Surface modification of magnesium alloy AZ31 by hydrofluoric acid treatment and its effect on the corrosion behaviour. Thin Solid Films, 2010, 518, 5209-5218.	1.8	98
27	Metallographische Gefügeuntersuchungen von Magnesiumlegierungen / The Metallographical Examination of Magnesium Alloys. Praktische Metallographie/Practical Metallography, 2004, 41, 233-246.	0.3	96
28	Microstructure, mechanical and corrosion properties of Mg–Dy–Gd–Zr alloys for medical applications. Acta Biomaterialia, 2013, 9, 8499-8508.	8.3	92
29	Investigation of the formation mechanisms of plasma electrolytic oxidation coatings on Mg alloy AM50 using particles. Electrochimica Acta, 2016, 196, 680-691.	5.2	91
30	Degradation behavior of PEO coating on AM50 magnesium alloy produced from electrolytes with clay particle addition. Surface and Coatings Technology, 2015, 269, 155-169.	4.8	90
31	Fundamentals of magnesium alloy metallurgy. , 2013, , .		89
32	Calcium and zirconium as texture modifiers during rolling and annealing of magnesium–zinc alloys. Materials Characterization, 2015, 101, 144-152.	4.4	88
33	Evaluation of the delayed hydride cracking mechanism for transgranular stress corrosion cracking of magnesium alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 466, 18-31.	5.6	87
34	Element distribution in the corrosion layer and cytotoxicity of alloy Mg–10Dy during in vitro biodegradation. Acta Biomaterialia, 2013, 9, 8475-8487.	8.3	87
35	Mechanical and corrosion properties of binary Mg–Dy alloys for medical applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 1827-1834.	3.5	86
36	Corrosion protection of magnesium alloy AZ31 sheets by spin coating process with poly(ether imide) [PEI]. Corrosion Science, 2010, 52, 2066-2079.	6.6	85

#	Article	IF	CITATIONS
37	Corrosion of friction stir welded magnesium alloy AM50. Corrosion Science, 2009, 51, 1738-1746.	6.6	83
38	Anisotropic Properties of Magnesium Sheet AZ31. Materials Science Forum, 2003, 419-422, 315-320.	0.3	79
39	Influence of inorganic acid pickling on the corrosion resistance of magnesium alloy AZ31 sheet. Corrosion Science, 2009, 51, 2544-2556.	6.6	77
40	Hot tearing susceptibility of binary Mg–Y alloy castings. Materials & Design, 2013, 47, 90-100.	5.1	76
41	Magnesium Permanent Mold Castings Optimization. Materials Science Forum, 0, 690, 65-68.	0.3	74
42	Role of multi-microalloying by rare earth elements in ductilization of magnesium alloys. Journal of Magnesium and Alloys, 2014, 2, 1-7.	11.9	74
43	3D reconstruction of plasma electrolytic oxidation coatings on Mg alloy via synchrotron radiation tomography. Corrosion Science, 2018, 139, 395-402.	6.6	74
44	Fracture toughness behaviour of a magnesium alloy metal-matrix composite produced by the infiltration technique. Composites, 1991, 22, 456-462.	0.7	72
45	Mechanism of grain refinement of Mg–Al alloys by SiC inoculation. Scripta Materialia, 2011, 64, 793-796.	5.2	72
46	In vitro mechanical and corrosion properties of biodegradable Mg-Ag alloys. Materials and Corrosion - Werkstoffe Und Korrosion, 2014, 65, 569-576.	1.5	72
47	Phase equilibria, thermodynamics and solidification microstructures of Mg–Sn–Ca alloys, Part 2: Prediction of phase formation in Mg-rich Mg–Sn–Ca cast alloys. Intermetallics, 2008, 16, 316-321.	3.9	68
48	Corrosion behavior of Mg–Gd–Zn based alloys in aqueous NaCl solution. Journal of Magnesium and Alloys, 2014, 2, 245-256.	11.9	67
49	Magnesium global development: Outcomes from the TMS 2007 annual meeting. Jom, 2007, 59, 39-42.	1.9	66
50	Effects of organic acid pickling on the corrosion resistance of magnesium alloy AZ31 sheet. Corrosion Science, 2010, 52, 2143-2154.	6.6	65
51	Influence of incorporating Si3N4 particles into the oxide layer produced by plasma electrolytic oxidation on AM50 Mg alloy on coating morphology and corrosion properties. Journal of Magnesium and Alloys, 2013, 1, 267-274.	11.9	64
52	Fractography of Stress Corrosion Cracking of Mg-Al Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2008, 39, 1157-1173.	2.2	62
53	Optimum parameters and rate-controlling mechanisms for hot working of extruded Mg–3Sn–1Ca alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 502, 25-31.	5.6	62
54	Microstructure and corrosion behavior of Mg-Sn-Ca alloys after extrusion. Transactions of Nonferrous Metals Society of China, 2009, 19, 40-44.	4.2	62

KARL KAINER

#	Article	IF	CITATIONS
55	Orientation effects on acoustic emission during tensile deformation of hot rolled magnesium alloy AZ31. Journal of Alloys and Compounds, 2004, 378, 207-213.	5.5	61
56	Basics of Metal Matrix Composites. , 2006, , 1-54.		59
57	Influence of ageing treatment on microstructure, mechanical and bio-corrosion properties of Mg–Dy alloys. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 13, 36-44.	3.1	59
58	Influence of cerium additions on the corrosion behaviour of high pressure die cast AM50 alloy. Corrosion Science, 2012, 65, 145-151.	6.6	58
59	Hot working parameters and mechanisms in as-cast Mg–3Sn–1Ca alloy. Materials Letters, 2008, 62, 4207-4209.	2.6	57
60	Testing of General and Localized Corrosion of Magnesium Alloys: A Critical Review. Journal of Materials Engineering and Performance, 2004, 13, 517-529.	2.5	56
61	Investigation of minimum creep rates and stress exponents calculated from tensile and compressive creep data of magnesium alloy AE42. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 510-511, 382-386.	5.6	56
62	Corrosion protection of magnesium AZ31 alloy using poly(ether imide) [PEI] coatings prepared by the dip coating method: Influence of solvent and substrate pre-treatment. Corrosion Science, 2011, 53, 338-346.	6.6	56
63	Strain induced GdH2 precipitate in Mg–Gd based alloys. Intermetallics, 2011, 19, 382-389.	3.9	55
64	Magnesium secondary alloys: Alloy design for magnesium alloys with improved tolerance limits against impurities. Corrosion Science, 2010, 52, 2452-2468.	6.6	54
65	Waste Mg-Al based alloys for hydrogen storage. International Journal of Hydrogen Energy, 2018, 43, 16738-16748.	7.1	54
66	Influence of particle additions on corrosion and wear resistance of plasma electrolytic oxidation coatings on Mg alloy. Surface and Coatings Technology, 2018, 352, 1-14.	4.8	54
67	Influence of microstructure on tensile properties and fatigue crack growth in extruded magnesium alloy AM60. International Journal of Fatigue, 2010, 32, 411-419.	5.7	52
68	Influence of composition on hot tearing in binary Mg–Zn alloys. International Journal of Cast Metals Research, 2011, 24, 170-176.	1.0	52
69	Measurement and calculation of the viscosity of metals—a review of the current status and developing trends. Measurement Science and Technology, 2014, 25, 062001.	2.6	52
70	Influence of surface pre-treatment on the deposition and corrosion properties of hydrophobic coatings on a magnesium alloy. Corrosion Science, 2016, 112, 483-494.	6.6	52
71	Effects of Gd solutes on hardness and yield strength of Mg alloys. Progress in Natural Science: Materials International, 2018, 28, 724-730.	4.4	51
72	Texture and microstructure evolution in ultrafine-grained AZ31 processed by EX-ECAP. Journal of Materials Science, 2010, 45, 4665-4671.	3.7	50

#	Article	IF	CITATIONS
73	Influence of Rolling Conditions on the Microstructure and Mechanical Properties of Magnesium Sheet AZ31. Advanced Engineering Materials, 2003, 5, 891-896.	3.5	49
74	Hot deformation behavior of Mg–2Sn–2Ca alloy in as-cast condition and after homogenization. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 552, 444-450.	5.6	48
75	Thermodynamic assessment and experimental study of Mg–Gd alloys. Journal of Alloys and Compounds, 2013, 581, 166-177.	5.5	48
76	Hot tearing mechanisms of B206 aluminum–copper alloy. Materials & Design, 2014, 64, 44-55.	5.1	47
77	Microstructures and mechanical properties of pure Mg processed by rotary swaging. Materials & Design, 2014, 63, 83-88.	5.1	47
78	High cycle fatigue behaviour of magnesium alloys. Procedia Engineering, 2010, 2, 743-750.	1.2	46
79	Mechanical properties and corrosion behavior of Mg–Gd–Ca–Zr alloys for medical applications. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 47, 38-48.	3.1	46
80	Influence of electrical parameters on particle uptake during plasma electrolytic oxidation processing of AM50 Mg alloy. Surface and Coatings Technology, 2016, 289, 179-185.	4.8	46
81	Hot workability characteristics of cast and homogenized Mg–3Sn–1Ca alloy. Journal of Materials Processing Technology, 2008, 201, 359-363.	6.3	45
82	Stress corrosion cracking behaviour of a surface-modified magnesium alloy. Scripta Materialia, 2008, 59, 43-46.	5.2	45
83	Magnesium-base hybrid composites prepared by liquid infiltration. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1991, 135, 33-36.	5.6	44
84	Role of deformation mechanisms and grain growth in microstructure evolution during recrystallization of Mg-Nd based alloys. Scripta Materialia, 2019, 166, 53-57.	5.2	44
85	Hydrostatic extrusion of commercial magnesium alloys at 100°C and its influence on grain refinement and mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 424, 223-229.	5.6	42
86	Effect of Heat Treatment on the Microstructure and Creep Behavior of Mg-Sn-Ca Alloys. Materials Science Forum, 0, 546-549, 69-72.	0.3	42
87	Wrought magnesium alloys for structural applications. Materials Science and Technology, 2008, 24, 991-996.	1.6	42
88	Experimental and numerical analysis of hot tearing susceptibility for Mg–Y alloys. Journal of Materials Science, 2014, 49, 353-362.	3.7	42
89	Spray Forming of Magnesium Alloys and Composites. Powder Metallurgy, 1997, 40, 126-130.	1.7	41
90	Stress Relaxation in AX41 Magnesium Alloy Studied at Elevated Temperatures. Advanced Engineering Materials, 2007, 9, 370-374.	3.5	41

#	Article	IF	CITATIONS
91	Hot Tearing Characteristics of Binary Mg-Gd Alloy Castings. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 2285-2298.	2.2	41
92	Investigations in the Magnesium-Tin System. Materials Science Forum, 2005, 488-489, 135-138.	0.3	40
93	Hot tearing behaviour of binary Mg–1Al alloy using a contraction force measuring method. International Journal of Cast Metals Research, 2009, 22, 331-334.	1.0	40
94	Investigation of the mechanical behaviour of magnesium composites. Composites, 1994, 25, 296-302.	0.7	39
95	Tensile and compressive creep behaviour of Al2O3 (Saffil®) short fiber reinforced magnesium alloy AE42. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 410-411, 85-88.	5.6	39
96	New Perspectives for Wrought Magnesium Alloys. Materials Science Forum, 2007, 546-549, 1-10.	0.3	39
97	Influence of aging on damping of the magnesium–aluminium–zinc series. Journal of Alloys and Compounds, 2007, 437, 127-132.	5.5	39
98	Stress corrosion cracking in magnesium alloys: Characterization and prevention. Jom, 2007, 59, 49-53.	1.9	39
99	Mg sheet: the effect of process parameters and alloy composition on texture and mechanical properties. Jom, 2009, 61, 38-42.	1.9	39
100	Effect of Zn addition on hot tearing behaviour of Mg–0.5Ca–xZn alloys. Materials and Design, 2015, 87, 157-170.	7.0	39
101	Influence of the amount of intermetallics on the degradation of Mg-Nd alloys under physiological conditions. Acta Biomaterialia, 2021, 121, 695-712.	8.3	39
102	The Effect of Grain Size on the Deformation Behaviour of Magnesium Alloys Investigated by the Acoustic Emission Technique. Advanced Engineering Materials, 2006, 8, 422-427.	3.5	38
103	Evolution of microstructure and hardness of AE42 alloy after heat treatments. Journal of Alloys and Compounds, 2008, 463, 238-245.	5.5	38
104	Quantitative Determination on Hot Tearing in Mg-Al Binary Alloys. Materials Science Forum, 0, 618-619, 533-540.	0.3	38
105	Controlled degradation of a magnesium alloy in simulated body fluid using hydrofluoric acid treatment followed by polyacrylonitrile coating. Corrosion Science, 2012, 62, 83-89.	6.6	38
106	Acoustic emission during stress relaxation of pure magnesium and AZ magnesium alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 462, 307-310.	5.6	37
107	Study on the interface of PVDF coatings and HF-treated AZ31 magnesium alloy: Determination of interfacial interactions and reactions with self-healing properties. Corrosion Science, 2011, 53, 712-719.	6.6	37
108	Unexpected formation of hydrides in heavy rare earth containing magnesium alloys. Journal of Magnesium and Alloys, 2016, 4, 173-180.	11.9	37

#	Article	IF	CITATIONS
109	Influence of heat treatment on the properties of short-fibre-reinforced magnesium composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1991, 135, 243-246.	5.6	36
110	Microstructure and mechanical properties of as-cast Mg–Sn–Ca alloys and effect of alloying elements. Transactions of Nonferrous Metals Society of China, 2013, 23, 3604-3610.	4.2	36
111	General and Localized Corrosion of Magnesium Alloys: A Critical Review. Journal of Materials Engineering and Performance, 2013, 22, 2875-2891.	2.5	36
112	Deformation mechanisms in an AZ31 cast magnesium alloy as investigated by the acoustic emission technique. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 462, 297-301.	5.6	34
113	Study of hot forging behavior of as-cast Mg–3Al–1Zn–2Ca alloy towards optimization of its hot workability. Materials & Design, 2014, 57, 697-704.	5.1	34
114	In situ synchrotron diffraction of the solidification of Mg4Y3Nd. Materials Letters, 2013, 102-103, 62-64.	2.6	33
115	Thermal behavior of short fiber reinforced AlSi12CuMgNi piston alloys. Composites Part A: Applied Science and Manufacturing, 2004, 35, 249-263.	7.6	32
116	Creep behavior of AE42 based hybrid composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 460-461, 268-276.	5.6	32
117	Stress Corrosion Cracking (SCC) in Mgâ€Al Alloys Studied using Compact Specimens. Advanced Engineering Materials, 2008, 10, 453-458.	3.5	31
118	Influence of Ce addition on microstructure and mechanical properties of high pressure die cast AM50 magnesium alloy. Transactions of Nonferrous Metals Society of China, 2013, 23, 66-72.	4.2	31
119	As cast microstructures on the mechanical and corrosion behaviour of ZK40 modified with Gd and Nd additions. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 682, 238-247.	5.6	31
120	Resistivity Changes Due to Precipitation Effects in Fibre Reinforced Mg–Al–Zn–Mn Alloy. Physica Status Solidi A, 1997, 161, 85-95.	1.7	30
121	An Investigation on Hot Tearing of Mg-4.5Zn-(0.5Zr) Alloys with Y Additions. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 2108-2118.	2.2	30
122	Microstructure evolution and tensile properties of friction-stir-welded AM50 magnesium alloy. Transactions of Nonferrous Metals Society of China, 2008, 18, s76-s80.	4.2	29
123	Influence of the Processing of Magnesium Alloys AZ31 and ZE10 on the Sheet Formability at Elevated Temperature. Key Engineering Materials, 2011, 473, 335-342.	0.4	29
124	Current Status and Recent Developments in Porous Magnesium Fabrication. Advanced Engineering Materials, 2018, 20, 1700562.	3.5	29
125	Enhancing the creep resistance of AlN/Al nanoparticles reinforced Mg-2.85Nd-0.92Gd-0.41Zr-0.29Zn alloy by a high shear dispersion technique. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 755, 18-27.	5.6	29
126	Acoustic emission during tensile testing of magnesium AZ alloys. Journal of Alloys and Compounds, 2004, 378, 214-219.	5.5	28

#	Article	IF	CITATIONS
127	Hot tearing characteristics of Mg–2Ca–xZn alloys. Journal of Materials Science, 2016, 51, 2687-2704.	3.7	28
128	Influence of Dy in solid solution on the degradation behavior of binary Mg-Dy alloys in cell culture medium. Materials Science and Engineering C, 2017, 75, 1351-1358.	7.3	28
129	Microstructure Changes in Isochronally Annealed Alumina Fibre Reinforced Mg–Ag–Nd–Zr Alloy. Physica Status Solidi A, 1997, 164, 709-723.	1.7	27
130	Magnesium powder injection moulding for biomedical application. Powder Metallurgy, 2014, 57, 331-340.	1.7	27
131	Experimental and numerical crushing analyses of thin-walled magnesium profiles. International Journal of Crashworthiness, 2015, 20, 177-190.	1.9	27
132	Some studies on the thermal-expansion behavior of C-fiber, SiC p , and In-situ Mg2Si-reinforced AZ31 Mg alloy-based hybrid composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 1167-1176.	2.2	26
133	Corrosion of AZ 91 Secondary Magnesium Alloy. Advanced Engineering Materials, 2005, 7, 1134-1142.	3.5	26
134	Compressive strength and hot deformation behavior of TX32 magnesium alloy with 0.4% Al and 0.4% Si additions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 6964-6970.	5.6	26
135	CaO dissolution during melting and solidification of a Mg–10 wt.% CaO alloy detected with in situ synchrotron radiation diffraction. Journal of Alloys and Compounds, 2015, 618, 64-66.	5.5	26
136	Influence of Nd or Ca addition on the dislocation activity and texture changes of Mg–Zn alloy sheets under uniaxial tensile loading. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 761, 138053.	5.6	26
137	Analysis of instantaneous thermal expansion coefficient curve during thermal cycling in short fiber reinforced AlSi12CuMgNi composites. Composites Science and Technology, 2005, 65, 137-147.	7.8	25
138	Enhancement of Workability in AZ31 Alloy – Processing Maps: Part I, Cast Material. Advanced Engineering Materials, 2006, 8, 966-973.	3.5	25
139	Effect of calcium addition on the hot working behavior of as-cast AZ31 magnesium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 588, 272-279.	5.6	25
140	Hot workability analysis with processing map and texture characteristics of as-cast TX32 magnesium alloy. Journal of Materials Science, 2013, 48, 5236-5246.	3.7	25
141	The effect of zirconium addition on sintering behaviour, microstructure and creep resistance of the powder metallurgy processed alloy Ti–45Al–5Nb–0.2B–0.2C. Materials and Design, 2015, 84, 87-94.	7.0	25
142	Investigation of electrode distance impact on PEO coating formation assisted by simulation. Applied Surface Science, 2016, 388, 304-312.	6.1	25
143	Interrupted creep behaviour of Mg alloys developed for powertrain applications. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 2289-2296.	5.6	24
144	Understanding effects of microstructural inhomogeneity on creep response – New approaches to improve the creep resistance in magnesium alloys. Journal of Magnesium and Alloys, 2014, 2, 124-132.	11.9	24

#	Article	IF	CITATIONS
145	Formation of photocatalytic plasma electrolytic oxidation coatings on magnesium alloy by incorporation of TiO2 particles. Surface and Coatings Technology, 2016, 307, 287-291.	4.8	24
146	Acoustic Emission and Dilatometry for Non-Destructive Characterisation of Microstructural Changes in Mg Based Metal Matrix Composites Submitted to Thermal Cycling. Scripta Materialia, 1997, 38, 81-87.	5.2	23
147	Analysis of thermal cycling curves of short fibre reinforced Mg-MMCs. Composites Science and Technology, 2003, 63, 1805-1814.	7.8	23
148	In situ measurements of texture variations during a tensile loading of Mg-alloy AM20 using synchrotron X-ray radiation. Scripta Materialia, 2004, 51, 455-460.	5.2	23
149	Microstructure and creep behaviour of magnesium hybrid composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 462, 220-224.	5.6	23
150	Hot Tearing Susceptibility of Mg-Ca Binary Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 6003-6017.	2.2	23
151	Processing Effects on the Formability of Magnesium Alloy Sheets. Metals, 2018, 8, 147.	2.3	23
152	Thermal diffusivity of short-fibre reinforced Mg-Al-Zn-Mn alloy. Scripta Materialia, 1998, 40, 57-62.	5.2	22
153	Magnesium – der Zukunftswerkstoff fżr die Automobilindustrie?. Materialwissenschaft Und Werkstofftechnik, 2007, 38, 91-96.	0.9	22
154	Hot working mechanisms and texture development in Mg-3Sn-2Ca-0.4Al alloy. Materials Chemistry and Physics, 2012, 136, 1081-1091.	4.0	22
155	Influence of Process Parameters on Twin Roll Cast Strip of the Alloy AZ31. Materials Science Forum, 0, 765, 205-209.	0.3	22
156	A model describing the growth of a PEO coating on AM50 Mg alloy under constant voltage mode. Electrochimica Acta, 2017, 251, 461-474.	5.2	22
157	Corrosion Behaviour of Magnesium Alloys with RE Additions in Sodium Chloride Solutions. Materials Science Forum, 2003, 419-422, 867-872.	0.3	21
158	Synchrotron Radiation Investigation of Twinning in Extruded Magnesium Alloy AZ3l. Materials Science Forum, 2005, 495-497, 1633-1638.	0.3	21
159	Polycrystalline and amorphous MgZnCa thin films. Corrosion Science, 2012, 63, 234-238.	6.6	21
160	Creep behavior of Mg–10Gd–xZn (x=2 and 6 wt%) alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 649, 158-167.	5.6	21
161	On the Direct Extrusion of Magnesium Wires from Mg-Al-Zn Series Alloys. Metals, 2020, 10, 1208.	2.3	21
162	New Development in Magnesium Technology for Light Weight Structures in Transportation Industries. Materials Science Forum, 2003, 426-432, 153-160.	0.3	20

#	Article	IF	CITATIONS
163	Investigations on thermal fatigue of aluminum- and magnesium-alloy based composites. International Journal of Fatigue, 2006, 28, 1399-1405.	5.7	20
164	Influence of electrolyte constituents on corrosion behaviour of PEO coatings on magnesium alloys. Surface Engineering, 2010, 26, 321-327.	2.2	20
165	On the degradation mechanism of corrosion protective poly(ether imide) coatings on magnesium AZ31 alloy. Corrosion Science, 2010, 52, 3155-3157.	6.6	20
166	Effect of Ca and Nd on the microstructural development during dynamic and static recrystallization of indirectly extruded Mg–Zn based alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 793, 139527.	5.6	20
167	High Temperature Deformation Behaviour of a New Magnesium Alloy. Key Engineering Materials, 2007, 340-341, 89-94.	0.4	19
168	High ductile as-cast Mg–RE based alloys at room temperature. Materials Letters, 2012, 83, 209-212.	2.6	19
169	Bulk and local textures of pure magnesium processed by rotary swaging. Journal of Magnesium and Alloys, 2013, 1, 341-345.	11.9	19
170	Effect of aluminium and calcium on the microstructure, texture, plastic deformation and related acoustic emission of extruded magnesium–manganese alloys. Journal of Alloys and Compounds, 2014, 617, 253-264.	5.5	19
171	The Effect of Solid Solute and Precipitate Phase on Young's Modulus of Binary Mg–RE Alloys. Advanced Engineering Materials, 2018, 20, 1800271.	3.5	19
172	Metallurgical Characterization of Hot Tearing Curves Recorded during Solidification of Magnesium Alloys. Acta Physica Polonica A, 2012, 122, 497-500.	0.5	19
173	Interface formation in carbon fibre reinforced magnesium alloys (AZ91). Journal of Materials Science Letters, 1995, 14, 358-360.	0.5	18
174	Microstructural investigations of interfaces in short fiber reinforced AlSi12CuMgNi composites. Acta Materialia, 2005, 53, 3913-3923.	7.9	18
175	Hot Deformation Mechanisms in AZ31 Magnesium Alloy Extruded at Different Temperatures: Impact of Texture. Metals, 2012, 2, 292-312.	2.3	18
176	Influence of SiO2 Particles on the Corrosion and Wear Resistance of Plasma Electrolytic Oxidation-Coated AM50 Mg Alloy. Coatings, 2018, 8, 306.	2.6	18
177	Characteristics of thermal cycling in a magnesium alloy composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 325, 320-323.	5.6	17
178	Neutron diffraction study on the texture development during extrusion of magnesium alloy AZ31. Physica B: Condensed Matter, 2004, 350, E507-E509.	2.7	17
179	Analysing hysteresis and residual strains in thermal cycling curves of short fibre reinforced Mg-MMCs. Composites Science and Technology, 2004, 64, 1179-1189.	7.8	17
180	Comparison of Corrosion Properties of Squeeze Cast and Thixocast MgZnRE Alloys. Materials Science Forum, 2005, 488-489, 697-700.	0.3	17

#	Article	IF	CITATIONS
181	Identification of unexpected hydrides in Mg–20â€wt% Dy alloy by high-brilliance synchrotron radiation. Journal of Applied Crystallography, 2012, 45, 17-21.	4.5	17
182	Effects of Sn segregation and precipitates on creep response of Mgâ€&n alloys. Fatigue and Fracture of Engineering Materials and Structures, 2013, 36, 308-315.	3.4	16
183	Compressive strength and hot deformation mechanisms in as-cast Mg-4Al-2Ba-2Ca (ABaX422) alloy. Philosophical Magazine, 2013, 93, 4364-4377.	1.6	16
184	Study of the Solidification of AS Alloys Combining <i>In Situ</i> Synchrotron Diffraction and Differential Scanning Calorimetry. Materials Science Forum, 0, 765, 286-290.	0.3	16
185	Effect of silicon content on hot working, processing maps, and microstructural evolution of cast TX32–0.4Al magnesium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 606, 11-23.	5.6	16
186	Effect of particulate content on the thermal cycling behaviour of the magnesium alloy based hybrid composites. Composites Part A: Applied Science and Manufacturing, 2005, 36, 321-325.	7.6	15
187	Effect of Microstructural Inhomogeneity on Creep Response of Mg-Sn Alloys. Key Engineering Materials, 0, 345-346, 561-564.	0.4	15
188	Status of the Development of Creep Resistant Magnesium Materials for Automotive Applications. Materials Science Forum, 0, 638-642, 73-80.	0.3	15
189	Sintering Behavior and Microstructure Formation of Titanium Aluminide Alloys Processed by Metal Injection Molding. Jom, 2017, 69, 676-682.	1.9	15
190	An evaluation of the creep characteristics of an AZ91 magnesium alloy composite using acoustic emission. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 338, 1-7.	5.6	14
191	Acoustic emission study of the mechanical anisotropy of the extruded AZ31 alloy. International Journal of Materials Research, 2009, 100, 888-891.	0.3	14
192	Properties and processing of magnesium-tin-calcium alloys. Metallic Materials, 2011, 49, 163-177.	0.3	14
193	The ORPHEUS dark matter experiment. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1996, 370, 227-229.	1.6	13
194	Dynamic Strain Ageing During Stress Relaxation in Selected Magnesium Alloys Containing Rare earth Elements. Advanced Engineering Materials, 2005, 7, 1027-1032.	3.5	13
195	Influence of Alloying Elements and Extrusion Process Parameter on the Recrystallization Process of Mg-Zn alloys. Materials Today: Proceedings, 2015, 2, S19-S25.	1.8	13
196	Corrosion behaviour of as-cast ZK40 with CaO and Y additions. Transactions of Nonferrous Metals Society of China, 2018, 28, 427-439.	4.2	13
197	Development of Pore-Free Ti-Si-C MAX/Al-Si Composite Materials Manufactured by Squeeze Casting Infiltration. Journal of Materials Engineering and Performance, 2019, 28, 6248-6257.	2.5	13
198	Mechanical behaviour of magnesium alloy MMCs produced by squeeze casting and powder metallurgical techniques. Composites Part B: Engineering, 1993, 3, 489-505.	0.6	12

#	Article	IF	CITATIONS
199	Production of High Strength Al—Mg—Sc Alloys by PM. Powder Metallurgy, 1998, 41, 119-122.	1.7	12
200	From titanium to magnesium: processing by advanced metal injection moulding. Powder Metallurgy, 2012, 55, 315-321.	1.7	11
201	Influences of Y Additions on the Hot Tearing Susceptibility of Mg-1.5wt.%Zn Alloys. Materials Science Forum, 0, 765, 306-310.	0.3	11
202	In situ synchrotron radiation diffraction study of the role of Gd, Nd on the elevated temperature compression behavior of ZK40. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 640, 129-136.	5.6	11
203	In situ synchrotron radiation diffraction investigation of the compression behaviour at 350°C of ZK40 alloys with addition of CaO and Y. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 664, 2-9.	5.6	11
204	Influence of plasma electrolytic oxidation coatings on fatigue performance of AZ31 Mg alloy. Materials and Corrosion - Werkstoffe Und Korrosion, 2017, 68, 50-57.	1.5	11
205	Enhanced predictive corrosion modeling with implicit corrosion products. Materials and Corrosion - Werkstoffe Und Korrosion, 2019, 70, 2247-2255.	1.5	11
206	Influences of Al and high shearing dispersion technique on the microstructure and creep resistance of Mg-2.85Nd-0.92Gd-0.41Zr-0.29Zn alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 764, 138215.	5.6	11
207	Processing Effects on the Formability of Extruded Flat Products of Magnesium Alloys. Frontiers in Materials, 2019, 6, .	2.4	11
208	Effect of Heat Treatment on the Corrosion Behavior of Mg-10Gd Alloy in 0.5% NaCl Solution. Frontiers in Materials, 2020, 7, .	2.4	11
209	Hydrostatic extrusion at 100°C and its effect on the grain size and mechanical properties of magnesium alloys. Metal Science and Heat Treatment, 2006, 48, 499-503.	0.6	10
210	Recycling of magnesium drive train components. Science in China Series D: Earth Sciences, 2009, 52, 148-154.	0.9	10
211	Development of the Microstructure and Texture of RE Containing Magnesium Alloys during Hot Rolling. Materials Science Forum, 0, 654-656, 580-585.	0.3	10
212	Crashworthiness of Magnesium Sheet Structures. Materials Science Forum, 0, 765, 590-594.	0.3	10
213	Magnesium Melt Protection. Materials Science Forum, 0, 828-829, 78-81.	0.3	10
214	Effects of Intermetallic Microstructure on Degradation of Mg-5Nd Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 5498-5515.	2.2	10
215	Individual/synergistic effects of Al and AlN on the microstructural evolution and creep resistance of Elektron21 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 777, 139072.	5.6	10
216	Measurement of crack induced damping of cast magnesium alloy AZ91. Journal of Alloys and Compounds, 2004, 378, 220-225.	5.5	9

#	Article	IF	CITATIONS
217	Characterization of stress in reinforcements in magnesium based squeeze infiltrated cast hybrid composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 415, 207-212.	5.6	9
218	Forming of Magnesium Alloys at 100 °C by Hydrostatic Extrusion. Journal of Materials Engineering and Performance, 2006, 15, 705-711.	2.5	9
219	Microstructural and Mechanical Behavior of Friction Welds in a High Creep Resistance Magnesium Alloy. Advanced Engineering Materials, 2007, 9, 757-763.	3.5	9
220	Effects of segregation of primary alloying elements on the creep response in magnesium alloys. Scripta Materialia, 2008, 58, 894-897.	5.2	9
221	Effect of Minor Additions of Al and Si on the Mechanical Properties of Cast Mg-3Sn-2Ca Alloys in Low Temperature Range. Materials Science Forum, 2010, 654-656, 635-638.	0.3	9
222	Effect of thermal and mechanical treatments on the hot working response of Mg-3Sn-1Ca alloy. International Journal of Materials Research, 2010, 101, 300-306.	0.3	9
223	Development of High Performance Singleâ€Phase Solid Solution Magnesium Alloy at Low Temperature. Advanced Engineering Materials, 2012, 14, 178-184.	3.5	9
224	High Strength Magnesium Alloys Through Precipitation Hardening and Micro Alloying: Considerations for Alloy Design. Jom, 2015, 67, 2427-2432.	1.9	9
225	Effect of Alumina Fibre Content on Properties of PM 6061 Aluminium Alloy Based Composite Materials. Powder Metallurgy, 1992, 35, 133-136.	1.7	8
226	Creep of Magnesium Composites Investigated by the Acoustic Emission Technique. Advanced Engineering Materials, 2000, 2, 600-604.	3.5	8
227	Creep behaviour of a QE22–SiC particle reinforced composite investigated by acoustic emission and scanning electron microscopy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 291, 246-249.	5.6	8
228	Powder Metallurgically Manufactured Metal Matrix Composites. , 2006, , 243-276.		8
229	Thermal cycling behaviour of the magnesium alloy based hybrid composites in the transverse direction. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 454-455, 367-370.	5.6	8
230	Development of a magnesium secondary alloy system for mixed magnesium post-consumer scrap. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 576, 222-230.	5.6	8
231	Mechanical properties and corrosion behaviour of freestanding, precipitate-free magnesium WE43 thin films. International Journal of Materials Research, 2013, 104, 286-292.	0.3	8
232	Mg Alloys: Challenges and Achievements in Controlling Performance, and Future Application Perspectives. Minerals, Metals and Materials Series, 2018, , 3-14.	0.4	8
233	Simulation assisted investigation of substrate geometry impact on PEO coating formation. Surface and Coatings Technology, 2018, 350, 281-297.	4.8	8
234	Properties of consolidated magnesium alloy powder. Metal Powder Report, 1990, 45, 684-687.	0.1	7

#	Article	IF	CITATIONS
235	Deformation of Short Fibre Reinforced Mg Alloys Caused by Thermally Induced Stresses. Key Engineering Materials, 1995, 97-98, 37-42.	0.4	7
236	Dislocation Generation in Mg Matrix Composites due to Thermal Cycling. Key Engineering Materials, 1997, 127-131, 1001-1008.	0.4	7
237	Non-destructive characterisation of microstructure evolution in Mg based metal matrix composites submitted to thermal cycling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 234-236, 774-777.	5.6	7
238	The ORPHEUS dark matter experiment. Nuclear Physics, Section B, Proceedings Supplements, 2000, 87, 117-119.	0.4	7
239	Compression Creep at 240°C of Extruded Magnesium Alloys Containing Gadolinium. Materials Science Forum, 0, 690, 270-273.	0.3	7
240	Hot Tearing Susceptibility of Magnesium–Gadolinium Binary Alloys. Transactions of the Indian Institute of Metals, 2012, 65, 701-706.	1.5	7
241	High Temperature Deformation and Microstructural Features of TXA321 Magnesium Alloy: Correlations with Processing Map. Advanced Engineering Materials, 2013, 15, 761-766.	3.5	7
242	Effect of aluminum on microstructural evolution during hot deformation of TX32 magnesium alloy. Journal of Materials Science, 2014, 49, 5885-5898.	3.7	7
243	Comparative study of microstructure and texture of cast and homogenized TX32 magnesium alloy after hot deformation. Metals and Materials International, 2015, 21, 134-146.	3.4	7
244	Effects of heat treatment on the microstructural evolution and creep resistance of Elektron21 alloy and its nanocomposite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 789, 139669.	5.6	7
245	Comparison on Hot Tearing Behavior of Binary Mg–Al, Mg–Y, Mg–Gd, Mg–Zn, and Mg–Ca Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2022, 53, 2986-3001.	2.2	7
246	Improvement of the phase transition homogeneity of superheated superconducting tin granules. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2000, 444, 285-288.	1.6	6
247	Micro-Strain Induced by Thermal Cycling in Short Fiber Reinforced AlSi12CuMgNi Piston Alloy and AE42 Magnesium Alloy. Advanced Engineering Materials, 2004, 6, 883-888.	3.5	6
248	Corrosion Behavior of As-Cast Binary Mg-Dy Alloys. Materials Science Forum, 2011, 690, 417-421.	0.3	6
249	Effects of Processing, Texture and Temperature on the Formability of AZ31 and ZE10 Sheets. Materials Science Forum, 0, 690, 298-301.	0.3	6
250	Acoustic emission study of the deformation behaviour of magnesium sheets. International Journal of Materials Research, 2009, 100, 790-795.	0.3	6
251	Powder Metallurgically Produced Metal—Glass Composites. Powder Metallurgy, 1984, 27, 30-38.	1.7	5
252	Status report on the ORPHEUS dark matter detector and on its SQUID readout system. Nuclear Physics, Section B, Proceedings Supplements, 1999, 70, 101-105.	0.4	5

#	Article	IF	CITATIONS
253	Research with Neutron and Synchrotron Radiation on Aerospace and Automotive Materials and Components. Advanced Engineering Materials, 2011, 13, 637-657.	3.5	5
254	Influence of Die Lubricants on Pickling and Conversion Treatment of Highâ€Pressure Die ast AM30 Magnesium Alloy. Advanced Engineering Materials, 2012, 14, 227-235.	3.5	5
255	Improving Corrosion Resistance of Mg10Gd Alloy. Materials Science Forum, 0, 765, 673-677.	0.3	5
256	A Study on the Hot Deformation Behavior of Cast Mg-4Sn-2Ca (TX42) Alloy. Jom, 2014, 66, 322-328.	1.9	5
257	Sintering behaviour of Ti–45Al–5Nb–0.2B–0.2C alloy modifications by additions of elemental titanium and aluminium. Powder Metallurgy, 2015, 58, 369-375.	1.7	5
258	Forging of cast Mg-3Sn-2Ca-0.4Al-0.4Si magnesium alloy using processing map. Journal of Mechanical Science and Technology, 2016, 30, 2699-2705.	1.5	5
259	Predictive modeling of longâ€ŧime crevice evolution at e oat defects under climate chamber test conditions. Materials and Corrosion - Werkstoffe Und Korrosion, 2017, 68, 699-710.	1.5	5
260	Enhanced predictive corrosion modeling via randomly distributed boundary conditions. Materials and Corrosion - Werkstoffe Und Korrosion, 2018, 69, 1720-1728.	1.5	5
261	Properties of PM-manufactured 6061 Al-base composite materials strengthened with σ-alumina fibers. Composites Part B: Engineering, 1991, 1, 363-374.	0.6	4
262	Electrical Resistometry of Mg-Based Microcrystalline Alloys and Mg-Based Composites. Materials Science Forum, 1996, 210-213, 635-642.	0.3	4
263	Stress Relaxation of Short Fiber Reinforced Mg Metal Matrix Composites after Thermal Cycling. Materials Science Forum, 1996, 210-213, 503-510.	0.3	4
264	Effect of Thermal Cycling on the Damping Behaviour of Mg Matrix Composites. Key Engineering Materials, 1996, 127-131, 993-1000.	0.4	4
265	Microstructural Development in Tension and Compression Creep of Magnesium Alloy AE42. Materials Science Forum, 2005, 482, 271-274.	0.3	4
266	Hydrostatic and Indirect Extrusion of AZ-Magnesium Alloys. Materials Science Forum, 2005, 488-489, 491-494.	0.3	4
267	Particles, Fibers and Short Fibers for the Reinforcement of Metal Materials. , 2006, , 55-76.		4
268	Influence of Processing Route on the Properties of Magnesium Alloys. Solid State Phenomena, 0, 141-143, 43-48.	0.3	4
269	Vermeidung von Bimetallkorrosion - Systematische Entwicklung eines Magnesium Karosseriebauteils. Preventing galvanic corrosion - Systematic development of a magnesium car body component. Materialwissenschaft Und Werkstofftechnik, 2010, 41, 853-860.	0.9	4
270	Magnesium Matrix Composites: State-of the-Art and what's the Future. Advanced Materials Research, 0, 410, 275-278.	0.3	4

#	Article	IF	CITATIONS
271	Microstructure, Mechanical and Corrosion Properties of Mg-Gd-Zn Alloys. Materials Science Forum, 2013, 765, 28-32.	0.3	4
272	Twin-Roll Casting after Intensive Melt Shearing and Subsequent Rolling of an AM30 Magnesium Alloy with Addition of CaO and SiC. Materials Science Forum, 0, 828-829, 35-40.	0.3	4
273	Corrosion and Creep Resistance of Thixomolded® Magnesium Alloys. Minerals, Metals and Materials Series, 2017, , 381-389.	0.4	4
274	Thixomolded AZ91D and MRI153M magnesium alloys and their enhanced corrosion resistance. Materials and Corrosion - Werkstoffe Und Korrosion, 2020, 71, 339-351.	1.5	4
275	Profile Shape Effect on the Texture and Mechanical Properties of Extruded Rare Earth Containing Magnesium Alloys. Acta Physica Polonica A, 2018, 134, 714-719.	0.5	4
276	Effects of Y Additions on the Microstructures and Mechanical Behaviours of as Cast Mg– <i>x</i> Y–0.5Zr Alloys. Advanced Engineering Materials, 2022, 24, .	3.5	4
277	Creep Behaviour of Magnesium Monolithic Alloys and Composites. Materials Science Forum, 2003, 419-422, 805-810.	0.3	3
278	Effects of Welding Conditions on Microstructural Transformations and Mechanical Properties in AE42-HP Friction Welded Joints. Welding in the World, Le Soudage Dans Le Monde, 2008, 52, 10-17.	2.5	3
279	Mechanical Properties and Corrosion Performance of AZ-Mg Alloy Modified with Ca and Sr. SAE International Journal of Materials and Manufacturing, 0, 1, 103-110.	0.3	3
280	Influence of Strontium, Silicon and Calcium Additions on the Properties of the AM50 Alloy. Materials Science Forum, 2009, 618-619, 459-462.	0.3	3
281	Global Magnesium Research: State-of-the-Art and What's Next?. , 2011, , 5-5.		3
282	Microstructural Evolution during Recrystallization of Magnesiun Alloys. Materials Science Forum, 0, 706-709, 1291-1296.	0.3	3
283	Investigation of hot workability behavior of as-cast Mg–5Sn–2Ca (TX52) magnesium alloy through processing map. Production and Manufacturing Research, 2014, 2, 241-252.	1.5	3
284	3D Microstructural Evolution on Solidifying Mg–5Nd–5Zn Alloy Observed via In Situ Synchrotron Tomography. Minerals, Metals and Materials Series, 2017, , 605-612.	0.4	3
285	Grain refinements of magnesium alloys inoculated by additions of external SiC particles. IOP Conference Series: Materials Science and Engineering, 2019, 529, 012049.	0.6	3
286	Effect of Nd Additions on the Mechanical Properties of Mg Binary Alloys. Jom, 2020, 72, 517-525.	1.9	3
287	Effects of Mn and Zn Solutes on Grain Refinement of Commercial Pure Magnesium. Minerals, Metals and Materials Series, 2017, , 191-198.	0.4	3
288	Investigations in the Magnesium-Tin System. Materials Science Forum, 0, , 135-138.	0.3	3

KARL KAINER

#	Article	IF	CITATIONS
289	Revisiting the tolerance limit of Fe impurity in biodegradable magnesium. Scripta Materialia, 2022, 212, 114509.	5.2	3
290	Deformation of Continuous Carbon Fibre Reinforced Mg-Alloys by Thermally Induced Stresses. Key Engineering Materials, 1997, 127-131, 861-868.	0.4	2
291	Internal friction in magnesium reinforced by short Al2O3 fibres after thermal cycling. European Physical Journal D, 1999, 49, 349-358.	0.4	2
292	First runs with the ORPHEUS dark matter detector. Nuclear Physics, Section B, Proceedings Supplements, 2002, 110, 106-108.	0.4	2
293	Some Studies on Mg Alloy Reinforced with Ceramic Discontinuous Phases. Materials Science Forum, 2003, 419-422, 837-844.	0.3	2
294	The Texture Evolutions of Mg Alloy, AZ31, under Uni-Axial Loading. Materials Science Forum, 2005, 495-497, 1585-1590.	0.3	2
295	New Developments in Extruded Magnesium Alloys for Structural Applications. Materials Science Forum, 2007, 561-565, 1545-1548.	0.3	2
296	High Temperature Deformation Mechanisms and Processing Map for Hot Working of Cast-Homogenized Mg-3Sn-2Ca Alloy. Materials Science Forum, 2010, 638-642, 3616-3621.	0.3	2
297	The formation of Sr6.33Mg16.67Si13 in magnesium alloy AM50 and its effect on mechanical properties. Journal of Materials Science, 2012, 47, 5461-5469.	3.7	2
298	Mechanical Properties and Microstructures of Nano SiC Reinforced ZE10 Composites Prepared with Ultrasonic Vibration. Advanced Materials Research, 0, 1019, 169-176.	0.3	2
299	Challenges and Solutions in the Development of Magnesium Sheet for Sustainable Vehicle Concepts. Materials Science Forum, 0, 828-829, 15-22.	0.3	2
300	The Role of Zn on the Elevated Temperature Compression Behavior of Mg5Nd: An In Situ Synchrotron Radiation Diffraction Study. Jom, 2016, 68, 3051-3056.	1.9	2
301	Axial fatigue testing of Ti–6Al–4V using an alternative specimen geometry fabricated by metal injection moulding. Powder Metallurgy, 2016, 59, 344-349.	1.7	2
302	Magnesium Pistons in Engines: Fiction or Fact?. Minerals, Metals and Materials Series, 2018, , 349-353.	0.4	2
303	Influences of AlN/Al Nanoparticles on the Creep Properties of Elektron21 Prepared by High Shear Dispersion Technology. Jom, 2019, 71, 2245-2252.	1.9	2
304	Unexpected Expansion Behavior of Mg-Al Alloys During Isothermal Ageing. Jom, 2019, 71, 2906-2912.	1.9	2
305	Microstructure and Mechanical Properties of Ca Containing AZX310 Alloy Sheets Produced via Twin Roll Casting Technology. , 2016, , 383-387.		2
306	Investigations on Hot Tearing of Mg-Zn-(Al) Alloys. , 2011, , 125-130.		2

#	Article	IF	CITATIONS
307	Effects of Gadolinium and Neodymium Addition on Young's Modulus of Magnesium-Based Binary Alloys. Minerals, Metals and Materials Series, 2017, , 341-347.	0.4	2
308	In Situ Investigation of Microstructure Evolution during Solidification of Mg10CaxGd (x=5, 10, 20) Alloys. Acta Physica Polonica A, 2015, 128, 606-611.	0.5	2
309	Hydrostatic and Indirect Extrusion of AZ-Magnesium Alloys. Materials Science Forum, 0, , 491-494.	0.3	2
310	Formability of Magnesium Sheet ZE10 and AZ31 with Respect to Initial Texture. , 2016, , 357-362.		2
311	Die Leichtbauwerkstoffe f¼r den Fahrzeugbau. , 2017, , 205-449.		2
312	Production and Properties of Water Atomized Iron—Carbon Alloys. Powder Metallurgy, 1991, 34, 183-193.	1.7	1
313	Consolidation of Rapidly Quenched Powders. Solid State Phenomena, 1991, 8-9, 135-148.	0.3	1
314	Influence of Heat Treatment on Microstructure of Hot Extruded AZ31. Materials Science Forum, 2003, 419-422, 297-302.	0.3	1
315	Thermal Cycling of Mg-MMCs. Materials Science Forum, 2003, 426-432, 2119-2124.	0.3	1
316	Effect of Thermal Treatment on Thermal Expansion Behaviour of Magnesium Alloy Based Hybrid Composites. Materials Science Forum, 2003, 426-432, 2027-2032.	0.3	1
317	Development of a Magnesium Recycling Alloy Based on AM50. Materials Science Forum, 2007, 539-543, 108-113.	0.3	1
318	Aluminium-Rich Coring Structures in Mg-Al Alloys with Carbon Inoculation. Materials Science Forum, 2010, 654-656, 675-678.	0.3	1
319	Effects of Ceramic Inoculants and Intermetallic Phases on Hot Rolled AZ Magnesium Wrought Alloys. Materials Science Forum, 0, 690, 306-310.	0.3	1
320	Influence of Crystallographic Texture on the High Cycle Fatigue of Extruded AZ31 Magnesium Alloy. Materials Science Forum, 0, 690, 319-322.	0.3	1
321	Achievements in Deep Drawing of Magnesium Alloy Sheets. Materials Science Forum, 2011, 690, 302-305.	0.3	1
322	Deformation-Induced Dynamic Precipitation during Creep in Magnesium-Tin Alloys. Key Engineering Materials, 2014, 627, 365-368.	0.4	1
323	Hot Forging of Cast Magnesium Alloy TX31 Using Semi-Closed Die and its Finite Element Simulation. Materials Science Forum, 0, 783-786, 449-454.	0.3	1
324	Influences of Yttrium Content on Microstructure and Mechanical Properties of as-cast Mg–Ca–Y–Zr Alloys. Minerals, Metals and Materials Series, 2018, , 91-97.	0.4	1

#	Article	IF	CITATIONS
325	Influences of SiC Particle Additions on the Grain Refinement of Mg–Zn Alloys. Minerals, Metals and Materials Series, 2019, , 331-338.	0.4	1
326	Effect of Heat Treatment on the Microstructure and Creep Behavior of Mg-Sn-Ca Alloys. Materials Science Forum, 0, , 69-72.	0.3	1
327	Effect of Microstructural Inhomogeneity on Creep Response of Mg-Sn Alloys. Key Engineering Materials, 0, , 561-564.	0.4	1
328	New Developments in Extruded Magnesium Alloys for Structural Applications. Materials Science Forum, 0, , 1545-1548.	0.3	1
329	Comparison of Corrosion Properties of Squeeze Cast and Thixocast MgZnRE Alloys. Materials Science Forum, 0, , 697-700.	0.3	1
330	Damping Measurements of the Magnesium Wrought Alloys AZ31, AZ61 and AZ80 after Indirect and Hydrostatic Extrusion. Materials Science Forum, 0, , 387-390.	0.3	1
331	Influence of Lanthanum concentration on the Corrosion Behaviour of Binary Mg-La Alloys. , 2011, , 507-511.		1
332	Die Leichtbauwerkstoffe für den Fahrzeugbau. , 2013, , 199-442.		1
333	Advances in Manufacturing Processes for Magnesium Alloys. , 2016, , 19-24.		1
334	Influence of Microstructure Evolution During Twin-Roll Casting on the Properties of Magnesium Sheets. Minerals, Metals and Materials Series, 2019, , 1677-1686.	0.4	1
335	High Speed Steel Sludge Waste as a Starting Material for Wear Resistance Components. Key Engineering Materials, 1996, 127-131, 533-542.	0.4	0
336	Priority Programme of the German Research Foundation: 'Extending the Range of Applications for Magnesium Alloys'. Materials Science Forum, 2005, 488-489, 905-908.	0.3	0
337	Bolt Load Retention and Creep Response of AS41 Alloyed with 0.15 % Ca. SAE International Journal of Materials and Manufacturing, 2010, 3, 202-210.	0.3	0
338	<i>In Situ</i> Studies of Light Metals with Synchrotron Radiation and Neutrons. Materials Science Forum, 2011, 690, 192-197.	0.3	0
339	Influence of Rare Earth Addition on Texture Development during Static Recrystallization and Mechanical Behaviour of Magnesium Alloy Sheets. Materials Science Forum, 0, 702-703, 651-654.	0.3	0
340	Modeling Bolt Load Retention of Ca Modified AS41 Using Compliance-Creep Method. Materials Science Forum, 0, 690, 278-281.	0.3	0
341	Deformation Microstructures and Textures of Cast Mg-3Sn-2Ca Alloy under Uniaxial Hot Compression. Applied Mechanics and Materials, 2012, 152-154, 322-325.	0.2	0
342	Acoustic Emission Study of Mg-Mn Extruded Alloys with Prospective Mechanical Properties. Materials Science Forum, 2013, 765, 537-542.	0.3	0

#	Article	IF	CITATIONS
343	Residual Stresses of the As-Cast Mg-xCa Alloys with Hot Sprues by Neutron Diffraction. Advanced Materials Research, 0, 996, 592-597.	0.3	0
344	Microstructure and Compression Creep Strength of the Newly Developed Magnesium Alloy DieMag422. Advanced Materials Research, 2014, 1019, 177-183.	0.3	0
345	<i>In Situ</i> Tensile Texture Analysis of a New Mg-RE Alloy. Materials Science Forum, 2016, 879, 779-783.	0.3	0
346	Towards Active Corrosion Protection of Mg Alloys Using Corrosion Inhibition Approaches. Minerals, Metals and Materials Series, 2018, , 19-20.	0.4	0
347	The Role of Second Phases on the Creep Behavior of As-Cast and Hot-Extruded Mg-Ca-Zr Alloys. Jom, 2019, 71, 2227-2234.	1.9	0
348	Special Section "Light Materials â~' Science and Technology― Advanced Engineering Materials, 2019, 21, 1900232.	3.5	0
349	Improving the Creep Resistance of Elektron21 by Adding AlN/Al Nanoparticles Using the High Shear Dispersion Technique. Minerals, Metals and Materials Series, 2021, , 57-69.	0.4	0
350	A new magnesium alloy system: TEXAS. , 2013, , 231-235.		0
351	Role of SiC in Grain Refinement of Aluminum-Free Mg-Zn Alloys. , 2016, , 177-181.		0
352	Elevated Temperature and Varied Load Response of AS41 at Bolted Joint. , 2016, , 511-516.		0
353	Solid Solution Strengthening in Mg-Gd Alloys. , 2016, , 135-139.		0
354	Microstructural and Mechanical Aspects of Reinforcement Welds for Lightweight Components Produced by Friction Hydro Pillar Processing. , 2016, , 499-504.		0
355	Thermodynamic Description of Reactions between Mg and CaO. , 2016, , 67-72.		0
356	On the Influence of Solution and Ageing Treatments on the Microstructure of ZK40 Alloys Modified with Ca, Gd, Nd and Y Additions. Praktische Metallographie/Practical Metallography, 2018, 55, 268-287.	0.3	0
357	Moderne Entwicklungen von Legierungen für den Leichtbau. Materialwissenschaft Und Werkstofftechnik, 1999, 30, 159-167.	0.9	0