Bahar Karadenİz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7003190/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Scale-Up of Agrochemical Urea-Gypsum Cocrystal Synthesis Using Thermally Controlled Mechanochemistry. ACS Sustainable Chemistry and Engineering, 2022, 10, 6743-6754.	3.2	21
2	Scalable Mechanochemical Amorphization of Bimetallic Cuâ^'Zn MOF-74 Catalyst for Selective CO ₂ Reduction Reaction to Methanol. ACS Applied Materials & Interfaces, 2021, 13, 3070-3077.	4.0	84
3	Aluminum Metal–Organic Framework–Silver Nanoparticle Composites for Catalytic Reduction of Nitrophenols. ACS Applied Nano Materials, 2020, 3, 11426-11433.	2.4	27
4	Tunable Fulleretic Sodalite MOFs: Highly Efficient and Controllable Entrapment of C ₆₀ Fullerene via Mechanochemistry. Chemistry of Materials, 2020, 32, 10628-10640.	3.2	27
5	Synthon Robustness and Structural Modularity of Copper(II) Two-Dimensional Coordination Polymers with Isomeric Amino Acids and 4,4′-Bipyridine. Crystal Growth and Design, 2020, 20, 2415-2423.	1.4	6
6	Impact of dehydration and mechanical amorphization on the magnetic properties of Ni(<scp>ii</scp>)-MOF-74. Journal of Materials Chemistry C, 2020, 8, 7132-7142.	2.7	21
7	Rational Synthesis of Mixed-Metal Microporous Metal–Organic Frameworks with Controlled Composition Using Mechanochemistry. Chemistry of Materials, 2019, 31, 5494-5501.	3.2	96
8	Investigations of Thermally Controlled Mechanochemical Milling Reactions. ACS Sustainable Chemistry and Engineering, 2019, 7, 16301-16309.	3.2	79
9	Control of Pharmaceutical Cocrystal Polymorphism on Various Scales by Mechanochemistry: Transfer from the Laboratory Batch to the Large-Scale Extrusion Processing. ACS Sustainable Chemistry and Engineering, 2019, 7, 7102-7110.	3.2	47
10	Controlling the Polymorphism and Topology Transformation in Porphyrinic Zirconium Metal–Organic Frameworks via Mechanochemistry. Journal of the American Chemical Society, 2019, 141, 19214-19220.	6.6	73
11	Polycatenated 2D Hydrogen-Bonded Binary Supramolecular Organic Frameworks (SOFs) with Enhanced Gas Adsorption and Selectivity. Crystal Growth and Design, 2018, 18, 2555-2562.	1.4	49
12	Benign by Design: Green and Scalable Synthesis of Zirconium UiO-Metal–Organic Frameworks by Water-Assisted Mechanochemistry. ACS Sustainable Chemistry and Engineering, 2018, 6, 15841-15849.	3.2	120
13	Green and rapid mechanosynthesis of high-porosity NU- and UiO-type metal–organic frameworks. Chemical Communications, 2018, 54, 6999-7002.	2.2	63
14	Ultrafine Silver Nanoparticles Supported on a Conjugated Microporous Polymer as High-Performance Nanocatalysts for Nitrophenol Reduction. ACS Applied Materials & Interfaces, 2017, 9, 5231-5236.	4.0	110
15	Structural and topological regulation on cobalt coordination polymers with mixed ligands. Inorganic Chemistry Communication, 2017, 85, 5-8.	1.8	4
16	Polyoxometalate-cucurbituril molecular solid as photocatalyst for dye degradation under visible light. Inorganic Chemistry Communication, 2017, 84, 164-167.	1.8	20
17	lodine uptake and enhanced electrical conductivity in a porous coordination polymer based on cucurbit[6]uril. Inorganic Chemistry Frontiers, 2016, 3, 1393-1397.	3.0	41
18	Sandwich-type Inorganic–Organic Hybrid Solids of Iso-polyvanadate Clusters and Decamethylcucurbit[5]uril. Crystal Growth and Design, 2016, 16, 1213-1217.	1.4	11

#	Article	IF	CITATIONS
19	Cobalt coordination polymers regulated by in situ ligand transformation. CrystEngComm, 2016, 18, 2742-2747.	1.3	11