List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7003126/publications.pdf Version: 2024-02-01



TARERAZII ISHIDA

| #  | Article                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Short preface. Research on Chemical Intermediates, 2021, 47, 9-10.                                                                                                                                                                                           | 2.7 | 0         |
| 2  | Neutron Imaging for Intermetallic Alloy using a Delay Line Current-Biased Kinetic-Inductance<br>Detector. Journal of Physics: Conference Series, 2021, 1975, 012023.                                                                                         | 0.4 | 0         |
| 3  | Practical tests of neutron transmission imaging with a superconducting kinetic-inductance sensor.<br>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers,<br>Detectors and Associated Equipment, 2021, 1006, 165411. | 1.6 | 3         |
| 4  | High Spatial Resolution Neutron Transmission Imaging Using a Superconducting Two-Dimensional Detector. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-5.                                                                                        | 1.7 | 2         |
| 5  | Homogeneity of neutron transmission imaging over a large sensitive area with a four-channel superconducting detector. Superconductor Science and Technology, 2021, 34, 015010.                                                                               | 3.5 | 3         |
| 6  | Monte Carlo radiation transport modelling of the current-biased kinetic inductance detector.<br>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers,<br>Detectors and Associated Equipment, 2020, 953, 163130.       | 1.6 | 6         |
| 7  | Energy-Resolved Neutron Imaging using a Delay Line Current-Biased Kinetic-Inductance Detector.<br>Journal of Physics: Conference Series, 2020, 1590, 012033.                                                                                                 | 0.4 | 0         |
| 8  | Kinetic inductance neutron detector operated at near critical temperature. Journal of Physics:<br>Conference Series, 2020, 1590, 012036.                                                                                                                     | 0.4 | 0         |
| 9  | Superconducting Neutron Detectors and Their Application to Imaging. IEICE Transactions on Electronics, 2020, E103.C, 198-203.                                                                                                                                | 0.6 | 1         |
| 10 | SQUID microscopy for mapping vector magnetic fields. Superconductor Science and Technology, 2019, 32, 115006.                                                                                                                                                | 3.5 | 2         |
| 11 | Temperature dependent characteristics of neutron signals from a current-biased Nb nanowire<br>detector with <sup>10</sup> B converter. Journal of Physics: Conference Series, 2019, 1293, 012051.                                                            | 0.4 | 5         |
| 12 | Energy-resolved neutron imaging with high spatial resolution using a superconducting delay-line kinetic inductance detector. Superconductor Science and Technology, 2019, 32, 125009.                                                                        | 3.5 | 17        |
| 13 | Scanning SQUID Microscopy for Sensing Vector Magnetic Field. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-5.                                                                                                                                  | 1.7 | 2         |
| 14 | Constructing a Vector Scanning SQUID System. Journal of Physics: Conference Series, 2018, 1054, 012059.                                                                                                                                                      | 0.4 | 0         |
| 15 | Neutron signal features of Nb-based kinetic inductance detector with <sup>10</sup> B convertor.<br>Journal of Physics: Conference Series, 2018, 1054, 012054.                                                                                                | 0.4 | 1         |
| 16 | Physical characteristics of delay-line current-biased kinetic inductance detector. Journal of Physics:<br>Conference Series, 2018, 1054, 012056.                                                                                                             | 0.4 | 3         |
| 17 | Confined vortices in <i>de facto</i> mesoscopic Mo <sub>80</sub> Ge <sub>20</sub> disks with sector defects. Superconductor Science and Technology, 2018, 31, 125009.                                                                                        | 3.5 | 2         |
| 18 | High-Speed Neutron Imaging Using a Current-Biased Delay-Line Detector of Kinetic Inductance. Physical<br>Review Applied, 2018, 10, .                                                                                                                         | 3.8 | 22        |

| #  | Article                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Neutron flux spectrum revealed by Nb-based current-biased kinetic inductance detector with a 10B conversion layer. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 842, 71-75. | 1.6 | 13        |
| 20 | Neutron detection using the superconducting Nb-based current-biased kinetic inductance detector.<br>Superconductor Science and Technology, 2017, 30, 094003.                                                                                                          | 3.5 | 6         |
| 21 | Vortex distribution in small star-shaped Mo 80 Ge 20 plate. Physica C: Superconductivity and Its Applications, 2017, 533, 44-48.                                                                                                                                      | 1.2 | 4         |
| 22 | Simulations of vortices in a star-shaped plate with an artificial pin. Journal of Physics: Conference Series, 2017, 871, 012027.                                                                                                                                      | 0.4 | 0         |
| 23 | Fractional vortices in a nano-scaled superconducting composite structure (d-dot) with a twin boundary. Journal of Physics: Conference Series, 2017, 807, 052014.                                                                                                      | 0.4 | 0         |
| 24 | Numerical restoration of surface vortices in Nb films measured by a scanning SQUID microscope.<br>Journal of Physics: Conference Series, 2017, 871, 012021.                                                                                                           | 0.4 | 0         |
| 25 | Superconducting Neutron Detectors. Hamon, 2016, 26, 178-181.                                                                                                                                                                                                          | 0.0 | 0         |
| 26 | Development of a neutron imager based on superconducting detectors. Physica C: Superconductivity and Its Applications, 2016, 530, 98-100.                                                                                                                             | 1.2 | 2         |
| 27 | Vortex distribution in amorphous Mo80Ge20 plates with artificial pinning center. Physica C:<br>Superconductivity and Its Applications, 2016, 530, 46-50.                                                                                                              | 1.2 | 3         |
| 28 | Development of an Advanced Circuit Model for Superconducting Strip Line Detector Arrays. IEICE<br>Transactions on Electronics, 2016, E99.C, 676-682.                                                                                                                  | 0.6 | 2         |
| 29 | Ginzburg-Landau Calculations of Circular Mo80Ge20 Plates with Sector Defect. Physics Procedia, 2016, 81, 93-96.                                                                                                                                                       | 1.2 | 1         |
| 30 | Ginzburg-Landau Calculations of Star-shaped Mo80Ge20 Superconducting Small Plates. Physics<br>Procedia, 2016, 81, 89-92.                                                                                                                                              | 1.2 | 0         |
| 31 | Neutron detection using a current biased kinetic inductance detector. Applied Physics Letters, 2015, 107, 232601.                                                                                                                                                     | 3.3 | 22        |
| 32 | Current-Biased Kinetic Inductance Detector for Neutrons. , 2015, , .                                                                                                                                                                                                  |     | 0         |
| 33 | Scanning SQUID Microscope for Sensing Vector Magnetic Field. , 2015, , .                                                                                                                                                                                              |     | 1         |
| 34 | Coincidence Detection of Double-Layered Current-Biased Kinetic Inductance Detectors Using a 20 ps<br>Pulsed Laser. , 2015, , .                                                                                                                                        |     | 0         |
| 35 | Twin boundary effects on spontaneous half-quantized vortices in superconducting composite structures (d-dot's). Physica C: Superconductivity and Its Applications, 2015, 518, 44-46.                                                                                  | 1.2 | 1         |
| 36 | Toward Neutron Radiography Using Two Arrays of Nb-Based Current-Biased Kinetic Inductance<br>Detectors With <sup>10</sup> B Converter Sandwiched In-Between. IEEE Transactions on Applied<br>Superconductivity, 2015, 25, 1-4.                                        | 1.7 | 6         |

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Vector Pickup System Customized for Scanning SQUID Microscopy. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-4.                                                                              | 1.7 | 6         |
| 38 | Thin Film Growth of Rare-Earth Hexaboride. , 2014, , .                                                                                                                                                     |     | 0         |
| 39 | Angular-Dependent Magnetoresistance of CeColn <sub>5</sub> in the Normal State. , 2014, , .                                                                                                                |     | О         |
| 40 | Vortex Doping Into Superconducting <inline-formula> <tex-math notation="TeX">\${m<br/>Mo}_{80}{m Ge}_{20}\$ </tex-math></inline-formula> Square Network. IEEE Transactions<br>on Magnetics, 2014, 50, 1-4. | 2.1 | 2         |
| 41 | Toward Mega-pixel Neutron Imager Using Current-Biased Kinetic Inductance Detectors of Nb<br>Nanowires with \$\$^{10}\$\$ 10 B Converter. Journal of Low Temperature Physics, 2014, 176, 216-221.           | 1.4 | 16        |
| 42 | Vortex imaging in amorphous Mo80Ge20 pentagons. Physica C: Superconductivity and Its Applications, 2013, 494, 99-101.                                                                                      | 1.2 | 10        |
| 43 | Current-Biased Transition Edge Detector of \$ hbox{MgB}_{2}\$ Nanowires for Neutrons: Imaging by Scanning Laser. IEEE Transactions on Applied Superconductivity, 2013, 23, 2200904-2200904.                | 1.7 | 12        |
| 44 | Current-Biased Kinetic Inductance Detector Using \$ hbox{MgB}_{2}\$ Nanowires for Detecting Neutrons. IEEE Transactions on Applied Superconductivity, 2013, 23, 2400604-2400604.                           | 1.7 | 21        |
| 45 | Direct observation of vortices by scanning SQUID microscope on small superconducting Mo80Ge20 circular disks. Physica C: Superconductivity and Its Applications, 2013, 484, 86-90.                         | 1.2 | 14        |
| 46 | Observation of meander pattern in signals from superconducting MgB2 detector by scanning pulsed laser imaging. Physica C: Superconductivity and Its Applications, 2013, 484, 209-212.                      | 1.2 | 0         |
| 47 | Vortex states in <i>de facto</i> mesoscopic Mo <sub>80</sub> Ge <sub>20</sub> pentagon plates.<br>Superconductor Science and Technology, 2013, 26, 065001.                                                 | 3.5 | 19        |
| 48 | Complete tailor-made inverse filter for image processing of scanning SQUID microscope. Applied Physics Letters, 2012, 100, 182601.                                                                         | 3.3 | 7         |
| 49 | Position Dependent Response of Superconducting MgB2 Neutron Detectors Studied by Pulsed Laser<br>Irradiation. Journal of Low Temperature Physics, 2012, 167, 447-454.                                      | 1.4 | 4         |
| 50 | Torque theory of anisotropic superconductors with no phenomenological parameter in determining vortex core size. Physical Review B, 2011, 83, .                                                            | 3.2 | 0         |
| 51 | Proposal of a Compact Neutron Diffraction System with a Single-Flux-Quantum Signal Processor.<br>IEICE Transactions on Electronics, 2011, E94-C, 254-259.                                                  | 0.6 | 15        |
| 52 | Magnetic flux structures in various shaped composite structures with d- and s-wave superconductors (d-dots). Journal of Physics: Conference Series, 2010, 248, 012028.                                     | 0.4 | 0         |
| 53 | Vortex Molecule in a Nanoscopic Square Superconducting Plate. Journal of the Physical Society of Japan, 2010, 79, 124704.                                                                                  | 1.6 | 10        |
| 54 | Scanning laser microscope for imaging nanostructured superconductors. Physica C:<br>Superconductivity and Its Applications, 2010, 470, 730-733.                                                            | 1.2 | 0         |

| #  | Article                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Anisotropy in Superconductivity and Magnetism of PrFeAsO1â^î´ Single Crystal. Journal of<br>Superconductivity and Novel Magnetism, 2010, 23, 1067-1070.                                                                                                                          | 1.8 | 0         |
| 56 | Magnetic flux distribution around BSCCO single crystal d-dot. Physica C: Superconductivity and Its Applications, 2010, 470, S840-S841.                                                                                                                                           | 1.2 | 0         |
| 57 | Scanning laser microscopy of an MgB2 superconducting sensor. Physica C: Superconductivity and Its Applications, 2010, 470, S1023-S1024.                                                                                                                                          | 1.2 | Ο         |
| 58 | Anisotropy in mixed superconducting state of two-band MgB2 superconductor. Physica C:<br>Superconductivity and Its Applications, 2010, 470, S639-S640.                                                                                                                           | 1.2 | 2         |
| 59 | Systematic characterization of upper critical fields for MgB <sub>2</sub> thin films by means of the two-band superconducting theory. Superconductor Science and Technology, 2009, 22, 055004.                                                                                   | 3.5 | 14        |
| 60 | Scanning Pulsed Laser Imaging of Current-Biased MgB[sub 2] Detector. , 2009, , .                                                                                                                                                                                                 |     | 2         |
| 61 | Periodic flux jump in superconducting Pb networks as consequence of the extended Little–Parks effect. Physica C: Superconductivity and Its Applications, 2008, 468, 576-580.                                                                                                     | 1.2 | 4         |
| 62 | Superconducting MgB2 Thin Film Detector forÂNeutrons. Journal of Low Temperature Physics, 2008,<br>151, 1074-1079.                                                                                                                                                               | 1.4 | 43        |
| 63 | Superconducting radiation detector by using a microfabricated MgB2 meander line. Physica C:<br>Superconductivity and Its Applications, 2007, 460-462, 618-619.                                                                                                                   | 1.2 | 7         |
| 64 | Vortex (particle) and antivortex (hole) doping into superconducting network. Physica C:<br>Superconductivity and Its Applications, 2007, 460-462, 1226-1227.                                                                                                                     | 1.2 | 7         |
| 65 | Quasi-particle Spectrum of Nano-scale Superconductors under External Magnetic Field. AIP<br>Conference Proceedings, 2006, , .                                                                                                                                                    | 0.4 | 4         |
| 66 | Nonequilibrium Response of Superconducting MgB2 Meander Line against Pulse Laser Irradiation. AIP<br>Conference Proceedings, 2006, , .                                                                                                                                           | 0.4 | 3         |
| 67 | A New Ferromagnetic Organic Semiconductor (BEDT-TTFVS)â‹FeBr4. AlP Conference Proceedings, 2006, , .                                                                                                                                                                             | 0.4 | 0         |
| 68 | Experimental and theoretical studies of d-dot. Physica C: Superconductivity and Its Applications, 2006, 437-438, 104-110.                                                                                                                                                        | 1.2 | 6         |
| 69 | Thermal transient response of membrane-structured-superconducting MgB2 detector by using 20-ps<br>pulse laser. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators,<br>Spectrometers, Detectors and Associated Equipment, 2006, 559, 582-584.           | 1.6 | 5         |
| 70 | Direct numerical simulation on non-equilibrium superconducting dynamics after neutron capture in<br>MgB2 superconductor. Nuclear Instruments and Methods in Physics Research, Section A:<br>Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 559, 594-596. | 1.6 | 9         |
| 71 | Superconducting characteristics of a MgB2 neutron detector fabricated on SiN membrane. Nuclear<br>Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and<br>Associated Equipment, 2006, 559, 763-765.                                | 1.6 | 4         |
| 72 | Phase diagram for the first peak in torque curves of YBa2Cu4O8 crystals up to 15T. Physica C:<br>Superconductivity and Its Applications, 2005, 426-431, 69-73.                                                                                                                   | 1.2 | 1         |

| #  | Article                                                                                                                                                                                                                                  | IF            | CITATIONS     |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|
| 73 | Upper critical field measurements in MgB2 sputtered films up to 30T. Physica C: Superconductivity and<br>Its Applications, 2005, 426-431, 1449-1452.                                                                                     | 1.2           | 6             |
| 74 | Pulse laser irradiation into superconducting MgB2 detector. Physica C: Superconductivity and Its Applications, 2005, 426-431, 1716-1720.                                                                                                 | 1.2           | 9             |
| 75 | Magnetization and vortex profiles in the honeycomb network of Pb. Physica C: Superconductivity and Its Applications, 2005, 426-431, 108-112.                                                                                             | 1.2           | 3             |
| 76 | Fabrication of superconducting d-wave dot embedded in an s-wave matrix. Physica C:<br>Superconductivity and Its Applications, 2005, 426-431, 104-107.                                                                                    | 1.2           | 6             |
| 77 | Direct numerical simulations for non-equilibrium superconducting dynamics and related neutron detection in MgB2. Physica C: Superconductivity and Its Applications, 2005, 426-431, 169-173.                                              | 1.2           | 4             |
| 78 | Critical Current Density of As-grown MgB <sub>2</sub> Films Fabricated by Molecular Beam Epitaxy<br>under Low-growth Rate and Low-temperature Conditions. TEION KOGAKU (Journal of Cryogenics and) Tj ETQq                               | 0 0 0ar.gBT / | Overlock 10 T |
| 79 | Reply to "Comment on â€~Superconducting anisotropy and evidence for intrinsic pinning in single<br>crystallineMgB2' ― Physical Review B, 2004, 70, .                                                                                     | 3.2           | 0             |
| 80 | Hall effect and specific heat under magnetic fields in CeSi. Journal of Magnetism and Magnetic<br>Materials, 2004, 272-276, E1533-E1534.                                                                                                 | 2.3           | 4             |
| 81 | Nanofabrication of superconducting MgB2 neutron detector. Nuclear Instruments and Methods in<br>Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004,<br>529, 405-408.                     | 1.6           | 13            |
| 82 | Direct numerical experiments for neutron detection using superconductor MgB2. Nuclear<br>Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and<br>Associated Equipment, 2004, 529, 409-412. | 1.6           | 18            |
| 83 | Vortex configurations in the nanofabricated network of Nb: direct observations and calculations.<br>Physica C: Superconductivity and Its Applications, 2004, 412-414, 552-556.                                                           | 1.2           | 2             |
| 84 | Coexistence of superconductivity and spin density wave in underdoped YBa2Cu4O8. Physica C:<br>Superconductivity and Its Applications, 2004, 412-414, 526-529.                                                                            | 1.2           | 0             |
| 85 | Ginzburg–Landau calculations of d-wave superconducting dot in s-wave superconducting matrix.<br>Physica C: Superconductivity and Its Applications, 2004, 412-414, 352-357.                                                               | 1.2           | 14            |
| 86 | Superconducting dc characteristics of meander lines made by 10B enriched MgB2 thin films. Physica C:<br>Superconductivity and Its Applications, 2004, 412-414, 1387-1390.                                                                | 1.2           | 5             |
| 87 | Multiple superconducting gaps in MgB2 single crystals from magnetic torque. Physica C:<br>Superconductivity and Its Applications, 2004, 412-414, 254-257.                                                                                | 1.2           | 2             |
| 88 | Neutron detector by using a metallic high-Tc superconductor MgB2. Physica C: Superconductivity and<br>Its Applications, 2004, 412-414, 1597-1601.                                                                                        | 1.2           | 7             |
| 89 | Electron Doping Effect on the Magnetic and Electric Properties of Ca3-xYxCo2O6. Journal of the Physical Society of Japan, 2004, 73, 3217-3218.                                                                                           | 1.6           | 9             |
| 90 | Superconducting behavior of a square microhole lattice on Pb film. Physica B: Condensed Matter, 2003, 329-333, 1384-1385.                                                                                                                | 2.7           | 0             |

| #   | Article                                                                                                                                                                                      | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | A simple sample-inverting cryostat for Hall resistance measurements. Physica B: Condensed Matter, 2003, 329-333, 1640-1641.                                                                  | 2.7 | 1         |
| 92  | Evidence for spin density wave in the superconducting YBa2Cu4O8. Physica C: Superconductivity and Its Applications, 2003, 388-389, 271-272.                                                  | 1.2 | 2         |
| 93  | Peak effect and vortex phase diagram of YBa2Cu4O8. Physica C: Superconductivity and Its Applications, 2003, 392-396, 382-385.                                                                | 1.2 | 4         |
| 94  | Observation of square array of nickel dots by using high-Tc SQUID microscope. Physica C:<br>Superconductivity and Its Applications, 2003, 392-396, 1406-1410.                                | 1.2 | 1         |
| 95  | Low-field magnetic torque of a single crystal MgB2. Physica C: Superconductivity and Its Applications, 2003, 392-396, 268-271.                                                               | 1.2 | 3         |
| 96  | Vortex profiles of 16.9-μm square microhole lattice on Pb film. Physica C: Superconductivity and Its Applications, 2003, 392-396, 414-418.                                                   | 1.2 | 2         |
| 97  | Vortex phase diagrams of YBa2Cu4O8 in Hâ^¥c and Hâ^¥b. Physica C: Superconductivity and Its Applications,<br>2003, 388-389, 741-742.                                                         | 1.2 | 5         |
| 98  | Temperature dependence of magnetic torque for a single crystal MgB2 in 10 kG. Physica C:<br>Superconductivity and Its Applications, 2003, 388-389, 165-166.                                  | 1.2 | 1         |
| 99  | Design of neutron detector by using a novel superconductor MgB2. Physica C: Superconductivity and<br>Its Applications, 2003, 392-396, 1501-1503.                                             | 1.2 | 29        |
| 100 | Superconducting anisotropy and evidence for intrinsic pinning in single crystallineMgB2. Physical Review B, 2002, 66, .                                                                      | 3.2 | 43        |
| 101 | Vortex phase diagram of YBa2Cu4O8. Physica C: Superconductivity and Its Applications, 2002, 378-381, 424-427.                                                                                | 1.2 | 1         |
| 102 | Crystalline anisotropy in electron-doped superconductor Pr0.9LaCe0.1CuO4. Physica C:<br>Superconductivity and Its Applications, 2002, 378-381, 483-486.                                      | 1.2 | 0         |
| 103 | Anomalous matching effect and attractive vortex interaction in 7.5-μm triangular microhole lattice on<br>Pb film. Physica C: Superconductivity and Its Applications, 2002, 378-381, 487-490. | 1.2 | 5         |
| 104 | Vortex behaviour of 1.8-μm triangular microhole lattice on Pb film: matching effect. Physica C:<br>Superconductivity and Its Applications, 2002, 378-381, 560-563.                           | 1.2 | 4         |
| 105 | Intrinsic Pinning does not Influence the Vortex Melting Transition of<br>YBa2Cu3O6.94inH⊥cConfiguration. Journal of the Physical Society of Japan, 2001, 70, 2110-2113.                      | 1.6 | 3         |
| 106 | Superconducting anisotropy in Nd1.85Ce0.15CuO4 single crystals. Physica C: Superconductivity and Its Applications, 2001, 357-360, 298-301.                                                   | 1.2 | 4         |
| 107 | Superconducting anisotropy in double-chain YBa2Cu4O8 single crystals. Physica C: Superconductivity and Its Applications, 2001, 357-360, 302-304.                                             | 1.2 | 12        |
| 108 | Micro-hole lattice on lead film as accommodations for vortices: matching peaks in magnetization.<br>Physica C: Superconductivity and Its Applications, 2001, 357-360, 608-610.               | 1.2 | 12        |

| #   | Article                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Direct observation of vortex images on lead micro-hole lattice by SQUID microscope. Physica C:<br>Superconductivity and Its Applications, 2001, 357-360, 604-607.                       | 1.2 | 5         |
| 110 | Anomalous matching effect in the magnetization of the triangular microhole lattice on a Pb film of 7.5 μm lattice constant. Superconductor Science and Technology, 2001, 14, 1166-1169. | 3.5 | 13        |
| 111 | Nature of vortex melting transition when the field is perpendicular to the c-axis of untwinned<br>YBa2Cu3O6.94. Physica B: Condensed Matter, 2000, 284-288, 727-728.                    | 2.7 | 0         |
| 112 | Vortex Lattice Melting in Underdoped YBa2Cu4O8. , 2000, , 323-325.                                                                                                                      |     | 3         |
| 113 | Does Vortex Lattice of YBa2Cu3O6.94 in H⊥c Melt Below Intrinsic-Pinning Irreversibility Line?. Journal of Low Temperature Physics, 1999, 117, 1387-1391.                                | 1.4 | 1         |
| 114 | In-plane anisotropy of vortex-lattice melting in largeYBa2Cu3O7single crystals. Physical Review B, 1998, 58, 5222-5225.                                                                 | 3.2 | 44        |
| 115 | Two- and fourfoldab-plane torque symmetry in untwinnedYBa2Cu3O7single crystals. Physical Review<br>B, 1997, 56, 11897-11902.                                                            | 3.2 | 31        |
| 116 | Search for a d-Wave Chiral-Glass Transition in Granular High-TcSuperconductor<br>(Sr0.7Ca0.3)0.95CuO2-x. Journal of the Physical Society of Japan, 1997, 66, 2256-2259.                 | 1.6 | 4         |
| 117 | In-plane torque and gap symmetry of untwinned YBa2Cu3O7 crystals. European Physical Journal D, 1996, 46, 1217-1218.                                                                     | 0.4 | 4         |
| 118 | Gap symmetry and intrinsic intraplane pinning of untwinned YBa2Cu3O7 single crystals. Journal of<br>Low Temperature Physics, 1996, 105, 1165-1170.                                      | 1.4 | 2         |
| 119 | Evidence for vortex lattice melting and softening in untwinned YBa2Cu3O7 single crystal. Journal of<br>Low Temperature Physics, 1996, 105, 1171-1176.                                   | 1.4 | 3         |