Jiye Shi

List of Publications by Citations

Source: https://exaly.com/author-pdf/7002825/jiye-shi-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

196 50 9,577 92 h-index g-index citations papers 8.6 6.24 11,418 215 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
196	FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. <i>Journal of Molecular Biology</i> , 2001 , 310, 243-57	6.5	1102
195	Hybridization chain reaction amplification of microRNA detection with a tetrahedral DNA nanostructure-based electrochemical biosensor. <i>Analytical Chemistry</i> , 2014 , 86, 2124-30	7.8	392
194	Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 7745-50	16.4	326
193	Smart drug delivery nanocarriers with self-assembled DNA nanostructures. <i>Advanced Materials</i> , 2013 , 25, 4386-96	24	313
192	Programmable engineering of a biosensing interface with tetrahedral DNA nanostructures for ultrasensitive DNA detection. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 2151-5	16.4	264
191	An Exonuclease III-Powered, On-Particle Stochastic DNA Walker. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 1855-1858	16.4	248
190	Electrochemical detection of nucleic acids, proteins, small molecules and cells using a DNA-nanostructure-based universal biosensing platform. <i>Nature Protocols</i> , 2016 , 11, 1244-63	18.8	234
189	SAbDab: the structural antibody database. <i>Nucleic Acids Research</i> , 2014 , 42, D1140-6	20.1	193
188	DNA origami nanostructures can exhibit preferential renal uptake and alleviate acute kidney injury. <i>Nature Biomedical Engineering</i> , 2018 , 2, 865-877	19	184
187	Graphene oxide-based antibacterial cotton fabrics. Advanced Healthcare Materials, 2013, 2, 1259-66	10.1	173
186	Nanoscale optical probes for cellular imaging. <i>Chemical Society Reviews</i> , 2014 , 43, 2650-61	58.5	166
185	Multicolor Gold-Silver Nano-Mushrooms as Ready-to-Use SERS Probes for Ultrasensitive and Multiplex DNA/miRNA Detection. <i>Analytical Chemistry</i> , 2017 , 89, 2531-2538	7.8	161
184	DNA Hydrogel with Aptamer-Toehold-Based Recognition, Cloaking, and Decloaking of Circulating Tumor Cells for Live Cell Analysis. <i>Nano Letters</i> , 2017 , 17, 5193-5198	11.5	144
183	Yolk-shell nanostructured FeO@C magnetic nanoparticles with enhanced peroxidase-like activity for label-free colorimetric detection of HO and glucose. <i>Nanoscale</i> , 2017 , 9, 4508-4515	7.7	136
182	Evolutionary trace analysis of TGF-beta and related growth factors: implications for site-directed mutagenesis. <i>Protein Engineering, Design and Selection</i> , 2000 , 13, 839-47	1.9	122
181	Solving mazes with single-molecule DNA navigators. <i>Nature Materials</i> , 2019 , 18, 273-279	27	121
180	Real-time visualization of clustering and intracellular transport of gold nanoparticles by correlative imaging. <i>Nature Communications</i> , 2017 , 8, 15646	17.4	116

(2001-2018)

179	Hydrogen Sulfide-Activatable Second Near-Infrared Fluorescent Nanoassemblies for Targeted Photothermal Cancer Therapy. <i>Nano Letters</i> , 2018 , 18, 6411-6416	11.5	115
178	DNA-directed assembly of gold nanohalo for quantitative plasmonic imaging of single-particle catalysis. <i>Journal of the American Chemical Society</i> , 2015 , 137, 4292-5	16.4	111
177	Multiple-Armed Tetrahedral DNA Nanostructures for Tumor-Targeting, Dual-Modality in Vivo Imaging. ACS Applied Materials & Interfaces, 2016, 8, 4378-84	9.5	110
176	Five computational developability guidelines for therapeutic antibody profiling. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 4025-4030	11.5	109
175	Label-Free Electrochemical Sensing Platform for MicroRNA-21 Detection Using Thionine and Gold Nanoparticles Co-Functionalized MoS Nanosheet. <i>ACS Applied Materials & Detection Using Thionine and Gold Nanoparticles Co-Functionalized MoS Nanosheet</i> . <i>ACS Applied Materials & Detection Using Thionine and Gold Nanoparticles Co-Functionalized MoS Nanosheet</i> .	97 ⁹ 3 ⁵ 560)3 ¹⁰⁴
174	ABodyBuilder: Automated antibody structure prediction with data-driven accuracy estimation. <i>MAbs</i> , 2016 , 8, 1259-1268	6.6	104
173	Biodistribution and pulmonary toxicity of intratracheally instilled graphene oxide in mice. <i>NPG Asia Materials</i> , 2013 , 5, e44-e44	10.3	102
172	Scaffolded biosensors with designed DNA nanostructures. NPG Asia Materials, 2013, 5, e51-e51	10.3	94
171	An Intelligent DNA Nanorobot with Enhanced Protein Lysosomal Degradation of HER2. <i>Nano Letters</i> , 2019 , 19, 4505-4517	11.5	91
170	MEDELLER: homology-based coordinate generation for membrane proteins. <i>Bioinformatics</i> , 2010 , 26, 2833-40	7.2	91
169	Gold-nanoparticle-mediated jigsaw-puzzle-like assembly of supersized plasmonic DNA origami. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 2966-9	16.4	88
168	A bubble-mediated intelligent microscale electrochemical device for single-step quantitative bioassays. <i>Advanced Materials</i> , 2014 , 26, 4671-6	24	87
167	Improving B-cell epitope prediction and its application to global antibody-antigen docking. <i>Bioinformatics</i> , 2014 , 30, 2288-94	7.2	86
166	One-Shot Immunomodulatory Nanodiamond Agents for Cancer Immunotherapy. <i>Advanced Materials</i> , 2016 , 28, 2699-708	24	85
165	Programming Cell Adhesion for On-Chip Sequential Boolean Logic Functions. <i>Journal of the American Chemical Society</i> , 2017 , 139, 10176-10179	16.4	85
164	Inhibiting Methicillin-Resistant Staphylococcus aureus by Tetrahedral DNA Nanostructure-Enabled Antisense Peptide Nucleic Acid Delivery. <i>Nano Letters</i> , 2018 , 18, 5652-5659	11.5	82
163	Self-assembly of poly-adenine-tailed CpG oligonucleotide-gold nanoparticle nanoconjugates with immunostimulatory activity. <i>Small</i> , 2014 , 10, 368-75	11	79
162	The role of the TolC family in protein transport and multidrug efflux. From stereochemical certainty to mechanistic hypothesis. <i>FEBS Journal</i> , 2001 , 268, 5011-26		71

161	Catalysis-Driven Self-Thermophoresis of Janus Plasmonic Nanomotors. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 515-518	16.4	70
160	Valency-Controlled Framework Nucleic Acid Signal Amplifiers. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 7131-7135	16.4	70
159	A Surface-Confined Proton-Driven DNA Pump Using a Dynamic 3D DNA Scaffold. <i>Advanced Materials</i> , 2016 , 28, 6860-5	24	70
158	ABangle: characterising the VH-VL orientation in antibodies. <i>Protein Engineering, Design and Selection</i> , 2013 , 26, 611-20	1.9	69
157	DNA-Encoded Raman-Active Anisotropic Nanoparticles for microRNA Detection. <i>Analytical Chemistry</i> , 2017 , 89, 9850-9856	7.8	67
156	Characterization of the interaction of sclerostin with the low density lipoprotein receptor-related protein (LRP) family of Wnt co-receptors. <i>Journal of Biological Chemistry</i> , 2012 , 287, 26464-77	5.4	62
155	Transfer of Two-Dimensional Oligonucleotide Patterns onto Stereocontrolled Plasmonic Nanostructures through DNA-Origami-Based Nanoimprinting Lithography. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 8036-40	16.4	60
154	Size-dependent programming of the dynamic range of graphene oxide-DNA interaction-based ion sensors. <i>Analytical Chemistry</i> , 2014 , 86, 4047-51	7.8	59
153	MoS Nanoprobe for MicroRNA Quantification Based on Duplex-Specific Nuclease Signal Amplification. <i>ACS Applied Materials & Amplification</i> , 10, 7852-7858	9.5	58
152	Analysis and modeling of the variable region of camelid single-domain antibodies. <i>Journal of Immunology</i> , 2011 , 186, 6357-67	5.3	57
151	Antibody i-Patch prediction of the antibody binding site improves rigid local antibody-antigen docking. <i>Protein Engineering, Design and Selection</i> , 2013 , 26, 621-9	1.9	55
150	The H3 loop of antibodies shows unique structural characteristics. <i>Proteins: Structure, Function and Bioinformatics</i> , 2017 , 85, 1311-1318	4.2	52
149	Helix kinks are equally prevalent in soluble and membrane proteins. <i>Proteins: Structure, Function and Bioinformatics</i> , 2014 , 82, 1960-70	4.2	52
148	Pattern recognition analysis of proteins using DNA-decorated catalytic gold nanoparticles. <i>Small</i> , 2013 , 9, 2844-9	11	52
147	Nanodiamond autophagy inhibitor allosterically improves the arsenical-based therapy of solid tumors. <i>Nature Communications</i> , 2018 , 9, 4347	17.4	52
146	Targeted Imaging of Brain Tumors with a Framework Nucleic Acid Probe. <i>ACS Applied Materials</i> & Samp; Interfaces, 2018 , 10, 3414-3420	9.5	50
145	Implementing digital computing with DNA-based switching circuits. <i>Nature Communications</i> , 2020 , 11, 121	17.4	50
144	Activity modulation and allosteric control of a scaffolded DNAzyme using a dynamic DNA nanostructure. <i>Chemical Science</i> , 2016 , 7, 1200-1204	9.4	49

(2020-2014)

143	Exploring transition pathway and free-energy profile of large-scale protein conformational change by combining normal mode analysis and umbrella sampling molecular dynamics. <i>Journal of Physical Chemistry B</i> , 2014 , 118, 134-43	3.4	49	
142	In Situ Spatial Complementation of Aptamer-Mediated Recognition Enables Live-Cell Imaging of Native RNA Transcripts in Real Time. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 972-976	16.4	48	
141	HOMSTRAD: adding sequence information to structure-based alignments of homologous protein families. <i>Bioinformatics</i> , 2001 , 17, 748-9	7.2	47	
140	Programming bulk enzyme heterojunctions for biosensor development with tetrahedral DNA framework. <i>Nature Communications</i> , 2020 , 11, 838	17.4	44	
139	Nanoscale delivery systems for cancer immunotherapy. <i>Materials Horizons</i> , 2018 , 5, 344-362	14.4	43	
138	Force fields and scoring functions for carbohydrate simulation. Carbohydrate Research, 2015, 401, 73-81	1 2.9	41	
137	Nanoplasmonic imaging of latent fingerprints with explosive RDX residues. <i>Analytical Chemistry</i> , 2015 , 87, 9403-7	7.8	40	
136	Stability and Characteristics of the Halogen Bonding Interaction in an Anion-Anion Complex: A Computational Chemistry Study. <i>Journal of Physical Chemistry B</i> , 2016 , 120, 610-20	3.4	40	
135	Recent progress in natural products as DPP-4 inhibitors. Future Medicinal Chemistry, 2015, 7, 1079-89	4.1	39	
134	Guiding protein delivery into live cells using DNA-programmed membrane fusion. <i>Chemical Science</i> , 2018 , 9, 5967-5975	9.4	39	
133	Programmable Engineering of a Biosensing Interface with Tetrahedral DNA Nanostructures for Ultrasensitive DNA Detection. <i>Angewandte Chemie</i> , 2015 , 127, 2179-2183	3.6	39	
132	Alchembed: A Computational Method for Incorporating Multiple Proteins into Complex Lipid Geometries. <i>Journal of Chemical Theory and Computation</i> , 2015 , 11, 2743-2754	6.4	37	
131	Dynamic Modulation of DNA Hybridization Using Allosteric DNA Tetrahedral Nanostructures. <i>Analytical Chemistry</i> , 2016 , 88, 8043-9	7.8	37	
130	Encapsulation of curcumin within poly(amidoamine) dendrimers for delivery to cancer cells. <i>Journal of Materials Science: Materials in Medicine</i> , 2013 , 24, 2137-44	4.5	37	
129	High resolution NMR-based model for the structure of a scFv-IL-1beta complex: potential for NMR as a key tool in therapeutic antibody design and development. <i>Journal of Biological Chemistry</i> , 2009 , 284, 31928-35	5.4	37	
128	Enhanced sampling molecular dynamics simulation captures experimentally suggested intermediate and unfolded states in the folding pathway of Trp-cage miniprotein. <i>Journal of Chemical Physics</i> , 2012 , 137, 125103	3.9	36	
127	DNA origami cryptography for secure communication. <i>Nature Communications</i> , 2019 , 10, 5469	17.4	36	
126	Thera-SAbDab: the Therapeutic Structural Antibody Database. <i>Nucleic Acids Research</i> , 2020 , 48, D383-D	3.88 .1	34	

125	Memoir: template-based structure prediction for membrane proteins. <i>Nucleic Acids Research</i> , 2013 , 41, W379-83	20.1	32
124	An Exonuclease III-Powered, On-Particle Stochastic DNA Walker. <i>Angewandte Chemie</i> , 2017 , 129, 1881-	1884	31
123	Systematic Study in Mammalian Cells Showing No Adverse Response to Tetrahedral DNA Nanostructure. <i>ACS Applied Materials & Damp; Interfaces</i> , 2018 , 10, 15442-15448	9.5	31
122	Mobile computing - A green computing resource 2013 ,		31
121	Unraveling the role of hydrogen peroxide in Bynuclein aggregation using an ultrasensitive nanoplasmonic probe. <i>Analytical Chemistry</i> , 2015 , 87, 1968-73	7.8	31
120	Single-Particle Tracking and Modulation of Cell Entry Pathways of a Tetrahedral DNA Nanostructure in Live Cells. <i>Angewandte Chemie</i> , 2014 , 126, 7879-7884	3.6	31
119	DNA-Origami-Based Assembly of Anisotropic Plasmonic Gold Nanostructures. <i>Small</i> , 2017 , 13, 1603991	11	30
118	Length-independent structural similarities enrich the antibody CDR canonical class model. <i>MAbs</i> , 2016 , 8, 751-60	6.6	30
117	Deciphering active biocompatibility of iron oxide nanoparticles from their intrinsic antagonism. <i>Nano Research</i> , 2018 , 11, 2746-2755	10	30
116	Graphene oxide-silver nanocomposites modulate biofilm formation and extracellular polymeric substance (EPS) production. <i>Nanoscale</i> , 2018 , 10, 19603-19611	7.7	30
115	Constructing Higher-Order DNA Nanoarchitectures with Highly Purified DNA Nanocages. <i>ACS Applied Materials & DNA State of the Applied Materials & DNA State of </i>	9.5	29
114	MoS2Au@Pt nanohybrids as a sensing platform for electrochemical nonenzymatic glucose detection. <i>New Journal of Chemistry</i> , 2018 , 42, 6750-6755	3.6	28
113	iMembrane: homology-based membrane-insertion of proteins. <i>Bioinformatics</i> , 2009 , 25, 1086-8	7.2	28
112	The prospects of quantum computing in computational molecular biology. <i>Wiley Interdisciplinary Reviews: Computational Molecular Science</i> , 2021 , 11, e1481	7.9	28
111	Real-Time Imaging of Endocytosis and Intracellular Trafficking of Semiconducting Polymer Dots. <i>ACS Applied Materials & Dots amp; Interfaces</i> , 2017 , 9, 21200-21208	9.5	27
110	DNA orientation-specific adhesion and patterning of living mammalian cells on self-assembled DNA monolayers. <i>Chemical Science</i> , 2016 , 7, 2722-2727	9.4	26
109	Molecular Threading-Dependent Mass Transport in Paper Origami for Single-Step Electrochemical DNA Sensors. <i>Nano Letters</i> , 2019 , 19, 369-374	11.5	26
108	Halogen bonding in differently charged complexes: basic profile, essential interaction terms and intrinsic Ehole. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 15106-15119	3.6	25

(2011-2020)

107	Encapsulation and release of living tumor cells using hydrogels with the hybridization chain reaction. <i>Nature Protocols</i> , 2020 , 15, 2163-2185	18.8	25
106	DNA Origami-Enabled Engineering of Ligand-Drug Conjugates for Targeted Drug Delivery. <i>Small</i> , 2020 , 16, e1904857	11	25
105	Sphinx: merging knowledge-based and ab initio approaches to improve protein loop prediction. <i>Bioinformatics</i> , 2017 , 33, 1346-1353	7.2	25
104	Structurally Mapping Antibody Repertoires. <i>Frontiers in Immunology</i> , 2018 , 9, 1698	8.4	25
103	Thermodynamics calculation of protein-ligand interactions by QM/MM polarizable charge parameters. <i>Journal of Biomolecular Structure and Dynamics</i> , 2016 , 34, 163-76	3.6	24
102	Access to Different Isomeric Dibenzoxazepinones through Copper-Catalyzed C-H Etherification and C-N Bond Construction with Controllable Smiles Rearrangement. <i>Organic Letters</i> , 2016 , 18, 380-3	6.2	24
101	PCR-Free Colorimetric DNA Hybridization Detection Using a 3D DNA Nanostructured Reporter Probe. <i>ACS Applied Materials & Description</i> (2017), 9, 38281-38287	9.5	23
100	Fractal Nanoplasmonic Labels for Supermultiplex Imaging in Single Cells. <i>Journal of the American Chemical Society</i> , 2019 , 141, 11938-11946	16.4	23
99	Poly-adenine-mediated spherical nucleic acids for strand displacement-based DNA/RNA detection. <i>Biosensors and Bioelectronics</i> , 2019 , 127, 85-91	11.8	23
98	Like-Charge Guanidinium Pairing between Ligand and Receptor: An Unusual Interaction for Drug Discovery and Design?. <i>Journal of Physical Chemistry B</i> , 2015 , 119, 11988-97	3.4	21
97	Electrochemical detection of PCR amplicons of Escherichia coli genome based on DNA nanostructural probes and polyHRP enzyme. <i>Analyst, The</i> , 2016 , 141, 5304-10	5	21
96	Humidity-Responsive Single-Nanoparticle-Layer Plasmonic Films. Advanced Materials, 2017, 29, 160679	624	21
95	Graphene Nanoprobes for Real-Time Monitoring of Isothermal Nucleic Acid Amplification. <i>ACS Applied Materials & Applied & Appl</i>	9.5	20
94	Programming Switchable Transcription of Topologically Constrained DNA. <i>Journal of the American Chemical Society</i> , 2020 , 142, 10739-10746	16.4	20
93	Examining variable domain orientations in antigen receptors gives insight into TCR-like antibody design. <i>PLoS Computational Biology</i> , 2014 , 10, e1003852	5	20
92	D3Pockets: A Method and Web Server for Systematic Analysis of Protein Pocket Dynamics. <i>Journal of Chemical Information and Modeling</i> , 2019 , 59, 3353-3358	6.1	19
91	Combining modelling and mutagenesis studies of synaptic vesicle protein 2A to identify a series of residues involved in racetam binding. <i>Biochemical Society Transactions</i> , 2011 , 39, 1341-7	5.1	19
90	Environment specific substitution tables improve membrane protein alignment. <i>Bioinformatics</i> , 2011 , 27, i15-23	7.2	19

89	Programmable Live-Cell CRISPR Imaging with Toehold-Switch-Mediated Strand Displacement. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 20612-20618	16.4	19
88	Serum protein corona-responsive autophagy tuning in cells. <i>Nanoscale</i> , 2018 , 10, 18055-18063	7.7	19
87	The Inhibition Effect of Graphene Oxide Nanosheets on the Development of Streptococcus mutans Biofilms. <i>Particle and Particle Systems Characterization</i> , 2017 , 34, 1700001	3.1	18
86	Real-Time Continuous Identification of Greenhouse Plant Pathogens Based on Recyclable Microfluidic Bioassay System. <i>ACS Applied Materials & amp; Interfaces</i> , 2017 , 9, 31568-31575	9.5	18
85	The Cloudlet Accelerator: Bringing Mobile-Cloud Face Recognition into Real-Time 2015,		18
84	Conjugation of dexamethasone to C60 for the design of an anti-inflammatory nanomedicine with reduced cellular apoptosis. ACS Applied Materials & amp; Interfaces, 2013, 5, 5291-7	9.5	18
83	How Do Distance and Solvent Affect Halogen Bonding Involving Negatively Charged Donors?. <i>Journal of Physical Chemistry B</i> , 2016 , 120, 8784-93	3.4	18
82	Programming chain-growth copolymerization of DNA hairpin tiles for in-vitro hierarchical supramolecular organization. <i>Nature Communications</i> , 2019 , 10, 1006	17.4	18
81	Catalysis-Driven Self-Thermophoresis of Janus Plasmonic Nanomotors. <i>Angewandte Chemie</i> , 2017 , 129, 530-533	3.6	17
80	Underestimated Halogen Bonds Forming with Protein Backbone in Protein Data Bank. <i>Journal of Chemical Information and Modeling</i> , 2017 , 57, 1529-1534	6.1	17
79	Examining the Conservation of Kinks in Alpha Helices. <i>PLoS ONE</i> , 2016 , 11, e0157553	3.7	17
78	Separation and peroxisome proliferator-activated receptor-lagonist activity evaluation of synthetic racemic bavachinin enantiomers. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2015 , 25, 2579-83	3 ^{2.9}	16
77	Building a better fragment library for de novo protein structure prediction. <i>PLoS ONE</i> , 2015 , 10, e01239	987	16
76	Blood exposure to graphene oxide may cause anaphylactic death in non-human primates. <i>Nano Today</i> , 2020 , 35, 100922	17.9	16
75	Determining Protein Folding Pathway and Associated Energetics through Partitioned Integrated-Tempering-Sampling Simulation. <i>Journal of Chemical Theory and Computation</i> , 2017 , 13, 1229	9 ⁶ 1243	15 15
74	Computational design of an epitope-specific Keap1 binding antibody using hotspot residues grafting and CDR loop swapping. <i>Scientific Reports</i> , 2017 , 7, 41306	4.9	15
73	Gold-Nanoparticle-Mediated Jigsaw-Puzzle-like Assembly of Supersized Plasmonic DNA Origami. <i>Angewandte Chemie</i> , 2015 , 127, 3009-3012	3.6	15
72	Reversible Regulation of Catalytic Activity of Gold Nanoparticles with DNA Nanomachines. Scientific Reports, 2015, 5, 14402	4.9	15

71	Inhibition of Epithelial-Mesenchymal Transition and Tissue Regeneration by Waterborne Titanium Dioxide Nanoparticles. <i>ACS Applied Materials & Samp; Interfaces</i> , 2018 , 10, 3449-3458	9.5	14
70	In Situ Spatial Complementation of Aptamer-Mediated Recognition Enables Live-Cell Imaging of Native RNA Transcripts in Real Time. <i>Angewandte Chemie</i> , 2018 , 130, 984-988	3.6	14
69	Multifunctional Yolk-Shell Nanostructure as a Superquencher for Fluorescent Analysis of Potassium Ion Using Guanine-Rich Oligonucleotides. <i>ACS Applied Materials & Discourt Analysis of Potassium Ion Using Guanine-Rich Oligonucleotides</i> . <i>ACS Applied Materials & Discourt Analysis of Potassium Ion Using Guanine-Rich Oligonucleotides</i> . <i>ACS Applied Materials & Discourt Analysis of Potassium Ion Using Guanine-Rich Oligonucleotides</i> . <i>ACS Applied Materials & Discourt Analysis of Potassium Ion Using Guanine-Rich Oligonucleotides</i> . <i>ACS Applied Materials & Discourt Analysis</i> .	9.5	14
68	Recognizing single phospholipid vesicle collisions on carbon fiber nanoelectrode. <i>Science China Chemistry</i> , 2017 , 60, 1474-1480	7.9	14
67	Exploring the interaction of SV2A with racetams using homology modelling, molecular dynamics and site-directed mutagenesis. <i>PLoS ONE</i> , 2015 , 10, e0116589	3.7	14
66	Cavity-Type DNA Origami-Based Plasmonic Nanostructures for Raman Enhancement. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 21942-21948	9.5	13
65	Preservation of DNA Nanostructure Carriers: Effects of Freeze-Thawing and Ionic Strength during Lyophilization and Storage. <i>ACS Applied Materials & District Strength Strength Storage</i> . <i>ACS Applied Materials & District Strength Strength Storage</i> . <i>ACS Applied Materials & District Strength Strength Storage</i> .	9.5	13
64	Energetics and structural characterization of the "DFG-flip" conformational transition of B-RAF kinase: a SITS molecular dynamics study. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 1257-1267	3.6	13
63	A DNA tetrahedral structure-mediated ultrasensitive fluorescent microarray platform for nucleic acid test. <i>Sensors and Actuators B: Chemical</i> , 2020 , 321, 128538	8.5	13
62	Mapping central Helix linker mediated conformational transition pathway of calmodulin via simple computational approach. <i>Journal of Physical Chemistry B</i> , 2014 , 118, 9677-85	3.4	13
61	Design, Synthesis, and Structure-Activity Relationships of Bavachinin Analogues as Peroxisome Proliferator-Activated Receptor [Agonists. <i>ChemMedChem</i> , 2017 , 12, 183-193	3.7	12
60	Antibody side chain conformations are position-dependent. <i>Proteins: Structure, Function and Bioinformatics</i> , 2018 , 86, 383-392	4.2	12
59	Deciphering buried air phases on natural and bioinspired superhydrophobic surfaces using synchrotron radiation-based X-ray phase-contrast imaging. <i>NPG Asia Materials</i> , 2016 , 8, e306-e306	10.3	12
58	Structural insights into HIV-1 protease flap opening processes and key intermediates. <i>RSC Advances</i> , 2017 , 7, 45121-45128	3.7	12
57	Multichannel Immunosensor Platform for the Rapid Detection of SARS-CoV-2 and Influenza A(H1N1) Virus. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 22262-22270	9.5	12
56	Exploring Conformational Change of Adenylate Kinase by Replica Exchange Molecular Dynamic Simulation. <i>Biophysical Journal</i> , 2020 , 118, 1009-1018	2.9	11
55	Poly-adenine-mediated fluorescent spherical nucleic acid probes for live-cell imaging of endogenous tumor-related mRNA. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2018 , 14, 1797	7 ⁶ 1807	11
54	Regioselectivity and Mechanism of Synthesizing N-Substituted 2-Pyridones and 2-Substituted Pyridines via Metal-Free C-O and C-N Bond-Cleaving of Oxazoline[3,2-a]pyridiniums. <i>Scientific Reports</i> 2017 7, 41287	4.9	10

53	Underestimated Noncovalent Interactions in Protein Data Bank. <i>Journal of Chemical Information and Modeling</i> , 2019 , 59, 3389-3399	6.1	10
52	Discovery of N-substituted 3-arylisoquinolone derivatives as antitumor agents originating from O-substituted 3-arylisoquinolines via [2,3] or [3,3] rearrangement. <i>European Journal of Medicinal Chemistry</i> , 2014 , 77, 204-10	6.8	10
51	Molecular dynamics simulation indicating cold denaturation of Ehairpins. <i>Journal of Chemical Physics</i> , 2013 , 138, 085102	3.9	10
50	Improving the accuracy of predicting protein-ligand binding-free energy with semiempirical quantum chemistry charge. <i>Future Medicinal Chemistry</i> , 2019 , 11, 303-321	4.1	9
49	B-cell epitopes: Discontinuity and conformational analysis. <i>Molecular Immunology</i> , 2019 , 114, 643-650	4.3	9
48	Accelerating Mobile-Cloud Computing. Advances in Systems Analysis, Software Engineering, and High Performance Computing Book Series,175-197	0.4	9
47	DNA Framework-Supported Electrochemical Analysis of DNA Methylation for Prostate Cancers. <i>Nano Letters</i> , 2020 , 20, 7028-7035	11.5	9
46	Ab-Ligity: identifying sequence-dissimilar antibodies that bind to the same epitope. <i>MAbs</i> , 2021 , 13, 18	7364678	9
45	Unstable, metastable, or stable halogen bonding interaction involving negatively charged donors? A statistical and computational chemistry study. <i>Journal of Physical Chemistry B</i> , 2014 , 118, 14223-33	3.4	8
44	DDBASE2.0: updated domain database with improved identification of structural domains. <i>Bioinformatics</i> , 2003 , 19, 1760-4	7.2	8
43	Public Baseline and shared response structures support the theory of antibody repertoire functional commonality. <i>PLoS Computational Biology</i> , 2021 , 17, e1008781	5	8
42	Fragment-based modeling of membrane protein loops: successes, failures, and prospects for the future. <i>Proteins: Structure, Function and Bioinformatics</i> , 2014 , 82, 175-86	4.2	7
41	The universality of Ehairpin misfolding indicated by molecular dynamics simulations. <i>Journal of Chemical Physics</i> , 2013 , 139, 165103	3.9	7
40	Volunteer Computing on Mobile Devices. <i>Advances in Wireless Technologies and Telecommunication Book Series</i> ,153-181	0.2	7
39	Biocomputing Based on DNA Strand Displacement Reactions. <i>ChemPhysChem</i> , 2021 , 22, 1151-1166	3.2	7
38	Conformation of the Macrocyclic Drug Lorlatinib in Polar and Nonpolar Environments: A MD Simulation and NMR Study. <i>ACS Omega</i> , 2019 , 4, 22245-22250	3.9	7
37	Crowdsourcing yields a new standard for kinks in protein helices. <i>Journal of Chemical Information and Modeling</i> , 2014 , 54, 2585-93	6.1	6
36	The Promise of AI for DILI Prediction. Frontiers in Artificial Intelligence, 2021, 4, 638410	3	6

35	Encoding Fluorescence Anisotropic Barcodes with DNA Fameworks. <i>Journal of the American Chemical Society</i> , 2021 , 143, 10735-10742	16.4	6
34	Reconstructing Soma-Soma Synapse-like Vesicular Exocytosis with DNA Origami. <i>ACS Central Science</i> , 2021 , 7, 1400-1407	16.8	6
33	Valency-Controlled Framework Nucleic Acid Signal Amplifiers. <i>Angewandte Chemie</i> , 2018 , 130, 7249-72	53 .6	5
32	Multi-algorithm and multi-model based drug target prediction and web server. <i>Acta Pharmacologica Sinica</i> , 2014 , 35, 419-31	8	5
31	Real time in vitro regulation of DNA methylation using a 5-fluorouracil conjugated DNA-based stimuli-responsive platform. <i>ACS Applied Materials & amp; Interfaces</i> , 2013 , 5, 2604-9	9.5	5
30	A Multi-Crystal Method for Extracting Obscured Signal from Crystallographic Electron Density		5
29	Programmable Live-Cell CRISPR Imaging with Toehold-Switch-Mediated Strand Displacement. <i>Angewandte Chemie</i> , 2020 , 132, 20793-20799	3.6	5
28	Programming folding cooperativity of the dimeric i-motif with DNA frameworks for sensing small pH variations. <i>Chemical Communications</i> , 2021 , 57, 3247-3250	5.8	5
27	Driving DNA Origami Assembly with a Terahertz Wave Nano Letters, 2021,	11.5	5
26	Cotranscriptionally folded RNA nanostructures pave the way to intracellular nanofabrication. <i>ChemBioChem</i> , 2015 , 16, 39-41	3.8	4
25	TCRBuilder: multi-state T-cell receptor structure prediction. <i>Bioinformatics</i> , 2020 , 36, 3580-3581	7.2	4
24	Facile Synthesis of Substituted 4-Alkoxy-2-oxazolines and Exploration of the Reaction Mechanism. <i>Synthesis</i> , 2016 , 48, 1331-1343	2.9	4
23	Evidence of Antibody Repertoire Functional Convergence through Public Baseline and Shared Response Structures		4
22	The Chemical Synthesis of Knob Domain Antibody Fragments. ACS Chemical Biology, 2021 , 16, 1757-176	59 1.9	4
21	Programming cell communications with pH-responsive DNA nanodevices. <i>Chemical Communications</i> , 2021 , 57, 4536-4539	5.8	4
20	Increasing the sampling efficiency of protein conformational transition using velocity-scaling optimized hybrid explicit/implicit solvent REMD simulation. <i>Journal of Chemical Physics</i> , 2015 , 142, 125	I <i>д</i> 5	3
19	Ab-Ligity: Identifying sequence-dissimilar antibodies that bind to the same epitope		3
18	Remote Photothermal Control of DNA Origami Assembly in Cellular Environments. <i>Nano Letters</i> , 2021 , 21, 5834-5841	11.5	3

17	Programming biosensing sensitivity by controlling the dimension of nanostructured electrode. <i>Analytical and Bioanalytical Chemistry</i> , 2019 , 411, 4085-4092	4.4	3
16	Nanomechanical Induction of Autophagy-Related Fluorescence in Single Cells with Atomic Force Microscopy. <i>Advanced Science</i> , 2021 , 8, e2102989	13.6	2
15	Accelerating Mobile-Cloud Computing 2015 , 1933-1955		2
14	Computational study of the substituent effect of halogenated fused-ring heteroaromatics on halogen bonding. <i>Journal of Molecular Modeling</i> , 2020 , 26, 270	2	2
13	Probing Transient DNA Conformation Changes with an Intercalative Fluorescent Excimer. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 6624-6630	16.4	2
12	Investigating the potential for a limited quantum speedup on protein lattice problems. <i>New Journal of Physics</i> ,	2.9	2
11	Computational Exploration of Conformational Transitions in Protein Drug Targets. <i>Methods in Molecular Biology</i> , 2018 , 1762, 339-365	1.4	1
10	Titelbild: Single-Particle Tracking and Modulation of Cell Entry Pathways of a Tetrahedral DNA Nanostructure in Live Cells (Angew. Chem. 30/2014). <i>Angewandte Chemie</i> , 2014 , 126, 7809-7809	3.6	1
9	Benzyl-rich ligand engineering of the photostability of atomically precise gold nanoclusters <i>Chemical Communications</i> , 2022 ,	5.8	1
8	Membrane Interactions of 岳ynuclein Revealed by Multiscale Molecular Dynamics Simulations, Markov State Models, and NMR. <i>Journal of Physical Chemistry B</i> , 2021 , 125, 2929-2941	3.4	1
7	Modulating Target Protein Biology Through the Re-mapping of Conformational Distributions Using Small Molecules. <i>Frontiers in Chemistry</i> , 2021 , 9, 668186	5	1
6	Cryogenic Electron Microscopy for Resolving DNA Nanostructures and Their Complexes. <i>Small Structures</i> , 2021 , 2, 2100053	8.7	1
5	Water-Dispersible Gold Nanoclusters: Synthesis Strategies, Optical Properties, and Biological Applications. <i>Chemistry - A European Journal</i> , 2021 , e202103736	4.8	0
4	Recent Advances in Prescribing Chiral Plasmonics with DNA Frameworks. <i>ChemNanoMat</i> , 2022 , 8,	3.5	Ο
3	Phase transferring luminescent gold nanoclusters via single-stranded DNA. Science China Chemistry,1	7.9	0
2	Volunteer Computing on Mobile Devices 2016 , 2171-2198		
1	Probing Transient DNA Conformation Changes with an Intercalative Fluorescent Excimer. <i>Angewandte Chemie</i> , 2021 , 133, 6698-6704	3.6	