Toshiji Mukai

List of Publications by Citations

Source: https://exaly.com/author-pdf/7002691/toshiji-mukai-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

277 papers 10,542 56 h-index g-index

290 11,232 3 6.15 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
277	The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys. <i>Acta Materialia</i> , 2003 , 51, 2055-2065	8.4	1046
276	Ductility enhancement in AZ31 magnesium alloy by controlling its grain structure. <i>Scripta Materialia</i> , 2001 , 45, 89-94	5.6	707
275	Effect of strain rate on compressive behavior of a Pd40Ni40P20 bulk metallic glass. <i>Intermetallics</i> , 2002 , 10, 1071-1077	3.5	260
274	Experimental study of energy absorption in a close-celled aluminum foam under dynamic loading. <i>Scripta Materialia</i> , 1999 , 40, 921-927	5.6	247
273	Deformation mechanism in a coarse-grained MgAlIn alloy at elevated temperatures. <i>International Journal of Plasticity</i> , 2001 , 17, 387-397	7.6	205
272	Dynamic response of a Pd40Ni40P20 bulk metallic glass in tension. <i>Scripta Materialia</i> , 2002 , 46, 43-47	5.6	173
271	Effect of temperature and grain size on the dominant diffusion process for superplastic flow in an AZ61 magnesium alloy. <i>Acta Materialia</i> , 1999 , 47, 3753-3758	8.4	171
270	Low temperature superplasticity of a fine-grained ZK60 magnesium alloy processed by equal-channel-angular extrusion. <i>Scripta Materialia</i> , 2002 , 46, 851-856	5.6	159
269	Effect of grain refinement on fracture toughness in extruded pure magnesium. <i>Scripta Materialia</i> , 2005 , 53, 1059-1064	5.6	151
268	TEM and 3DAP characterization of an age-hardened Mgtatn alloy. Scripta Materialia, 2005, 53, 675-679	5.6	149
267	Grain Size Control of Commercial Wrought Mg-Al-Zn Alloys Utilizing Dynamic Recrystallization. <i>Materials Transactions</i> , 2001 , 42, 1200-1205	1.3	142
266	Compressive response of a closed-cell aluminum foam at high strain rate. <i>Scripta Materialia</i> , 2006 , 54, 533-537	5.6	140
265	Differential speed rolling of an AZ31 magnesium alloy and the resulting mechanical properties. Journal of Materials Science, 2004 , 39, 1477-1480	4.3	137
264	High strain rate deformation behavior of an AZ91 magnesium alloy at elevated temperatures. <i>Materials Letters</i> , 2005 , 59, 1511-1515	3.3	135
263	Effect of texture on fracture toughness in extruded AZ31 magnesium alloy. <i>Scripta Materialia</i> , 2005 , 53, 541-545	5.6	127
262	Fracture mechanism of a coarse-grained magnesium alloy during fracture toughness testing. <i>Philosophical Magazine Letters</i> , 2009 , 89, 2-10	1	113
261	Effect of temperature of differential speed rolling on room temperature mechanical properties and texture in an AZ31 magnesium alloy. <i>Journal of Materials Processing Technology</i> , 2007 , 182, 644-647	, 5.3	113

260	Plasticity and microstructure of ZrtuAl bulk metallic glasses. Scripta Materialia, 2007, 57, 173-176	5.6	112
259	Effect of Grain Refinement on Tensile Ductility in ZK60 Magnesium Alloy under Dynamic Loading. <i>Materials Transactions</i> , 2001 , 42, 1177-1181	1.3	103
258	High strength and fracture toughness balance on the extruded Mgtatn alloy. <i>Materials Science</i> & Structural Materials: Properties, Microstructure and Processing, 2007, 459, 366-370	5.3	102
257	Superplastic deformation mechanism in powder metallurgy magnesium alloys and composites. <i>Acta Materialia</i> , 2001 , 49, 2027-2037	8.4	102
256	Realization of high-strain-rate superplasticity at low temperatures in a MgInIr alloy. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2001 , 307, 119-128	5.3	102
255	Compressive strength and yield asymmetry in extruded MgInHo alloys containing quasicrystal phase. <i>Scripta Materialia</i> , 2007 , 56, 935-938	5.6	98
254	Grain refinement of AZ91 alloy by introducing ultrasonic vibration during solidification. <i>Materials Letters</i> , 2008 , 62, 2872-2875	3.3	97
253	Superplasticity in a ZK60 magnesium alloy at low temperatures. Scripta Materialia, 1999, 40, 477-484	5.6	95
252	Effect of texture on tensile properties at elevated temperatures in an AZ31 magnesium alloy. <i>Scripta Materialia</i> , 2005 , 52, 449-454	5.6	94
251	High fracture toughness of extruded MgInII alloy by the synergistic effect of grain refinement and dispersion of quasicrystalline phase. <i>Scripta Materialia</i> , 2007 , 56, 1091-1094	5.6	91
250	Low temperature diffusion bonding in a superplastic AZ31 magnesium alloy. <i>Scripta Materialia</i> , 2003 , 48, 1249-1254	5.6	91
249	A high-strength bulk nanocrystalline Al F e alloy processed by mechanical alloying and spark plasma sintering. <i>Scripta Materialia</i> , 2007 , 57, 189-192	5.6	90
248	Elastic and damping properties from room temperature to 673 K in an AZ31 magnesium alloy. <i>Scripta Materialia</i> , 2004 , 51, 291-295	5.6	90
247	Fabrication of bulk nanocrystalline Fe L alloy by spark plasma sintering of mechanically milled powder. <i>Scripta Materialia</i> , 2005 , 53, 863-868	5.6	88
246	Ultra-fine grain size and isotropic very high strength by direct extrusion of chill-cast MgZnY alloys containing quasicrystal phase. <i>Scripta Materialia</i> , 2011 , 64, 661-664	5.6	86
245	Precipitation control of calcium phosphate on pure magnesium by anodization. <i>Corrosion Science</i> , 2008 , 50, 2906-2913	6.8	86
244	Compressive properties of a closed-cell aluminum foam as a function of strain rate and temperature. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2009 , 525, 1-6	5.3	84
243	High temperature compressive properties over a wide range of strain rates in an AZ31 magnesium alloy. <i>Journal of Materials Science</i> , 2005 , 40, 1577-1582	4.3	84

242	Application of superplasticity in commercial magnesium alloy for fabrication of structural components. <i>Materials Science and Technology</i> , 2000 , 16, 1314-1319	1.5	80
241	Superplastic behavior of a Zrfl0AlbTi-fl7.9Cufl4.6Ni metallic glass in the supercooled liquid region. <i>Scripta Materialia</i> , 1999 , 40, 1021-1027	5.6	79
240	Hall P etch relation for deformation twinning in solid solution magnesium alloys. <i>Materials Science</i> & Structural Materials: Properties, Microstructure and Processing, 2013 , 561, 378-385	5.3	77
239	Fracture toughness in MgAlIn alloy processed by equal-channel-angular extrusion. <i>Scripta Materialia</i> , 2006 , 54, 633-638	5.6	76
238	Hall P etch Breakdown in Fine-Grained Pure Magnesium at Low Strain Rates. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2015 , 46, 894-902	2.3	73
237	Effect of solid-solution strengthening on fracture toughness in extruded Mg Z n alloys. <i>Scripta Materialia</i> , 2006 , 55, 593-596	5.6	72
236	Processing of an open-cellular AZ91 magnesium alloy with a low density of 0.05 g/cm3. <i>Journal of Materials Science Letters</i> , 1999 , 18, 1477-1480		71
235	Enhancement of energy absorption in a closed-cell aluminum by the modification of cellular structures. <i>Scripta Materialia</i> , 1999 , 41, 1055-1060	5.6	71
234	Nanostructured Alfle alloys produced by e-beam deposition: static and dynamic tensile properties. <i>Acta Materialia</i> , 2003 , 51, 4197-4208	8.4	70
233	High-strain-rate superplasticity at low temperature in a ZK61 magnesium alloy produced by powder metallurgy. <i>Scripta Materialia</i> , 1999 , 41, 209-213	5.6	69
232	Experimental study of a structural magnesium alloy with high absorption energy under dynamic loading. <i>Scripta Materialia</i> , 1998 , 39, 1249-1253	5.6	68
231	Microstructure and mechanical properties of AZ91 alloy produced with ultrasonic vibration. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 487, 120-123	5.3	68
230	Superplastic behavior in a mechanically alloyed aluminum composite reinforced with SiC particulates. <i>Scripta Metallurgica Et Materialia</i> , 1992 , 26, 185-190		68
229	Rate-dependent hardening due to twinning in an ultrafine-grained magnesium alloy. <i>Acta Materialia</i> , 2012 , 60, 1818-1826	8.4	67
228	Dynamic mechanical properties of a near-nano aluminum alloy processed by equal-channel-angular-extrusion. <i>Scripta Materialia</i> , 1998 , 10, 755-765		62
227	Influence of pH and flow on the polarisation behaviour of pure magnesium in borate buffer solutions. <i>Corrosion Science</i> , 2008 , 50, 3561-3568	6.8	62
226	Effect of precipitation on strength and ductility in a MgInII alloy. <i>Journal of Alloys and Compounds</i> , 2013 , 550, 114-123	5.7	61
225	Positive exponent strain-rate superplasticity in mechanically alloyed aluminum IN9021. <i>Scripta Metallurgica Et Materialia</i> , 1991 , 25, 2053-2057		61

(2018-2008)

224	Synthesis of high-strength bimodally grained iron by mechanical alloying and spark plasma sintering. <i>Scripta Materialia</i> , 2008 , 58, 759-762	5.6	57	
223	Dynamic compressive behavior of an ultra-lightweight magnesium foam. <i>Scripta Materialia</i> , 1999 , 41, 365-371	5.6	57	
222	Influence of the magnesium concentration on the relationship between fracture mechanism and strain rate in high purity Al?Mg alloys. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 1994 , 176, 181-189	5.3	56	
221	Effect of precipitate shapes on fracture toughness in extruded Mg-Zn-Zr magnesium alloys. <i>Journal of Materials Research</i> , 2007 , 22, 965-973	2.5	55	
220	Elevated temperature mechanical properties of A 5056 Al-Mg alloy processed by equal-channel-angular-extrusion. <i>Scripta Materialia</i> , 1997 , 36, 699-705	5.6	53	
219	Effects of heat treatment on compressive properties of AZ91 Mg and SG91A Al foams with open-cell structure. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2000 , 280, 225-228	5.3	52	
218	Nanoindentation creep behavior of grain boundary in pure magnesium. <i>Philosophical Magazine Letters</i> , 2010 , 90, 883-890	1	50	
217	Microstructure evolution of MgIn binary alloy during a direct extrusion process. <i>Scripta Materialia</i> , 2009 , 60, 411-414	5.6	49	
216	Consolidation of machined magnesium alloy chips by hot extrusion utilizing superplastic flow. <i>Journal of Materials Science</i> , 2001 , 36, 5007-5011	4.3	49	
215	Structure of shear bands in Pd40Ni40P20 bulk metallic glass. <i>Journal of Materials Research</i> , 2009 , 24, 1-9	2.5	48	
214	Strengthening MgAlan alloy by repetitive oblique shear strain with caliber roll. <i>Scripta Materialia</i> , 2010 , 62, 113-116	5.6	48	
213	Experimental study for the improvement of crashworthiness in AZ91 magnesium foam controlling its microstructure. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2001 , 308, 283-287	5.3	48	
212	The effect of size and distribution of rod-shaped precipitates on the strength and ductility of a MgIn alloy. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2012 , 539, 230-237	5.3	47	
211	High temperature processing of Mg᠒n᠒ alloys containing quasicrystal phase for high strength. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 6647-6651	5.3	47	
210	High-Strain-Rate Superplasticity in an AZ91 Magnesium Alloy Processed by Ingot Metallurgy Route. <i>Materials Transactions</i> , 2002 , 43, 78-80	1.3	44	
209	Influence of strain rate on the mechanical properties in fine-grained aluminum alloys. <i>Materials Science & Microstructure and Processing</i> , 1995 , 204, 12-18	5.3	44	
208	High strain rate superplasticity in an Al?Ni-misch metal alloy produced from its amorphous powders. <i>Scripta Metallurgica Et Materialia</i> , 1992 , 26, 191-196		44	
207	Dynamic deformation behavior of a face-centered cubic FeCoNiCrMn high-entropy alloy. <i>Science Bulletin</i> , 2018 , 63, 362-368	10.6	43	

206	Effect of aluminum or zinc solute addition on enhancing impact fracture toughness in Mg©a alloys. <i>Acta Materialia</i> , 2016 , 104, 283-294	8.4	42
205	Fracture toughness in a rolled AZ31 magnesium alloy. <i>Journal of Alloys and Compounds</i> , 2006 , 417, 209-7	2 ქ.3	42
204	Effect of microstructure on strength and ductility of high strength quasicrystal phase dispersed MgZnY alloys. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2014 , 611, 242-251	5.3	40
203	Materials Processing for Structural Stability in a ZK60 Magnesium Alloy. <i>Materials Transactions</i> , 2003 , 44, 775-781	1.3	39
202	Superplasticity of a Particle-Strengthened WE43 Magnesium Alloy. <i>Materials Transactions</i> , 2001 , 42, 157	7 - 11 6 2	39
201	Superplastic characteristics in an extruded AZ31 magnesium alloy <i>Keikinzoku/Journal of Japan Institute of Light Metals</i> , 1999 , 49, 401-404	0.3	39
200	Effect of alloying elements on room temperature tensile ductility in magnesium alloys. <i>Philosophical Magazine</i> , 2016 , 96, 2671-2685	1.6	39
199	Ductile fracture mechanism in fine-grained magnesium alloy. <i>Philosophical Magazine Letters</i> , 2010 , 90, 831-839	1	38
198	Low temperature superplasticity in a magnesium-based composite. Scripta Materialia, 2000, 42, 249-255	5 5.6	38
197	Effect of deformation twins on damping capacity in extruded pure magnesium. <i>Journal of Alloys and Compounds</i> , 2015 , 626, 60-64	5.7	37
196	Structural relationships among MgZn2 and Mg4Zn7 phases and transition structures in Mg-Zn-Y alloys. <i>Philosophical Magazine</i> , 2010 , 90, 3355-3374	1.6	37
195	Deformation structure after fracture-toughness test of MgAlIn alloys processed by equal-channel-angular extrusion. <i>Philosophical Magazine Letters</i> , 2006 , 86, 195-204	1	37
194	Compressive properties of open-cellular SG91A Al and AZ91 Mg. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 1999 , 272, 455-458	5.3	36
193	Effect of solute atoms on grain boundary sliding in magnesium alloys. <i>Philosophical Magazine</i> , 2014 , 94, 1345-1360	1.6	35
192	Effect of grain boundary structures on grain boundary sliding in magnesium. <i>Materials Letters</i> , 2012 , 76, 32-35	3.3	34
191	Room temperature creep of fine-grained pure Mg: A direct comparison between nanoindentation and uniaxial tension. <i>Journal of Materials Research</i> , 2009 , 24, 1615-1618	2.5	34
190	High Strength and Fracture Toughness Balances in Extruded Mg-Zn-RE Alloys by Dispersion of Quasicrystalline Phase Particles. <i>Materials Transactions</i> , 2008 , 49, 1947-1952	1.3	32
189	Characterization of Nanocrystal Dispersed Cu60Zr30Ti10 Metallic Glass. <i>Materials Transactions</i> , 2005 , 46, 1264-1270	1.3	32

(2003-2016)

188	Fabrication of a magnesium alloy with excellent ductility for biodegradable clips. <i>Acta Biomaterialia</i> , 2016 , 29, 468-476	10.8	31	
187	Fabrication of biodegradable materials with high strength by grain refinement of Mg ū .3 at.% Ca alloys. <i>Materials Letters</i> , 2018 , 223, 65-68	3.3	31	
186	Effect of Micro-Alloying Elements on Deformation Behavior in Mg–Y Binary Alloys. <i>Materials Transactions</i> , 2014 , 55, 182-187	1.3	31	
185	Microstructural evolution during dry wear test in magnesium and Mg\(\mathbb{M} \) alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 561, 371-377	5.3	31	
184	Grain Refinement of Commercial Magnesium Alloys for High-Strain-Rate-Superplastic Forming. Materials Science Forum, 2000 , 350-351, 159-170	0.4	31	
183	StressEtrain behaviors of Ti-based bulk metallic glass and their nanostructures. <i>Journal of Materials Research</i> , 2007 , 22, 1406-1413	2.5	30	
182	Superplastic Behavior in Commercial Wrought Magnesium Alloys. <i>Materials Science Forum</i> , 2000 , 350-351, 171-176	0.4	30	
181	In-situ neutron diffraction of a quasicrystal-containing Mg alloy interpreted using a new polycrystal plasticity model of hardening due to {10.2} tensile twinning. <i>International Journal of Plasticity</i> , 2018 , 100, 34-51	7.6	29	
180	Hardness Variation and Strain Distribution in Magnesium Alloy AZ31 Processed by Multi-pass Caliber Rolling. <i>Advanced Engineering Materials</i> , 2009 , 11, 654-658	3.5	29	
179	Compressive deformation behavior of Al2O3 foam. <i>Materials Science & amp; Engineering A:</i> Structural Materials: Properties, Microstructure and Processing, 2000 , 277, 213-217	5.3	29	
178	Fracture toughness in direct extruded MgAlan alloys. <i>Journal of Materials Research</i> , 2007 , 22, 2598-260	72.5	28	
177	Fracture Toughness in an Extruded ZK60 Magnesium Alloy. <i>Materials Transactions</i> , 2006 , 47, 995-998	1.3	28	
176	Strain-rate dependence of mechanical properties in AA5056 AlMg alloy processed by equal-channel-angular-extrusion. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 1998 , 247, 270-274	5.3	27	
175	Deformation Mechanism of Fine-Grained Superplasticity in Metallic Materials Expected from the Phenomenological Constitutive Equation. <i>Materials Transactions</i> , 2004 , 45, 2497-2502	1.3	27	
174	Secondary Processing of AZ31 Magnesium Alloy Concomitant with Grain Growth or Dynamic Recrystallization. <i>Materials Transactions</i> , 2004 , 45, 2377-2382	1.3	27	
173	Effect of Cell Size on the Dynamic Compressive Properties of Open-Celled Aluminum Foams. Materials Transactions, 2002 , 43, 2548-2553	1.3	27	
172	Superplastic behavior at high strain rates of a mechanically alloyed Al?Mg?Li alloy. <i>Scripta Metallurgica Et Materialia</i> , 1992 , 26, 761-766		27	
171	Mechanical Properties of Mg-Y-Zn Alloy Processed by Equal-Channel-Angular Extrusion. <i>Materials Transactions</i> , 2003 , 44, 463-467	1.3	26	

170	Development of a Closed Cell Aluminum Alloy Foam with Enhancement of the Compressive Strength. <i>Materials Transactions</i> , 2001 , 42, 2118-2123	1.3	26
169	Superplasticity in doubly extruded magnesium composite ZK60/SiC/17p. <i>Materials Science and Technology</i> , 1998 , 14, 32-35	1.5	26
168	Rare-earth free wrought-processed magnesium alloy with dispersion of quasicrystal phase. <i>Scripta Materialia</i> , 2009 , 61, 705-708	5.6	25
167	Synergetic Effect of Grain Refinement and Spherical Shaped Precipitate Dispersions in Fracture Toughness of a Mg-Zn-Zr Alloy. <i>Materials Transactions</i> , 2007 , 48, 1422-1426	1.3	25
166	Glass Forming Ability and Mechanical Properties of Quinary Zr-Based Bulk Metallic Glasses. <i>Materials Transactions</i> , 2007 , 48, 1322-1326	1.3	25
165	Material design for magnesium alloys with high deformability. <i>Philosophical Magazine</i> , 2015 , 95, 869-88	5 1.6	24
164	The Processing and Properties of Superplastic Magnesium Alloys and Their Composites. <i>Materia Japan</i> , 2000 , 39, 347-354	0.1	24
163	Deformation mechanism near crack-tip by finite element analysis and microstructure observation in magnesium alloys. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2010 , 527, 1761-1768	5.3	23
162	Effect of precipitate volume fraction on fracture toughness of extruded MgIn alloys. <i>Journal of Materials Research</i> , 2008 , 23, 1128-1135	2.5	23
161	Large apparent compressive strain of metallic glasses. <i>Philosophical Magazine Letters</i> , 2007 , 87, 625-635	51	23
160	??????????. Keikinzoku/Journal of Japan Institute of Light Metals, 2001 , 51, 503-508	0.3	23
159	Processing of Ductile Magnesium Alloy under Dynamic Tensile Loading. <i>Materials Transactions</i> , 2001 , 42, 2652-2654	1.3	23
158	Orientation relationships between icosahedral clusters in hexagonal MgZn2 and monoclinic Mg4Zn7 phases in Mg-Zn(-Y) alloys. <i>Philosophical Magazine</i> , 2011 , 91, 2634-2644	1.6	22
157	High-strain-rate superplastic behavior in a super-rapidly-solidified Al-Si system alloy. <i>Scripta Materialia</i> , 1997 , 37, 673-678	5.6	22
156	Ductility enhancement of ultra fine-grained aluminum under dynamic loading. <i>Scripta Materialia</i> , 2001 , 44, 1493-1496	5.6	22
155	Microyielding and damping capacity in magnesium. Scripta Materialia, 2014, 87, 1-4	5.6	21
154	Influence of Temperature and Grain Size on Threshold Stress for Superplastic Flow in a Fine-Grained Magnesium Alloy. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2008 , 39, 2351-2362	2.3	21
153	Low Temperature Superplasticity in a ZK60 Magnesium Alloy. <i>Materials Transactions, JIM</i> , 1999 , 40, 809	-814	21

(1995-2010)

152	Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010 , 527, 6350-6358	5.3	20	
151	Polarization Behavior of Pure Magnesium under a Controlled Flow in a NaCl Solution. <i>Materials Transactions</i> , 2008 , 49, 1456-1461	1.3	20	
150	Guide for Enhancement of Room Temperature Ductility in Mg Alloys at High Strain Rates. <i>Materials Science Forum</i> , 2003 , 419-422, 171-176	0.4	20	
149	The structure of precipitates in MgZnV alloys. <i>Philosophical Magazine Letters</i> , 2010 , 90, 641-651	1	19	
148	Fatigue Behaviors and Microstructures in an Extruded Mg-Al-Zn Alloy. <i>Materials Transactions</i> , 2008 , 49, 681-684	1.3	19	
147	Energy Absorption in Closed-Cell Al-Zn-Mg-Ca-Ti Foam. <i>Materials Transactions</i> , 2002 , 43, 1778-1781	1.3	19	
146	Development of Very High Strength and Ductile Dilute Magnesium Alloys by Dispersion of Quasicrystal Phase. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2014 , 45, 3232-3240	2.3	18	
145	Superplastic Behavior in Mg?Zn?Y Alloy with Dispersed Quasicrystal Phase Particles. <i>Advanced Engineering Materials</i> , 2009 , 11, 782-787	3.5	18	
144	Fracture Toughness in Ultra Fine-Grained Magnesium Alloy. <i>Materials Science Forum</i> , 2006 , 503-504, 155	5-d. 6 0	18	
143	New Forming Process of Three-Dimensionally Shaped Magnesium Parts Utilizing High-Strain-Rate Superplasticity. <i>Materials Transactions</i> , 2004 , 45, 2531-2536	1.3	18	
142	Very high strain rate superplasticity in a mechanically alloyed IN9052 aluminum alloy. <i>Materials Science & Microstructure and Processing</i> , 1992 , 159, L1-L4	5.3	18	
141	Molecular dynamics simulation of grain boundary plasticity in magnesium and solid-solution magnesium alloys. <i>Computational Materials Science</i> , 2013 , 77, 424-429	3.2	17	
140	Symmetric and asymmetric deformation transition in the regularly cell-structured materials. Part I: experimental study. <i>International Journal of Solids and Structures</i> , 2005 , 42, 2199-2210	3.1	17	
139	Ductility Enhancement in Magnesium Alloys under Dynamic Loading. <i>Materials Science Forum</i> , 2000 , 350-351, 97-104	0.4	17	
138	Development of Fine-Grained Structure Caused by Friction Stir Welding Process of a ZK60A Magnesium Alloy. <i>Materials Transactions</i> , 2009 , 50, 610-617	1.3	16	
137	Effect of dominant diffusion process on cavitation behavior in superplastic MgAl I n alloy. <i>Scripta Materialia</i> , 2007 , 57, 1008-1011	5.6	16	
136	High Strain Rate Deformation Behavior of MgAlan Alloys at Elevated Temperatures. <i>Key Engineering Materials</i> , 2007 , 340-341, 107-112	0.4	16	
135	Mechanisms of High Strain-Rate Superplasticity of Al-14 mass%Ni-14 mass%Mm (Misch Metal) Alloy Produced from Amorphous Powder. <i>Materials Transactions, JIM</i> , 1995 , 36, 1467-1475		16	

134	Pure-Shear Test for Investigation of Non-Basal Slip System Operation of Mg Alloy Single Crystal with and without Y. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 2013 , 77, 466-472	0.4	16
133	Dislocation structures in a near-isotropic Mg-Y extruded alloy. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2017 , 698, 238-248	5.3	15
132	Enhancing Fracture Toughness of Magnesium Alloy by Formation of Low-Angle Grain Boundary Structure. <i>Advanced Engineering Materials</i> , 2010 , 12, 837-842	3.5	15
131	The role of dislocations in high-strain-rate superplasticity of an AlNihisch metal alloy. <i>Acta Materialia</i> , 1998 , 46, 4469-4478	8.4	14
130	In vivo corrosion behaviour of magnesium alloy in association with surrounding tissue response in rats. <i>Biomedical Materials (Bristol)</i> , 2016 , 11, 025001	3.5	14
129	Development of a new biodegradable operative clip made of a magnesium alloy: Evaluation of its safety and tolerability for canine cholecystectomy. <i>Surgery</i> , 2017 , 161, 1553-1560	3.6	13
128	Deformation Behavior of Binary Mg-Y Alloy Under Dynamic Compression Loading. <i>Jom</i> , 2014 , 66, 305-3	11 .1	13
127	Damping properties in MgInII alloy with dispersion of quasicrystal phase particle. <i>Materials Letters</i> , 2011 , 65, 3251-3253	3.3	13
126	Effect of Ultrasonic Vibration Pretreatment on Microstructural Evolution and Mechanical Properties of Extruded AZ91 Alloy. <i>Materials Transactions</i> , 2008 , 49, 972-975	1.3	13
125	Experimental prediction of deformation mechanism after continuous dynamic recrystallization in superplastic P/M7475. <i>Journal of Materials Science</i> , 2003 , 38, 3925-3932	4.3	13
124	Improvement of Crashworthiness in Ultra Lightweight Metallic Foam by Heat-Treatment for Microstructural Modification of Base Material. <i>Materials Transactions</i> , 2001 , 42, 2087-2092	1.3	13
123	Mechanical and damping properties of equal channel angular extrusion-processed Mgta alloys. <i>Materials Letters</i> , 2017 , 201, 144-147	3.3	12
122	Formation of nano-twin domains by nucleation and multiplication of twins during fracture of a magnesium alloy. <i>Philosophical Magazine</i> , 2014 , 94, 898-913	1.6	12
121	Superplastic Deformation Behavior in Commercial Magnesium Alloy AZ61. <i>Materials Transactions, JIM</i> , 1999 , 40, 931-934		12
120	Thermomechanical processing and superplastic behaviour in aluminium-based alloys produced from amorphous or nanocrystalline powders. <i>Materials Science & Description of the Materials: Properties, Microstructure and Processing</i> , 1994 , 181-182, 1068-1071	5.3	12
119	Strength and ductility under dynamic loading in fine- grained IN905XL aluminum alloy. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 1995 , 26, 2521	2.3	11
118	Deformation behavior of ultra-fine-grained Mg-0.3 at % Al alloy in compression. <i>Journal of Alloys and Compounds</i> , 2017 , 726, 651-657	5.7	10
117	Effects of grain size on deep drawability of AZ31 magnesium alloy sheets into square cup Keikinzoku/Journal of Japan Institute of Light Metals, 2003, 53, 50-54	0.3	10

(2011-2003)

116	The Effect of Temperature and Flow Stress for Climb-Controlled Dislocation Creep in Magnesium Alloy. <i>Materials Science Forum</i> , 2003 , 426-432, 605-610	0.4	10
115	Experimental Study of the Mechanical Properties at Elevated Temperatures in Commercial Mg-Al-Zn Alloys for Superplastic Forming. <i>Key Engineering Materials</i> , 1999 , 171-174, 337-342	0.4	10
114	In vitro and in vivo analysis of the biodegradable behavior of a magnesium alloy for biomedical applications. <i>Dental Materials Journal</i> , 2019 , 38, 11-21	2.5	10
113	Domain structure and lattice effects in a severely plastically deformed CoCrFeMnNi high entropy alloy. <i>Journal of Alloys and Compounds</i> , 2020 , 812, 152028	5.7	10
112	Effect of yttrium addition on the hot deformation behaviors and microstructure development of magnesium alloy. <i>Journal of Alloys and Compounds</i> , 2019 , 786, 118-125	5.7	9
111	Micromechanisms of grain refinement during extrusion of MgD.3 at.% Al at low homologous temperature. <i>Materials Characterization</i> , 2014 , 93, 102-109	3.9	9
110	Superplastic Behavior of an ECAE Processed ZK60 Magnesium Alloy. <i>Materials Science Forum</i> , 2003 , 419-422, 557-564	0.4	9
109	Effective Diffusivity for Superplastic Flow in Magnesium Alloys. <i>Materials Science Forum</i> , 2001 , 357-359, 147-152	0.4	9
108	Texture and mechanical properties of a superplastically deformed MgAlIn alloy sheet. <i>Scripta Materialia</i> , 2009 , 61, 883-886	5.6	8
107	Symmetric and asymmetric deformation transition in the regularly cell-structured materials. Part II: Theoretical study. <i>International Journal of Solids and Structures</i> , 2005 , 42, 2211-2224	3.1	8
106	Routes to Develop Fine-Grained Magnesium Alloys and Composites for High-Strain Rate Superplasticity. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 601, 291		8
105	Effect of cold-working on phase formation during heat treatment in CrMnFeCoNi system high-entropy alloys with Al addition. <i>Journal of Alloys and Compounds</i> , 2021 , 872, 159668	5.7	8
104	Wear and Friction Properties of Mg–Zn–Y Alloy with Dispersion of Quasi-Crystalline Phase. <i>Materials Transactions</i> , 2014 , 55, 216-219	1.3	7
103	Anomalous Activity of Nonbasal Dislocations in AZ31 Mg Alloys at Room Temperature. <i>Materials Science Forum</i> , 2003 , 419-422, 231-236	0.4	7
102	?????????????????. Materia Japan, 2004 , 43, 810-814	0.1	7
101	Microstructural factors affecting superplastic properties in magnesium-based composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32, 923-929	2.3	7
100	Influence of strain rate on tensile properties in some commercial aluminum alloys <i>Keikinzoku/Journal of Japan Institute of Light Metals</i> , 1993 , 43, 252-257	0.3	7
99	Crystallographic relationship of orthorhombic EAl5Mg11Zn4 phase to icosahedral quasicrystalline phase. <i>Journal of Alloys and Compounds</i> , 2011 , 509, 4676-4681	5.7	6

98	Microstructural Dynamics during High-Strain-Rate Superplastic Flow in PM 7475 Alloy. <i>Materials Science Forum</i> , 1999 , 304-306, 333-340	0.4	6
97	Microstructure and Superplastic Properties in an ECAE Al-4Mg-0.5Sc Alloy Processed at Elevated Temperatures. <i>Materials Science Forum</i> , 1999 , 304-306, 109-114	0.4	6
96	Very high strain rate superplasticity in aluminium-based alloys produced from amorphous powders. Journal of Alloys and Compounds, 1993 , 193, 29-32	5.7	6
95	STRAIN RATE DEPENDENCE ON MECHANICAL PROPERTIES IN SOME COMMERCIAL ALUMINUM ALLOYS. <i>European Physical Journal Special Topics</i> , 1991 , 01, C3-341-C3-346		6
94	High strain-rate doformation characteristics in commercial aluminium alloys <i>Zairyo/Journal of the Society of Materials Science, Japan</i> , 1990 , 39, 1619-1624	0.1	6
93	Friction and Wear Properties of Solution-Treated and Aging-Treated Mg-Al-Zn Alloys. <i>Zairyo/Journal of the Society of Materials Science, Japan</i> , 2003 , 52, 702-708	0.1	6
92	Evaluation of Impact Fracture Toughness of AZ31 Magnesium Alloy. <i>Applied Mechanics and Materials</i> , 2014 , 566, 316-321	0.3	5
91	Mechanical Behavior at Low Strains in Pure Magnesium and Mg-Ca Alloy. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 2014 , 78, 230-234	0.4	5
90	Microstructure evolution of MgAlan alloys during compression test at low strain and temperature. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2009 , 527, 370-375	5.3	5
89	Effects of load direction on the mechanical properties of open-cellular epoxy with a cubic prism structure. <i>Philosophical Magazine Letters</i> , 2000 , 80, 215-220	1	5
88	Deformation characteristics of a superplastic aluminium alloy produced from amorphous powders. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 1994 , 181-182, 1064-1067	5.3	5
87	THE MICROSTRUCTURAL EVOLUTION DURING DEFORMATION UNDER SEVERAL STRAIN RATES IN A COMMERCIAL 5182 ALUMINIUM ALLOY. <i>European Physical Journal Special Topics</i> , 1991 , 01, C3-347-C3	-352	5
86	Effect of Precipitate Morphology on Tribological Properties in AZ91 Alloy. Zairyo/Journal of the Society of Materials Science, Japan, 2005, 54, 90-96	0.1	5
85	Development of bioabsorbable zinc-magnesium alloy wire and validation of its application to urinary tract surgeries. <i>World Journal of Urology</i> , 2021 , 39, 201-208	4	5
84	Medical application of magnesium and its alloys as degradable biomaterials 2010, 318-320		4
83	Low Temperature Superplastic Behavior in ZK60 Magnesium Alloy. <i>Materials Science Forum</i> , 1999 , 304-306, 303-308	0.4	4
82	Mechanical properties of hydroxyapatite-dispersed magnesium composites. <i>Keikinzoku/Journal of Japan Institute of Light Metals</i> , 2016 , 66, 318-323	0.3	4
81	Novel biodegradable magnesium alloy clips compared with titanium clips for hepatectomy in a rat model. <i>BMC Surgery</i> , 2019 , 19, 130	2.3	3

80	Deformation Mechanism in the Crack-Tip Region of Fine-Grained Magnesium Alloy. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2011 , 42, 2475-2480	2.3	3
79	Superplasticity in Very Fine Grained Al-Based Alloys Produced by Mechanical Alloying. <i>Materials Transactions, JIM</i> , 1995 , 36, 317-322		3
78	Effects of the Grain Size on Friction and Wear Properties of ZK60 Magnesium Alloy Zairyo/Journal of the Society of Materials Science, Japan, 2002, 51, 1154-1159	0.1	3
77	Fabrication and mechanical properties of biodegradable magnesium stent. <i>Keikinzoku/Journal of Japan Institute of Light Metals</i> , 2016 , 66, 312-317	0.3	3
76	Effect of initial microstructure on grain refinement under hot compression in CrMnFeCoNi high-entropy alloy with Al addition. <i>Materialia</i> , 2021 , 18, 101172	3.2	3
75	Processing and Mechanical Properties of a Tricalcium Phosphate-Dispersed Magnesium-Based Composite. <i>Materials Transactions</i> , 2019 , 60, 105-110	1.3	2
74	Initial organ distribution and biological safety of Mg released from a Mg alloy implant. <i>Biomedical Materials (Bristol)</i> , 2018 , 13, 035006	3.5	2
73	Effect of Solidification Cooling Rate on Microstructure and Mechanical Properties of an Extruded Mg-Zn-Y Alloy. <i>Metals</i> , 2018 , 8, 337	2.3	2
72	Effect of Micro-Alloying Elements on Deformation Behavior in Mg-Y Binary Alloys. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 2015 , 79, 35-40	0.4	2
71	Grain Refinement and Superplasticity in Magnesium Alloys 2013 , 469-478		2
70	Strengthening Mg-Al-Zn Alloy by Repetitive Oblique Shear Strain 2011 , 211-214		2
69	Fracture Mechanism and Toughness in Fine- and Coarse-Grained Magnesium Alloys 2011 , 25-28		2
69 68	Fracture Mechanism and Toughness in Fine- and Coarse-Grained Magnesium Alloys 2011 , 25-28 Observation of High-Strain-Rate Superplasticity in ZK60 and SiCp/ZK60 Composite. <i>Materials Science Forum</i> , 1999 , 304-306, 297-302	0.4	2
	Observation of High-Strain-Rate Superplasticity in ZK60 and SiCp/ZK60 Composite. <i>Materials</i>	0.4	2 2
68	Observation of High-Strain-Rate Superplasticity in ZK60 and SiCp/ZK60 Composite. <i>Materials Science Forum</i> , 1999 , 304-306, 297-302 Superplastic Characteristics in a Doubly-Extruded ZK60/SiC/17p Magnesium-Based Composite.	0.4	
68	Observation of High-Strain-Rate Superplasticity in ZK60 and SiCp/ZK60 Composite. <i>Materials Science Forum</i> , 1999 , 304-306, 297-302 Superplastic Characteristics in a Doubly-Extruded ZK60/SiC/17p Magnesium-Based Composite. <i>Materials Science Forum</i> , 1996 , 243-245, 321-326 Influence of Microstructural Characteristics on the Dynamic Properties of Aluminum Alloys. Influence of Distribution of Second-Phase Particles in Aluminum Alloys <i>Nihon Kikai Gakkai</i>	0.4	2
68 67 66	Observation of High-Strain-Rate Superplasticity in ZK60 and SiCp/ZK60 Composite. <i>Materials Science Forum</i> , 1999 , 304-306, 297-302 Superplastic Characteristics in a Doubly-Extruded ZK60/SiC/17p Magnesium-Based Composite. <i>Materials Science Forum</i> , 1996 , 243-245, 321-326 Influence of Microstructural Characteristics on the Dynamic Properties of Aluminum Alloys. Influence of Distribution of Second-Phase Particles in Aluminum Alloys <i>Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1993, 59, 2350-2350.</i>	0.4	2

62	Degradation Behavior of Mg-Ca Nail After Penetration Into Artificial Bone 2015 , 399-402		1
61	Effect of Quasicrystal Phase Particle Dispersion on Mechanical Properties in Mg-Zn-Al Alloys. <i>Materials Transactions</i> , 2011 , 52, 1111-1115	1.3	1
60	Grain refinement of magnesium alloy sheets by ARB using high-speed rolling mill. <i>Journal of Physics: Conference Series</i> , 2009 , 165, 012011	0.3	1
59	Casting Surface of AZ91 Alloy and Its Reaction with Sand Mold. <i>Materials Transactions</i> , 2008 , 49, 1089-	10 <u>9</u> 3	1
58	Dynamic Deformation of Regularly Cell-Structured Materials. <i>Materials Science Forum</i> , 2004 , 465-466, 13-20	0.4	1
57	Computational Study of Compressive Mechanical Response in Two-dimensional Cellular Solids under Microstructural Control. <i>Materials Transactions</i> , 2005 , 46, 1221-1229	1.3	1
56	Grain Refinement of a Commercial Magnesium Alloy for Superplastic Forming. <i>Materials Science Forum</i> , 2001 , 357-359, 459-464	0.4	1
55	Ductility Enhancement at Elevated Temperatures in a ZK60-Based Composite. <i>Materials Science Forum</i> , 1996 , 233-234, 261-270	0.4	1
54	Microstructural evolution in magnesium after hyper-velocity impact of alumina projectile. <i>Keikinzoku/Journal of Japan Institute of Light Metals</i> , 2019 , 69, 287-292	0.3	1
53	Increasing volume fraction of precipitates and strength of a Mg-Zn-Y alloy by pre-ageing deformation 2013 , 323-328		1
52	Development of High Strength and Toughness Magnesium Alloy by Grain Boundary Control 2012 , 345-	347	1
51	Evaluation of In Vitro Fatigue Properties of Biodegradable MgD.3at.%Ca Alloy. <i>Minerals, Metals and Materials Series</i> , 2017 , 533-535	0.3	1
50	Lattice Ordering and Microstructure of Ultra-high trength Mg-Ca-Zn lloys 2016 , 83-88		1
49	Development of small-scale impact three-point bending test apparatus and evaluation of impact fracture properties of MgB%AlI%ZnI2%Ca alloy. <i>Keikinzoku/Journal of Japan Institute of Light Metals</i> , 2016 , 66, 258-265	0.3	1
48	Hydroxyapatite Dispersed Magnesium-Based Composite Produced from Pulverized Magnesium Alloy Powder and Its Mechanical Properties. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 2018 , 82, 18-24	0.4	1
47	Formation of Nano-Scale Twins and Low Angle Grain Boundaries during Fracture of Fine Grained Magnesium Alloys93-97		1
46	Superplastic Deformation Behavior in Dual-Phase Mg-Ca Alloy. <i>Materials Science Forum</i> , 2016 , 838-839, 256-260	0.4	0
45	Effect of Grain Refinement on Fatigue Properties of Mg ū .3 at%Ca Alloy in Air and Simulated Body Fluid. <i>Materials Transactions</i> , 2022 , 63, 69-72	1.3	О

(2007-2021)

44	Phase transformation and morphological features in a cold-worked CrMnFeCoNi high entropy alloy with Al addition. <i>Materials Characterization</i> , 2021 , 182, 111556	3.9	O
43	Osteogenic response under the periosteum by magnesium implantation in rat tibia. <i>Dental Materials Journal</i> , 2021 , 40, 498-507	2.5	O
42	Material Design for Enhancing Toughness of Mg Alloy and Application for Biodegradable Devices. <i>Minerals, Metals and Materials Series</i> , 2018 , 87-89	0.3	
41	Impact Energy Absorption Capability of Magnesium Alloy Pipe. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 2014 , 78, 142-148	0.4	
40	Directionally Controlled Precipitation on Twin-Boundaries in Mg-Zn-Y Alloys 2014 , 319-324		
39	Effect of Solute Segregation on Fracture Behavior of Mg Alloy 2015 , 197-200		
38	Deformation Response of Mg-Y Alloys under Dynamic Loading 2015 , 189-189		
37	Effect of Alloy Composition on Microstructure and Strength of Fine Grained Extruded Mg-Zn-Y Alloys Containing Quasicrystal Phase 2015 , 215-220		
36	Evaluating the Effect of Pre-Ageing Deformation on © Precipitate Size and Distribution in Mg-Zn(-Y) Alloys 2012 , 191-196		
35	Increasing Volume Fraction of Precipitates and Strength of a Mg-Zn-Y Alloy by Pre-Aging Deformation 2013 , 323-328		
34	Superplastic Behavior in Magnesium Alloy with Dispersion of Quasicrystal Phase Particle. <i>Key Engineering Materials</i> , 2010 , 433, 291-295	0.4	
33	Mechanical properties at elevated temperatures in superplastically-deformed, nanodispersion strengthened aluminum. <i>Scripta Materialia</i> , 1997 , 8, 1067-1075		
32	Diffusion Bonding on Superplastic-Aluminium and -Magnesium Alloys. <i>Materials Science Forum</i> , 2004 , 447-448, 527-532	0.4	
31	Constitutive Equation for Superplastic Flow in Light Metallic Materials. <i>Materials Science Forum</i> , 2004 , 447-448, 91-96	0.4	
30	Superplasticity at Low Temperatures in a ZK61 Magnesium Alloy Produced by Powder Metallurgy. <i>Key Engineering Materials</i> , 1999 , 171-174, 363-368	0.4	
29	Grain Size Dependence on the Dynamic Characteristics in a Mechanically Alloyed IN905XL Alloy. <i>Materials Science Forum</i> , 1996 , 204-206, 479-484	0.4	
28	Impact energy absorption of metal foam with the controlled microstructure under dynamic loading 2001 , 361-365		
27	2304 Crack propagation and fracture toughness of Magnesium alloys. <i>The Proceedings of the JSME Annual Meeting</i> , 2007 , 2007.1, 325-326		

26	Influence of Manganese on Deformation Behavior of Magnesium Under Dynamic Loading. <i>Minerals, Metals and Materials Series</i> , 2020 , 381-385	0.3
25	Mechanical Properties at High Strain Rates and Microstructures of Materials Zairyo/Journal of the Society of Materials Science, Japan, 1993, 42, 1414-1419	0.1
24	Effect of Alloy Composition on Microstructure and Strength of Fine Grained Extruded Mg-Zn-Y Alloys Containing Quasicrystal Phase 2015 , 215-220	
23	Deformation Response of Mg-Y Alloys under Dynamic Loading 2015 , 189-189	
22	Effect of Solute Segregation on Fracture Behavior of Mg Alloy 2015 , 197-200	
21	Lattice Ordering and Microstructure of Ultra-high Strength Mg-Ca-Zn Alloys 2016 , 83-88	
20	Development of High Performance Magnesium Alloys to Structural Parts. <i>Journal of the Japan Society for Technology of Plasticity</i> , 2009 , 50, 291-295	0.3
19	323 Influence of Morphology of Dispersed Quasi-crystalline Phase in Mg-Zn-Y Alloys on Their Wear Property. <i>The Proceedings of Conference of Kansai Branch</i> , 2009 , 2009.84, _3-23_	O
18	Deformation Behavior of Bulk Metallic Glasses at High Strain Rates. Zairyo/Journal of the Society of Materials Science, Japan, 2010, 59, 98-103	0.1
17	Strengthening Mg-Al-Zn Alloy by Repetitive Oblique Shear Strain 2011 , 211-214	
17 16	Strengthening Mg-Al-Zn Alloy by Repetitive Oblique Shear Strain 2011 , 211-214 Fracture Mechanism and Toughness in Fine- and Coarse-Grained Magnesium Alloys 2011 , 25-28	
16	Fracture Mechanism and Toughness in Fine- and Coarse-Grained Magnesium Alloys 2011 , 25-28 Improved Processing of Mg-Zn-Y Alloys Containing Quasicrystal Phase for Isotropic High Strength and Ductility 2011 , 239-244 OS19-3-2 Production of ultra fine grain size by direct extrusion of a chill cast Mg-Zn-Y alloy containing quasicrystal phase with a very high isotropic strength. <i>The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics Asian Conference on</i>	0
16	Fracture Mechanism and Toughness in Fine- and Coarse-Grained Magnesium Alloys 2011 , 25-28 Improved Processing of Mg-Zn-Y Alloys Containing Quasicrystal Phase for Isotropic High Strength and Ductility 2011 , 239-244 OS19-3-2 Production of ultra fine grain size by direct extrusion of a chill cast Mg-Zn-Y alloy containing quasicrystal phase with a very high isotropic strength. <i>The Abstracts of ATEM</i>	0
16 15 14	Fracture Mechanism and Toughness in Fine- and Coarse-Grained Magnesium Alloys 2011 , 25-28 Improved Processing of Mg-Zn-Y Alloys Containing Quasicrystal Phase for Isotropic High Strength and Ductility 2011 , 239-244 OS19-3-2 Production of ultra fine grain size by direct extrusion of a chill cast Mg-Zn-Y alloy containing quasicrystal phase with a very high isotropic strength. <i>The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics Asian Conference on</i> OS19-3-4 Strengthening Mg-Al-Zn Alloys by Severe Plastic Rolling. <i>The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics Asian Conference on</i>	
16 15 14	Fracture Mechanism and Toughness in Fine- and Coarse-Grained Magnesium Alloys 2011 , 25-28 Improved Processing of Mg-Zn-Y Alloys Containing Quasicrystal Phase for Isotropic High Strength and Ductility 2011 , 239-244 OS19-3-2 Production of ultra fine grain size by direct extrusion of a chill cast Mg-Zn-Y alloy containing quasicrystal phase with a very high isotropic strength. <i>The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics Asian Conference on OS19-3-4 Strengthening Mg-Al-Zn Alloys by Severe Plastic Rolling. The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics Asian Conference on Experimental Mechanics</i> , 2011 , 2011.10, _OS19-3-4- Evaluating the effect of pre-ageing deformation on Imprecipitate size and distribution in Mg-Zn(-Y)	
16 15 14 13	Fracture Mechanism and Toughness in Fine- and Coarse-Grained Magnesium Alloys 2011 , 25-28 Improved Processing of Mg-Zn-Y Alloys Containing Quasicrystal Phase for Isotropic High Strength and Ductility 2011 , 239-244 OS19-3-2 Production of ultra fine grain size by direct extrusion of a chill cast Mg-Zn-Y alloy containing quasicrystal phase with a very high isotropic strength. <i>The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics Asian Conference on OS19-3-4 Strengthening Mg-Al-Zn Alloys by Severe Plastic Rolling. The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics Asian Conference on Experimental Mechanics</i> , 2011 , 2011.10, _OS19-3-4- Evaluating the effect of pre-ageing deformation on Precipitate size and distribution in Mg-Zn(-Y) Alloys 2012 , 191-196	

8 Evolution of Microstructure during Caliber Rolling of AZ31 Alloy317-322

7	1C42 Fabrication of biodegradable Mg-0.3at.%Ca alloy with high strength. <i>The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME</i> , 2014 , 2014.26, 99-100	o
6	Novel artifact-robust and highly visible zinc solid fiducial marker for kilovoltage x-ray image-guided radiation therapy. <i>Medical Physics</i> , 2020 , 47, 4703-4710	4.4
5	Development of Small-Scale Impact Three-Point Bending Test Apparatus and Evaluation of Impact Fracture Properties of Mg-6%Al-1%Zn-2%Ca Alloy. <i>Materials Transactions</i> , 2016 , 57, 1872-1879	1.3
4	Control of Microstructure in Ti-6Al-4V Porous Structure Fabricated by Electron Beam Powder Bed Fusion. <i>Journal of Smart Processing</i> , 2021 , 10, 246-250	0.2
3	Effect of Adding Third Element on Deformability of MgAl Alloy. <i>Minerals, Metals and Materials Series</i> , 2021 , 37-44	0.3
2	Microstructural Evolution in Magnesium after Hyper-Velocity Impact of Alumina Projectile. <i>Materials Transactions</i> , 2021 , 62, 1401-1406	1.3
1	Biodegradation behaviors of magnesium(Mg)-based alloy nails in autologous bone grafts: In vivo study in rabbit skulls. <i>Journal of Applied Biomaterials and Functional Materials</i> , 2022 , 20, 22808000221	09 ⁵²