
Toshiji Mukai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7002691/publications.pdf Version: 2024-02-01

Τοςημι Μικλι

#	Article	IF	CITATIONS
1	The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys. Acta Materialia, 2003, 51, 2055-2065.	7.9	1,220
2	Ductility enhancement in AZ31 magnesium alloy by controlling its grain structure. Scripta Materialia, 2001, 45, 89-94.	5.2	756
3	Experimental study of energy absorption in a close-celled aluminum foam under dynamic loading. Scripta Materialia, 1999, 40, 921-927.	5.2	284
4	Effect of strain rate on compressive behavior of a Pd40Ni40P20 bulk metallic glass. Intermetallics, 2002, 10, 1071-1077.	3.9	283
5	Deformation mechanism in a coarse-grained Mg–Al–Zn alloy at elevated temperatures. International Journal of Plasticity, 2001, 17, 387-397.	8.8	230
6	Dynamic response of a Pd40Ni40P20 bulk metallic glass in tension. Scripta Materialia, 2002, 46, 43-47.	5.2	189
7	Effect of temperature and grain size on the dominant diffusion process for superplastic flow in an AZ61 magnesium alloy. Acta Materialia, 1999, 47, 3753-3758.	7.9	186
8	Effect of grain refinement on fracture toughness in extruded pure magnesium. Scripta Materialia, 2005, 53, 1059-1064.	5.2	173
9	Low temperature superplasticity of a fine-grained ZK60 magnesium alloy processed by equal-channel-angular extrusion. Scripta Materialia, 2002, 46, 851-856.	5.2	168
10	TEM and 3DAP characterization of an age-hardened Mg–Ca–Zn alloy. Scripta Materialia, 2005, 53, 675-679.	5.2	162
11	Grain Size Control of Commercial Wrought Mg-Al-Zn Alloys Utilizing Dynamic Recrystallization. Materials Transactions, 2001, 42, 1200-1205.	1.2	159
12	Compressive response of a closed-cell aluminum foam at high strain rate. Scripta Materialia, 2006, 54, 533-537.	5.2	158
13	High strain rate deformation behavior of an AZ91 magnesium alloy at elevated temperatures. Materials Letters, 2005, 59, 1511-1515.	2.6	153
14	Differential speed rolling of an AZ31 magnesium alloy and the resulting mechanical properties. Journal of Materials Science, 2004, 39, 1477-1480.	3.7	148
15	Effect of texture on fracture toughness in extruded AZ31 magnesium alloy. Scripta Materialia, 2005, 53, 541-545.	5.2	138
16	Plasticity and microstructure of Zr–Cu–Al bulk metallic glasses. Scripta Materialia, 2007, 57, 173-176.	5.2	130
17	Effect of temperature of differential speed rolling on room temperature mechanical properties and texture in an AZ31 magnesium alloy. Journal of Materials Processing Technology, 2007, 182, 644-647.	6.3	128
18	Fracture mechanism of a coarse-grained magnesium alloy during fracture toughness testing. Philosophical Magazine Letters, 2009, 89, 2-10.	1.2	128

#	Article	IF	CITATIONS
19	Effect of Grain Refinement on Tensile Ductility in ZK60 Magnesium Alloy under Dynamic Loading. Materials Transactions, 2001, 42, 1177-1181.	1.2	114
20	Realization of high-strain-rate superplasticity at low temperatures in a Mg–Zn–Zr alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 307, 119-128.	5.6	113
21	High strength and fracture toughness balance on the extruded Mg–Ca–Zn alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 459, 366-370.	5.6	113
22	Grain refinement of AZ91 alloy by introducing ultrasonic vibration during solidification. Materials Letters, 2008, 62, 2872-2875.	2.6	108
23	Superplastic deformation mechanism in powder metallurgy magnesium alloys and composites. Acta Materialia, 2001, 49, 2027-2037.	7.9	107
24	Compressive strength and yield asymmetry in extruded Mg–Zn–Ho alloys containing quasicrystal phase. Scripta Materialia, 2007, 56, 935-938.	5.2	106
25	High fracture toughness of extruded Mg–Zn–Y alloy by the synergistic effect of grain refinement and dispersion of quasicrystalline phase. Scripta Materialia, 2007, 56, 1091-1094.	5.2	105
26	Superplasticity in a ZK60 magnesium alloy at low temperatures. Scripta Materialia, 1999, 40, 477-484.	5.2	103
27	Low temperature diffusion bonding in a superplastic AZ31 magnesium alloy. Scripta Materialia, 2003, 48, 1249-1254.	5.2	103
28	Ultra-fine grain size and isotropic very high strength by direct extrusion of chill-cast Mg–Zn–Y alloys containing quasicrystal phase. Scripta Materialia, 2011, 64, 661-664.	5.2	102
29	Elastic and damping properties from room temperature to 673 K in an AZ31 magnesium alloy. Scripta Materialia, 2004, 51, 291-295.	5.2	101
30	A high-strength bulk nanocrystalline Al–Fe alloy processed by mechanical alloying and spark plasma sintering. Scripta Materialia, 2007, 57, 189-192.	5.2	100
31	Effect of texture on tensile properties at elevated temperatures in an AZ31 magnesium alloy. Scripta Materialia, 2005, 52, 449-454.	5.2	98
32	Fabrication of bulk nanocrystalline Fe–C alloy by spark plasma sintering of mechanically milled powder. Scripta Materialia, 2005, 53, 863-868.	5.2	97
33	Hall–Petch relation for deformation twinning in solid solution magnesium alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 561, 378-385.	5.6	97
34	Precipitation control of calcium phosphate on pure magnesium by anodization. Corrosion Science, 2008, 50, 2906-2913.	6.6	95
35	High temperature compressive properties over a wide range of strain rates in an AZ31 magnesium alloy. Journal of Materials Science, 2005, 40, 1577-1582.	3.7	94
36	Hall–Petch Breakdown in Fine-Grained Pure Magnesium at Low Strain Rates. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 894-902.	2.2	92

#	Article	IF	CITATIONS
37	Application of superplasticity in commercial magnesium alloy for fabrication of structural components. Materials Science and Technology, 2000, 16, 1314-1319.	1.6	90
38	Compressive properties of a closed-cell aluminum foam as a function of strain rate and temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 525, 1-6.	5.6	89
39	Superplastic behavior of a Zr–10Al–5Ti-–17.9Cu–14.6Ni metallic glass in the supercooled liquid region. Scripta Materialia, 1999, 40, 1021-1027.	5.2	87
40	Dynamic deformation behavior of a face-centered cubic FeCoNiCrMn high-entropy alloy. Science Bulletin, 2018, 63, 362-368.	9.0	86
41	Microstructure and mechanical properties of AZ91 alloy produced with ultrasonic vibration. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 487, 120-123.	5.6	85
42	Fracture toughness in Mg–Al–Zn alloy processed by equal-channel-angular extrusion. Scripta Materialia, 2006, 54, 633-638.	5.2	83
43	Enhancement of energy absorption in a closed-cell aluminum by the modification of cellular structures. Scripta Materialia, 1999, 41, 1055-1060.	5.2	82
44	Effect of solid-solution strengthening on fracture toughness in extruded Mg–Zn alloys. Scripta Materialia, 2006, 55, 593-596.	5.2	81
45	High-strain-rate superplasticity at low temperature in a ZK61 magnesium alloy produced by powder metallurgy. Scripta Materialia, 1999, 41, 209-213.	5.2	78
46	Processing of an open-cellular AZ91 magnesium alloy with a low density of 0.05 g/cm3. Journal of Materials Science Letters, 1999, 18, 1477-1480.	0.5	77
47	Nanostructured Al–Fe alloys produced by e-beam deposition: static and dynamic tensile properties. Acta Materialia, 2003, 51, 4197-4208.	7.9	76
48	Rate-dependent hardening due to twinning in an ultrafine-grained magnesium alloy. Acta Materialia, 2012, 60, 1818-1826.	7.9	74
49	Effect of precipitation on strength and ductility in a Mg–Zn–Y alloy. Journal of Alloys and Compounds, 2013, 550, 114-123.	5.5	72
50	Superplastic behavior in a mechanically alloyed aluminum composite reinforced with SiC particulates. Scripta Metallurgica Et Materialia, 1992, 26, 185-190.	1.0	71
51	Dynamic mechanical properties of a near-nano aluminum alloy processed by equal-channel-angular-extrusion. Scripta Materialia, 1998, 10, 755-765.	0.5	71
52	Processing of Cellular Magnesium Materials. Advanced Engineering Materials, 2000, 2, 184-187.	3.5	71
53	Experimental study of a structural magnesium alloy with high absorption energy under dynamic loading. Scripta Materialia, 1998, 39, 1249-1253.	5.2	70
54	Influence of pH and flow on the polarisation behaviour of pure magnesium in borate buffer solutions. Corrosion Science, 2008, 50, 3561-3568.	6.6	69

#	Article	IF	CITATIONS
55	Positive exponent strain-rate superplasticity in mechanically alloyed aluminum IN9021. Scripta Metallurgica Et Materialia, 1991, 25, 2053-2057.	1.0	67
56	Influence of the magnesium concentration on the relationship between fracture mechanism and strain rate in high purity Alî—,Mg alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1994, 176, 181-189.	5.6	67
57	Synthesis of high-strength bimodally grained iron by mechanical alloying and spark plasma sintering. Scripta Materialia, 2008, 58, 759-762.	5.2	67
58	Effect of precipitate shapes on fracture toughness in extruded Mg–Zn–Zr magnesium alloys. Journal of Materials Research, 2007, 22, 965-973.	2.6	63
59	Dynamic compressive behavior of an ultra-lightweight magnesium foam. Scripta Materialia, 1999, 41, 365-371.	5.2	61
60	The effect of size and distribution of rod-shaped precipitates on the strength and ductility of a Mg–Zn alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 539, 230-237.	5.6	58
61	Effect of alloying elements on room temperature tensile ductility in magnesium alloys. Philosophical Magazine, 2016, 96, 2671-2685.	1.6	58
62	Effects of heat treatment on compressive properties of AZ91 Mg and SG91A Al foams with open-cell structure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 280, 225-228.	5.6	56
63	Elevated temperature mechanical properties of A 5056 Al-Mg alloy processed by equal-channel-angular-extrusion. Scripta Materialia, 1997, 36, 699-705.	5.2	55
64	Effect of aluminum or zinc solute addition on enhancing impact fracture toughness in Mg–Ca alloys. Acta Materialia, 2016, 104, 283-294.	7.9	55
65	Fracture toughness in a rolled AZ31 magnesium alloy. Journal of Alloys and Compounds, 2006, 417, 209-213.	5.5	54
66	Microstructure evolution of Mg–Zn binary alloy during a direct extrusion process. Scripta Materialia, 2009, 60, 411-414.	5.2	54
67	Nanoindentation creep behavior of grain boundary in pure magnesium. Philosophical Magazine Letters, 2010, 90, 883-890.	1.2	54
68	Structure of shear bands in Pd ₄₀ Ni ₄₀ P ₂₀ bulk metallic glass. Journal of Materials Research, 2009, 24, 1-9.	2.6	53
69	Consolidation of machined magnesium alloy chips by hot extrusion utilizing superplastic flow. Journal of Materials Science, 2001, 36, 5007-5011.	3.7	52
70	Strengthening Mg–Al–Zn alloy by repetitive oblique shear strain with caliber roll. Scripta Materialia, 2010, 62, 113-116.	5.2	52
71	Influence of strain rate on the mechanical properties in fine-grained aluminum alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1995, 204, 12-18.	5.6	51
72	High temperature processing of Mg–Zn–Y alloys containing quasicrystal phase for high strength. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 6647-6651.	5.6	50

#	Article	IF	CITATIONS
73	Experimental study for the improvement of crashworthiness in AZ91 magnesium foam controlling its microstructure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 308, 283-287.	5.6	49
74	Ductile fracture mechanism in fine-grained magnesium alloy. Philosophical Magazine Letters, 2010, 90, 831-839.	1.2	49
75	Effect of deformation twins on damping capacity in extruded pure magnesium. Journal of Alloys and Compounds, 2015, 626, 60-64.	5.5	47
76	In-situ neutron diffraction of a quasicrystal-containing Mg alloy interpreted using a new polycrystal plasticity model of hardening due to {10.2} tensile twinning. International Journal of Plasticity, 2018, 100, 34-51.	8.8	47
77	Materials Processing for Structural Stability in a ZK60 Magnesium Alloy. Materials Transactions, 2003, 44, 775-781.	1.2	46
78	Superplasticity of a Particle-Strengthened WE43 Magnesium Alloy. Materials Transactions, 2001, 42, 157-162.	1.2	45
79	High-Strain-Rate Superplasticity in an AZ91 Magnesium Alloy Processed by Ingot Metallurgy Route. Materials Transactions, 2002, 43, 78-80.	1.2	45
80	High strain rate superplasticity in an Alî—Ņi-misch metal alloy produced from its amorphous powders. Scripta Metallurgica Et Materialia, 1992, 26, 191-196.	1.0	44
81	Effect of microstructure on strength and ductility of high strength quasicrystal phase dispersed Mg–Zn–Y alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 611, 242-251.	5.6	44
82	Fabrication of biodegradable materials with high strength by grain refinement of Mg–0.3â€ ⁻ at.% Ca alloys. Materials Letters, 2018, 223, 65-68.	2.6	44
83	Low temperature superplasticity in a magnesium-based composite. Scripta Materialia, 2000, 42, 249-255.	5.2	43
84	Structural relationships among MgZn ₂ and Mg ₄ Zn ₇ phases and transition structures in Mg-Zn-Y alloys. Philosophical Magazine, 2010, 90, 3355-3374.	1.6	42
85	Effect of grain boundary structures on grain boundary sliding in magnesium. Materials Letters, 2012, 76, 32-35.	2.6	42
86	Effect of solute atoms on grain boundary sliding in magnesium alloys. Philosophical Magazine, 2014, 94, 1345-1360.	1.6	42
87	Superplastic characteristics in an extruded AZ31 magnesium alloy Keikinzoku/Journal of Japan Institute of Light Metals, 1999, 49, 401-404.	0.4	41
88	Room temperature creep of fine-grained pure Mg: A direct comparison between nanoindentation and uniaxial tension. Journal of Materials Research, 2009, 24, 1615-1618.	2.6	41
89	Deformation structure after fracture-toughness test of Mg–Al–Zn alloys processed by equal-channel-angular extrusion. Philosophical Magazine Letters, 2006, 86, 195-204.	1.2	40
90	Compressive properties of open-cellular SG91A Al and AZ91 Mg. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 272, 455-458.	5.6	39

#	Article	IF	CITATIONS
91	Fabrication of a magnesium alloy with excellent ductility for biodegradable clips. Acta Biomaterialia, 2016, 29, 468-476.	8.3	36
92	Fracture Toughness in an Extruded ZK60 Magnesium Alloy. Materials Transactions, 2006, 47, 995-998.	1.2	35
93	High Strength and Fracture Toughness Balances in Extruded Mg-Zn-RE Alloys by Dispersion of Quasicrystalline Phase Particles. Materials Transactions, 2008, 49, 1947-1952.	1.2	34
94	Rare-earth free wrought-processed magnesium alloy with dispersion of quasicrystal phase. Scripta Materialia, 2009, 61, 705-708.	5.2	34
95	Microstructural evolution during dry wear test in magnesium and Mg–Y alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 561, 371-377.	5.6	34
96	Effect of Micro-Alloying Elements on Deformation Behavior in Mg–Y Binary Alloys. Materials Transactions, 2014, 55, 182-187.	1.2	34
97	Characterization of Nanocrystal Dispersed Cu ₆₀ Zr ₃₀ Ti ₁₀ Metallic Glass. Materials Transactions, 2005, 46, 1264-1270.	1.2	33
98	Compressive deformation behavior of Al2O3 foam. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 277, 213-217.	5.6	32
99	Grain Refinement of Commercial Magnesium Alloys for High-Strain-Rate-Superplastic Forming. Materials Science Forum, 2000, 350-351, 159-170.	0.3	32
100	Stress–strain behaviors of Ti-based bulk metallic glass and their nanostructures. Journal of Materials Research, 2007, 22, 1406-1413.	2.6	32
101	Fracture toughness in direct extruded Mg–Al–Zn alloys. Journal of Materials Research, 2007, 22, 2598-2607.	2.6	32
102	Hardness Variation and Strain Distribution in Magnesium Alloy AZ31 Processed by Multiâ€pass Caliber Rolling. Advanced Engineering Materials, 2009, 11, 654-658.	3.5	32
103	Superplasticity in doubly extruded magnesium composite ZK60/SiC/17p. Materials Science and Technology, 1998, 14, 32-35.	1.6	31
104	Superplastic Behavior in Commercial Wrought Magnesium Alloys. Materials Science Forum, 2000, 350-351, 171-176.	0.3	31
105	Effect of Cell Size on the Dynamic Compressive Properties of Open-Celled Aluminum Foams. Materials Transactions, 2002, 43, 2548-2553.	1.2	31
106	Mechanical Properties of Mg-Y-Zn Alloy Processed by Equal-Channel-Angular Extrusion. Materials Transactions, 2003, 44, 463-467.	1.2	31
107	Secondary Processing of AZ31 Magnesium Alloy Concomitant with Grain Growth or Dynamic Recrystallization. Materials Transactions, 2004, 45, 2377-2382.	1.2	31
108	Superplastic behavior at high strain rates of a mechanically alloyed Alî—,Mgî—,Li alloy. Scripta Metallurgica Et Materialia, 1992, 26, 761-766.	1.0	30

#	Article	IF	CITATIONS
109	Deformation Mechanism of Fine-Grained Superplasticity in Metallic Materials Expected from the Phenomenological Constitutive Equation. Materials Transactions, 2004, 45, 2497-2502.	1.2	30
110	Strain-rate dependence of mechanical properties in AA5056 Al–Mg alloy processed by equal-channel-angular-extrusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1998, 247, 270-274.	5.6	29
111	Development of a Closed Cell Aluminum Alloy Foam with Enhancement of the Compressive Strength. Materials Transactions, 2001, 42, 2118-2123.	1.2	29
112	Material design for magnesium alloys with high deformability. Philosophical Magazine, 2015, 95, 869-885.	1.6	29
113	Ductility enhancement of ultra fine-grained aluminum under dynamic loading. Scripta Materialia, 2001, 44, 1493-1496.	5.2	28
114	Synergetic Effect of Grain Refinement and Spherical Shaped Precipitate Dispersions in Fracture Toughness of a Mg-Zn-Zr Alloy. Materials Transactions, 2007, 48, 1422-1426.	1.2	28
115	Microyielding and damping capacity in magnesium. Scripta Materialia, 2014, 87, 1-4.	5.2	28
116	Processing of Ductile Magnesium Alloy under Dynamic Tensile Loading. Materials Transactions, 2001, 42, 2652-2654.	1.2	27
117	Effect of precipitate volume fraction on fracture toughness of extruded Mg–Zn alloys. Journal of Materials Research, 2008, 23, 1128-1135.	2.6	27
118	The Processing and Properties of Superplastic Magnesium Alloys and Their Composites. Materia Japan, 2000, 39, 347-354.	0.1	26
119	Glass Forming Ability and Mechanical Properties of Quinary Zr-Based Bulk Metallic Glasses. Materials Transactions, 2007, 48, 1322-1326.	1.2	26
120	<i>In vivo</i> corrosion behaviour of magnesium alloy in association with surrounding tissue response in rats. Biomedical Materials (Bristol), 2016, 11, 025001.	3.3	26
121	Low Temperature Superplasticity in a ZK60 Magnesium Alloy. Materials Transactions, JIM, 1999, 40, 809-814.	0.9	25
122	Deformation mechanism near crack-tip by finite element analysis and microstructure observation in magnesium alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 1761-1768.	5.6	25
123	Orientation relationships between icosahedral clusters in hexagonal MgZn2 and monoclinic Mg4Zn7 phases in Mg-Zn(-Y) alloys. Philosophical Magazine, 2011, 91, 2634-2644.	1.6	25
124	Influence of Temperature and Grain Size on Threshold Stress for Superplastic Flow in a Fine-Grained Magnesium Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2008, 39, 2351-2362.	2.2	24
125	Very high strain rate superplasticity in a mechanically alloyed IN9052 aluminum alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1992, 159, L1-L4.	5.6	23
126	High-strain-rate superplastic behavior in a super-rapidly-solidified Al-Si system alloy. Scripta Materialia, 1997, 37, 673-678.	5.2	23

#	Article	IF	CITATIONS
127	āfžā,°āfē,∙ā,¦āf超塑性ā®ç"ç©¶. Keikinzoku/Journal of Japan Institute of Light Metals, 2001, 51, 503-508.	0.4	23
128	Guide for Enhancement of Room Temperature Ductility in Mg Alloys at High Strain Rates. Materials Science Forum, 2003, 419-422, 171-176.	0.3	23
129	Large apparent compressive strain of metallic glasses. Philosophical Magazine Letters, 2007, 87, 625-635.	1.2	23
130	Texture and mechanical properties of superplastically deformed magnesium alloy rod. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 6350-6358.	5.6	23
131	Development of a new biodegradable operative clip made of a magnesium alloy: Evaluation of its safety and tolerability for canine cholecystectomy. Surgery, 2017, 161, 1553-1560.	1.9	23
132	The structure of precipitates in Mg–Zn–Y alloys. Philosophical Magazine Letters, 2010, 90, 641-651.	1.2	22
133	Polarization Behavior of Pure Magnesium under a Controlled Flow in a NaCl Solution. Materials Transactions, 2008, 49, 1456-1461.	1.2	21
134	Fatigue Behaviors and Microstructures in an Extruded Mg-Al-Zn Alloy. Materials Transactions, 2008, 49, 681-684.	1.2	21
135	Superplastic Behavior in MgZnY Alloy with Dispersed Quasicrystal Phase Particles. Advanced Engineering Materials, 2009, 11, 782-787.	3.5	21
136	Dislocation structures in a near-isotropic Mg-Y extruded alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 698, 238-248.	5.6	21
137	Mechanisms of High Strain-Rate Superplasticity of Al-14 mass%Ni-14 mass%Mm (Misch Metal) Alloy Produced from Amorphous Powder. Materials Transactions, JIM, 1995, 36, 1467-1475.	0.9	20
138	New Forming Process of Three-Dimensionally Shaped Magnesium Parts Utilizing High-Strain-Rate Superplasticity. Materials Transactions, 2004, 45, 2531-2536.	1.2	20
139	Symmetric and asymmetric deformation transition in the regularly cell-structured materials. Part I: experimental study. International Journal of Solids and Structures, 2005, 42, 2199-2210.	2.7	20
140	Effect of dominant diffusion process on cavitation behavior in superplastic Mg–Al–Zn alloy. Scripta Materialia, 2007, 57, 1008-1011.	5.2	20
141	Energy Absorption in Closed-Cell Al-Zn-Mg-Ca-Ti Foam. Materials Transactions, 2002, 43, 1778-1781.	1.2	19
142	Fracture Toughness in Ultra Fine-Grained Magnesium Alloy. Materials Science Forum, 2006, 503-504, 155-160.	0.3	19
143	Development of Fine-Grained Structure Caused by Friction Stir Welding Process of a ZK60A Magnesium Alloy. Materials Transactions, 2009, 50, 610-617.	1.2	19
144	Enhancing Fracture Toughness of Magnesium Alloy by Formation of Lowâ€Angle Grain Boundary Structure. Advanced Engineering Materials, 2010, 12, 837-842.	3.5	19

#	Article	IF	CITATIONS
145	Damping properties in Mg–Zn–Y alloy with dispersion of quasicrystal phase particle. Materials Letters, 2011, 65, 3251-3253.	2.6	19
146	Molecular dynamics simulation of grain boundary plasticity in magnesium and solid-solution magnesium alloys. Computational Materials Science, 2013, 77, 424-429.	3.0	19
147	Ductility Enhancement in Magnesium Alloys under Dynamic Loading. Materials Science Forum, 2000, 350-351, 97-104.	0.3	18
148	Development of Very High Strength and Ductile Dilute Magnesium Alloys by Dispersion of Quasicrystal Phase. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 3232-3240.	2.2	18
149	Domain structure and lattice effects in a severely plastically deformed CoCrFeMnNi high entropy alloy. Journal of Alloys and Compounds, 2020, 812, 152028.	5.5	18
150	High Strain Rate Deformation Behavior of Mg–Al–Zn Alloys at Elevated Temperatures. Key Engineering Materials, 2007, 340-341, 107-112.	0.4	17
151	Deformation Behavior of Binary Mg-Y Alloy Under Dynamic Compression Loading. Jom, 2014, 66, 305-311.	1.9	17
152	The role of dislocations in high-strain-rate superplasticity of an Al–Ni–misch metal alloy. Acta Materialia, 1998, 46, 4469-4478.	7.9	16
153	<i>In vitro</i> and <i>in vivo</i> analysis of the biodegradable behavior of a magnesium alloy for biomedical applications. Dental Materials Journal, 2019, 38, 11-21.	1.8	16
154	Pure-Shear Test for Investigation of Non-Basal Slip System Operation of Mg Alloy Single Crystal with and without Y. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2013, 77, 466-472.	0.4	16
155	Mechanical and damping properties of equal channel angular extrusion-processed Mg–Ca alloys. Materials Letters, 2017, 201, 144-147.	2.6	15
156	Deformation behavior of ultra-fine-grained Mg-0.3Âat% Al alloy in compression. Journal of Alloys and Compounds, 2017, 726, 651-657.	5.5	15
157	Effect of yttrium addition on the hot deformation behaviors and microstructure development of magnesium alloy. Journal of Alloys and Compounds, 2019, 786, 118-125.	5.5	15
158	Effect of cold-working on phase formation during heat treatment in CrMnFeCoNi system high-entropy alloys with Al addition. Journal of Alloys and Compounds, 2021, 872, 159668.	5.5	15
159	Thermomechanical processing and superplastic behaviour in aluminium-based alloys produced from amorphous or nanocrystalline powders. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1994, 181-182, 1068-1071.	5.6	14
160	Improvement of Crashworthiness in Ultra Lightweight Metallic Foam by Heat-Treatment for Microstructural Modification of Base Material. Materials Transactions, 2001, 42, 2087-2092.	1.2	14
161	Title is missing!. Journal of Materials Science, 2003, 38, 3925-3932.	3.7	14
162	Effect of Ultrasonic Vibration Pretreatment on Microstructural Evolution and Mechanical Properties of Extruded AZ91 Alloy. Materials Transactions, 2008, 49, 972-975.	1.2	14

#	Article	IF	CITATIONS
163	Superplastic Deformation Behavior in Commercial Magnesium Alloy AZ61. Materials Transactions, JIM, 1999, 40, 931-934.	0.9	13
164	Formation of nano-twin domains by nucleation and multiplication of twins during fracture of a magnesium alloy. Philosophical Magazine, 2014, 94, 898-913.	1.6	13
165	Strength and ductility under dynamic loading in fine- grained IN905XL aluminum alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1995, 26, 2521.	2.2	11
166	Experimental Study of the Mechanical Properties at Elevated Temperatures in Commercial Mg-Al-Zn Alloys for Superplastic Forming. Key Engineering Materials, 2000, 171-174, 337-342.	0.4	11
167	The Effect of Temperature and Flow Stress for Climb-Controlled Dislocation Creep in Magnesium Alloy. Materials Science Forum, 2003, 426-432, 605-610.	0.3	11
168	Effects of grain size on deep drawability of AZ31 magnesium alloy sheets into square cup Keikinzoku/Journal of Japan Institute of Light Metals, 2003, 53, 50-54.	0.4	11
169	Influence of strain rate on tensile properties in some commercial aluminum alloys Keikinzoku/Journal of Japan Institute of Light Metals, 1993, 43, 252-257.	0.4	10
170	Effective Diffusivity for Superplastic Flow in Magnesium Alloys. Materials Science Forum, 2001, 357-359, 147-152.	0.3	9
171	Superplastic Behavior of an ECAE Processed ZK60 Magnesium Alloy. Materials Science Forum, 2003, 419-422, 557-564.	0.3	9
172	Texture and mechanical properties of a superplastically deformed Mg–Al–Zn alloy sheet. Scripta Materialia, 2009, 61, 883-886.	5.2	9
173	Micromechanisms of grain refinement during extrusion of Mg–0.3 at.% Al at low homologous temperature. Materials Characterization, 2014, 93, 102-109.	4.4	9
174	Routes to Develop Fine-Grained Magnesium Alloys and Composites for High-Strain Rate Superplasticity. Materials Research Society Symposia Proceedings, 1999, 601, 291.	0.1	8
175	Microstructural factors affecting superplastic properties in magnesium-based composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32, 923-929.	2.2	8
176	Symmetric and asymmetric deformation transition in the regularly cell-structured materials. Part II: Theoretical study. International Journal of Solids and Structures, 2005, 42, 2211-2224.	2.7	8
177	Very high strain rate superplasticity in aluminium-based alloys produced from amorphous powders. Journal of Alloys and Compounds, 1993, 193, 29-32.	5.5	7
178	Microstructural Dynamics during High-Strain-Rate Superplastic Flow in PM 7475 Alloy. Materials Science Forum, 1999, 304-306, 333-340.	0.3	7
179	Anomalous Activity of Nonbasal Dislocations in AZ31 Mg Alloys at Room Temperature. Materials Science Forum, 2003, 419-422, 231-236.	0.3	7
180	軼zé‡åŒ–ã®ã¥ã,ã®æœ–™æŠ€è;" ãfžã,°ãfã,∙ã,¦ãfå•́金ã®å•èf½æ€§. Materia Japan, 2004, 43, 810-814.	0.1	7

#	Article	IF	CITATIONS
181	Crystallographic relationship of orthorhombic φ-Al5Mg11Zn4 phase to icosahedral quasicrystalline phase. Journal of Alloys and Compounds, 2011, 509, 4676-4681.	5.5	7
182	Wear and Friction Properties of Mg–Zn–Y Alloy with Dispersion of Quasi-Crystalline Phase. Materials Transactions, 2014, 55, 216-219.	1.2	7
183	Friction and Wear Properties of Solution-Treated and Aging-Treated Mg-Al-Zn Alloys. Zairyo/Journal of the Society of Materials Science, Japan, 2003, 52, 702-708.	0.2	7
184	STRAIN RATE DEPENDENCE ON MECHANICAL PROPERTIES IN SOME COMMERCIAL ALUMINUM ALLOYS. European Physical Journal Special Topics, 1991, 01, C3-341-C3-346.	0.2	6
185	Microstructure and Superplastic Properties in an ECAE Al-4Mg-0.5Sc Alloy Processed at Elevated Temperatures. Materials Science Forum, 1999, 304-306, 109-114.	0.3	6
186	Effects of load direction on the mechanical properties of open-cellular epoxy with a cubic prism structure. Philosophical Magazine Letters, 2000, 80, 215-220.	1.2	6
187	Microstructure evolution of Mg–Al–Zn alloys during compression test at low strain and temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 527, 370-375.	5.6	6
188	Evaluation of Impact Fracture Toughness of AZ31 Magnesium Alloy. Applied Mechanics and Materials, 0, 566, 316-321.	0.2	6
189	Mechanical Behavior at Low Strains in Pure Magnesium and Mg-Ca Alloy. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2014, 78, 230-234.	0.4	6
190	Development of bioabsorbable zinc–magnesium alloy wire and validation of its application to urinary tract surgeries. World Journal of Urology, 2021, 39, 201-208.	2.2	6
191	Effect of initial microstructure on grain refinement under hot compression in CrMnFeCoNi high-entropy alloy with Al addition. Materialia, 2021, 18, 101172.	2.7	6
192	High strain-rate doformation characteristics in commercial aluminium alloys Zairyo/Journal of the Society of Materials Science, Japan, 1990, 39, 1619-1624.	0.2	6
193	Effect of Precipitate Morphology on Tribological Properties in AZ91 Alloy. Zairyo/Journal of the Society of Materials Science, Japan, 2005, 54, 90-96.	0.2	6
194	THE MICROSTRUCTURAL EVOLUTION DURING DEFORMATION UNDER SEVERAL STRAIN RATES IN A COMMERCIAL 5182 ALUMINIUM ALLOY. European Physical Journal Special Topics, 1991, 01, C3-347-C3-352.	0.2	5
195	Deformation characteristics of a superplastic aluminium alloy produced from amorphous powders. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1994, 181-182, 1064-1067.	5.6	5
196	Grain refinement of magnesium alloy sheets by ARB using high-speed rolling mill. Journal of Physics: Conference Series, 2009, 165, 012011.	0.4	5
197	Deformation Mechanism in the Crack-Tip Region of Fine-Grained Magnesium Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 2475-2480.	2.2	5
198	Mechanical properties of hydroxyapatite-dispersed magnesium composites. Keikinzoku/Journal of Japan Institute of Light Metals, 2016, 66, 318-323.	0.4	5

#	Article	IF	CITATIONS
199	Initial organ distribution and biological safety of Mg ²⁺ released from a Mg alloy implant. Biomedical Materials (Bristol), 2018, 13, 035006.	3.3	5
200	Novel biodegradable magnesium alloy clips compared with titanium clips for hepatectomy in a rat model. BMC Surgery, 2019, 19, 130.	1.3	5
201	Processing and Mechanical Properties of a Tricalcium Phosphate-Dispersed Magnesium-Based Composite. Materials Transactions, 2019, 60, 105-110.	1.2	5
202	Effects of the Grain Size on Friction and Wear Properties of ZK60 Magnesium Alloy Zairyo/Journal of the Society of Materials Science, Japan, 2002, 51, 1154-1159.	0.2	5
203	Low Temperature Superplastic Behavior in ZK60 Magnesium Alloy. Materials Science Forum, 1999, 304-306, 303-308.	0.3	4
204	Medical application of magnesium and its alloys as degradable biomaterials. , 2010, , 318-320.		4
205	Fabrication and mechanical properties of biodegradable magnesium stent. Keikinzoku/Journal of Japan Institute of Light Metals, 2016, 66, 312-317.	0.4	4
206	Superplasticity in Very Fine Grained Al-Based Alloys Produced by Mechanical Alloying. Materials Transactions, JIM, 1995, 36, 317-322.	0.9	3
207	Hydroxyapatite Dispersed Magnesium-Based Composite Produced from Pulverized Magnesium Alloy Powder and Its Mechanical Properties. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2018, 82, 18-24.	0.4	3
208	Effect of Solidification Cooling Rate on Microstructure and Mechanical Properties of an Extruded Mg-Zn-Y Alloy. Metals, 2018, 8, 337.	2.3	3
209	Fabrication and characterization of Mg–0.2â€ [~] at% Ca∬±-tricalcium phosphate composites. Materials Letters, 2019, 241, 96-99.	2.6	3
210	Influence of Microstructural Characteristics on the Dynamic Properties of Aluminum Alloys. Influence of Distribution of Second-Phase Particles in Aluminum Alloys Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1993, 59, 2350-2355.	0.2	2
211	Ductility at Dynamic Strain Rate in Mechanically Alloyed Aluminum IN905XL Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 1995, 42, 180-184.	0.2	2
212	Ductility Enhancement at Elevated Temperatures in a ZK60-Based Composite. Materials Science Forum, 1997, 233-234, 261-270.	0.3	2
213	Superplastic Characteristics in a Doubly-Extruded ZK60/SiC/17p Magnesium-Based Composite. Materials Science Forum, 1997, 243-245, 321-326.	0.3	2
214	Observation of High-Strain-Rate Superplasticity in ZK60 and SiCp/ZK60 Composite. Materials Science Forum, 1999, 304-306, 297-302.	0.3	2
215	Grain Refinement of a Commercial Magnesium Alloy for Superplastic Forming. Materials Science Forum, 2001, 357-359, 459-464.	0.3	2
216	Effect of Quasicrystal Phase Particle Dispersion on Mechanical Properties in Mg-Zn-Al Alloys. Materials Transactions, 2011, 52, 1111-1115.	1.2	2

#	Article	IF	CITATIONS
217	Effect of Micro-Alloying Elements on Deformation Behavior in Mg-Y Binary Alloys. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2015, 79, 35-40.	0.4	2
218	Development of small-scale impact three-point bending test apparatus and evaluation of impact fracture properties of Mg–6%Al–1%Zn–2%Ca alloy. Keikinzoku/Journal of Japan Institute of Light Metals, 2016, 66, 258-265.	0.4	2
219	Experimental study of structural magnesium alloys with high absorption energy under dynamic loading. , 2001, , 37-42.		2
220	Evaluation of In Vitro Fatigue Properties of Biodegradable Mg–0.3at.%Ca Alloy. Minerals, Metals and Materials Series, 2017, , 533-535.	0.4	2
221	Effect of Grain Refinement on Fatigue Properties of Mg–0.3 at%Ca Alloy in Air and Simulated Body Fluid. Materials Transactions, 2022, 63, 69-72.	1.2	2
222	Influence of Microstructural Characteristics on the Dynamic Properties of Aluminum Alloys. Influence of Solute Atoms in Aluminum Alloys Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1993, 59, 2356-2361.	0.2	1
223	Dynamic Deformation of Regularly Cell-Structured Materials. Materials Science Forum, 2004, 465-466, 13-20.	0.3	1
224	Computational Study of Compressive Mechanical Response in Two-dimensional Cellular Solids under Microstructural Control. Materials Transactions, 2005, 46, 1221-1229.	1.2	1
225	Casting Surface of AZ91 Alloy and Its Reaction with Sand Mold. Materials Transactions, 2008, 49, 1089-1092.	1.2	1
226	Superplastic Deformation Behavior in Dual-Phase Mg-Ca Alloy. Materials Science Forum, 2016, 838-839, 256-260.	0.3	1
227	Osteogenic response under the periosteum by magnesium implantation in rat tibia. Dental Materials Journal, 2021, 40, 498-507.	1.8	1
228	Increasing volume fraction of precipitates and strength of a Mg-Zn-Y alloy by pre-ageing deformation. , 2013, , 323-328.		1
229	Development of High Strength and Toughness Magnesium Alloy by Grain Boundary Control. , 2012, , 345-347.		1
230	Microstructural evolution in magnesium after hyper-velocity impact of alumina projectile. Keikinzoku/Journal of Japan Institute of Light Metals, 2019, 69, 287-292.	0.4	1
231	Phase transformation and morphological features in a cold-worked CrMnFeCoNi high entropy alloy with Al addition. Materials Characterization, 2021, 182, 111556.	4.4	1
232	Different Effects of Calcium and Zinc as a Solute Element on the Fatigue Properties in Simulated Body Fluids of Magnesium Alloys. Materials Transactions, 2021, 62, .	1.2	1
233	Influence of Strain Rate on Deformation Behavior of Aluminum Single Crystals Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1993, 59, 1208-1212.	0.2	0
234	Superplastic Deformation Mechanisms at High Strain Rates in Mechanically Alloyed Aluminum IN905XL Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 1993, 40, 337-340.	0.2	0

#	Article	IF	CITATIONS
235	Stress Exponent and Activation Energy in Titanium Aluminides with Different Grain Sizes Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 1995, 42, 259-263.	0.2	0
236	Grain Size Dependence on the Dynamic Characteristics in a Mechanically Alloyed IN905XL Alloy. Materials Science Forum, 1996, 204-206, 479-484.	0.3	0
237	Mechanical properties at elevated temperatures in superplastically-deformed, nanodispersion strengthened aluminum. Scripta Materialia, 1997, 8, 1067-1075.	0.5	0
238	Superplasticity at Low Temperatures in a ZK61 Magnesium Alloy Produced by Powder Metallurgy. Key Engineering Materials, 2000, 171-174, 363-368.	0.4	0
239	Diffusion Bonding on Superplastic-Aluminium and -Magnesium Alloys. Materials Science Forum, 2004, 447-448, 527-532.	0.3	0
240	Constitutive Equation for Superplastic Flow in Light Metallic Materials. Materials Science Forum, 2004, 447-448, 91-96.	0.3	0
241	Superplastic Behavior in Magnesium Alloy with Dispersion of Quasicrystal Phase Particle. Key Engineering Materials, 2010, 433, 291-295.	0.4	0
242	Impact Energy Absorption Capability of Magnesium Alloy Pipe. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2014, 78, 142-148.	0.4	0
243	Development of Small-Scale Impact Three-Point Bending Test Apparatus and Evaluation of Impact Fracture Properties of Mg-6%Al-1%Zn-2%Ca Alloy. Materials Transactions, 2016, 57, 1872-1879.	1.2	0
244	Material Design for Enhancing Toughness of Mg Alloy and Application for Biodegradable Devices. Minerals, Metals and Materials Series, 2018, , 87-89.	0.4	0
245	Novel artifactâ€robust and highly visible zinc solid fiducial marker for kilovoltage xâ€ray imageâ€guided radiation therapy. Medical Physics, 2020, 47, 4703-4710.	3.0	0
246	é›»åðf"ãf¼ãfç²‰æœ«åºŠæº¶èžæ³•ã«ã,^ã,‹ Ti-6Al-4V å•金製ä,‰æ¬¡åfåቖå"質構é€ä½"㮠創製ãëå	¼ ®ç î°çµ"ç	¹ " ° ¶å¾;. Joi
247	Effect of Adding Third Element on Deformability of Mg–Al Alloy. Minerals, Metals and Materials Series, 2021, , 37-44.	0.4	0
248	Microstructural Evolution in Magnesium after Hyper-Velocity Impact of Alumina Projectile. Materials Transactions, 2021, 62, 1401-1406.	1.2	0
249	Impact energy absorption of metal foam with the controlled microstructure under dynamic loading. , 2001, , 361-365.		0
250	2304 Crack propagation and fracture toughness of Magnesium alloys. The Proceedings of the JSME Annual Meeting, 2007, 2007.1, 325-326.	0.0	0
251	Development of High Performance Magnesium Alloys to Structural Parts. Journal of the Japan Society for Technology of Plasticity, 2009, 50, 291-295.	0.3	0
252	323 Influence of Morphology of Dispersed Quasi-crystalline Phase in Mg-Zn-Y Alloys on Their Wear Property. The Proceedings of Conference of Kansai Branch, 2009, 2009.84, _3-23	0.0	0

#	Article	IF	CITATIONS
253	Deformation Behavior of Bulk Metallic Glasses at High Strain Rates. Zairyo/Journal of the Society of Materials Science, Japan, 2010, 59, 98-103.	0.2	0
254	Strengthening Mg-Al-Zn Alloy by Repetitive Oblique Shear Strain. , 2011, , 211-214.		0
255	Fracture Mechanism and Toughness in Fine- and Coarse-Grained Magnesium Alloys. , 2011, , 25-28.		Ο
256	Improved Processing of Mg-Zn-Y Alloys Containing Quasicrystal Phase for Isotropic High Strength and Ductility. , 2011, , 239-244.		0
257	OS19-3-2 Production of ultra fine grain size by direct extrusion of a chill cast Mg-Zn-Y alloy containing quasicrystal phase with a very high isotropic strength. The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics Asian Conference on Experimental Mechanics. 2011. 2011.10. OS19-3-2	0.0	0
258	OS19-3-4 Strengthening Mg-Al-Zn Alloys by Severe Plastic Rolling. The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics Asian Conference on Experimental Mechanics, 2011, 2011.10, _OS19-3-4	0.0	0
259	Evaluating the effect of pre-ageing deformation on β′ precipitate size and distribution in Mg-Zn(-Y) Alloys. , 2012, , 191-196.		Ο
260	Formation of Nano-Scale Twins and Low Angle Grain Boundaries during Fracture of a Fine Grained Magnesium Alloys. , 2012, , 93-97.		0
261	Evolution of microstructure during caliber rolling of AZ31 alloy. , 2013, , 317-322.		Ο
262	1C42 Fabrication of biodegradable Mg-0.3at.%Ca alloy with high strength. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2014, 2014.26, 99-100.	0.0	0
263	Mechanical Properties at High Strain Rates and Microstructures of Materials Zairyo/Journal of the Society of Materials Science, Japan, 1993, 42, 1414-1419.	0.2	Ο
264	Effect of Alloy Composition on Microstructure and Strength of Fine Grained Extruded Mg-Zn-Y Alloys Containing Quasicrystal Phase. , 2015, , 215-220.		0
265	Deformation Response of Mg-Y Alloys under Dynamic Loading. , 2015, , 189-189.		Ο
266	Effect of Solute Segregation on Fracture Behavior of Mg Alloy. , 2015, , 197-200.		0
267	Evaluation of mechanical property and biodegradability of Mg-Zn binary alloys. The Proceedings of the Materials and Mechanics Conference, 2016, 2016, PS-42.	0.0	Ο
268	Lattice Ordering and Microstructure of Ultra-high Strength Mg-Ca-Zn Alloys. , 2016, , 83-88.		0
269	Control of Grain Structure in AZ31 Mg Alloy by Multipass Caliber rolling. The Proceedings of the Materials and Mechanics Conference, 2016, 2016, PS-40.	0.0	0
270	Deformation behavior and microstructure evolution of FCC high entropy alloy under dynamic loading. The Proceedings of the Materials and Mechanics Conference, 2016, 2016, PS-37.	0.0	0

#	Article	IF	CITATIONS
271	Deformation behavior of pure magnesium under dynamic compression. The Proceedings of the Materials and Mechanics Conference, 2016, 2016, PS-39.	0.0	0
272	Influence of Manganese on Deformation Behavior of Magnesium Under Dynamic Loading. Minerals, Metals and Materials Series, 2020, , 381-385.	0.4	0
273	Biodegradation behaviors of magnesium(Mg)-based alloy nails in autologous bone grafts: In vivo study in rabbit skulls. Journal of Applied Biomaterials and Functional Materials, 2022, 20, 228080002210952.	1.6	0