
Nikolas Angelou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7002163/publications.pdf Version: 2024-02-01

NIKOLAS ANCELOU

#	Article	IF	CITATIONS
1	A spinnerâ€integrated wind lidar for enhanced wind turbine control. Wind Energy, 2013, 16, 625-643.	4.2	110
2	Complex terrain experiments in the New European Wind Atlas. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160101.	3.4	82
3	Characterization of wind velocities in the upstream induction zone of a wind turbine using scanning continuous-wave lidars. Journal of Renewable and Sustainable Energy, 2016, 8, .	2.0	74
4	Perdigão 2015: methodology for atmospheric multi-Doppler lidar experiments. Atmospheric Measurement Techniques, 2017, 10, 3463-3483.	3.1	57
5	Power curve and wake analyses of the Vestas multi-rotor demonstrator. Wind Energy Science, 2019, 4, 251-271.	3.3	52
6	Direct measurement of the spectral transfer function of a laser based anemometer. Review of Scientific Instruments, 2012, 83, 033111.	1.3	36
7	Retrieving wind statistics from average spectrum of continuous-wave lidar. Atmospheric Measurement Techniques, 2013, 6, 1673-1683.	3.1	31
8	Observed and modeled near-wake flow behind a solitary tree. Agricultural and Forest Meteorology, 2019, 265, 78-87.	4.8	29
9	The motion of trees in the wind: a data synthesis. Biogeosciences, 2021, 18, 4059-4072.	3.3	28
10	Variations of the Wake Height over the Bolund Escarpment Measured by a Scanning Lidar. Boundary-Layer Meteorology, 2016, 159, 147-159.	2.3	26
11	Investigation of wake interaction using fullâ€scale lidar measurements and large eddy simulation. Wind Energy, 2016, 19, 1535-1551.	4.2	25
12	Detailed field test of yaw-based wake steering. Journal of Physics: Conference Series, 2016, 753, 052003.	0.4	25
13	Two-Dimensional Rotorcraft Downwash Flow Field Measurements by Lidar-Based Wind Scanners with Agile Beam Steering. Journal of Atmospheric and Oceanic Technology, 2014, 31, 930-937.	1.3	21
14	Application of short-range dual-Doppler lidars to evaluate the coherence of turbulence. Experiments in Fluids, 2016, 57, 1.	2.4	20
15	Demonstration and uncertainty analysis of synchronised scanning lidar measurements of 2-D velocity fields in a boundary-layer wind tunnel. Wind Energy Science, 2017, 2, 329-341.	3.3	20
16	Wind load estimation on an open-grown European oak tree. Forestry, 2019, 92, 381-392.	2.3	19
17	Wind turbine wake measurement in complex terrain. Journal of Physics: Conference Series, 2016, 753, 032013.	0.4	17
18	Validation of a CFD model with a synchronized tripleâ€lidar system in the wind turbine induction zone. Wind Energy, 2017, 20, 1481-1498.	4.2	14

NIKOLAS ANGELOU

#	Article	IF	CITATIONS
19	Full-scale observation of the flow downstream of a suspension bridge deck. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 171, 261-272.	3.9	14
20	3D WindScanner lidar measurements of wind and turbulence around wind turbines, buildings and bridges. IOP Conference Series: Materials Science and Engineering, 2017, 276, 012004.	0.6	10
21	Scanning Lidar Spatial Calibration and Alignment Method for Wind Turbine Wake Characterization. , 2017, , .		9
22	The fence experiment – full-scale lidar-based shelter observations. Wind Energy Science, 2016, 1, 101-114.	3.3	9
23	Characterization of wind velocities in the wake of a full scale wind turbine using three ground-based synchronized WindScanners. Journal of Physics: Conference Series, 2016, 753, 032032.	0.4	5
24	Demonstration of synchronised scanning Lidar measurements of 2D velocity fields in a boundary-layer wind tunnel. Journal of Physics: Conference Series, 2016, 753, 072032.	0.4	5
25	Effect of shot peening on the residual stress and mechanical behaviour of low-temperature and high-temperature annealed martensitic gear steel 18CrNiMo7-6. IOP Conference Series: Materials Science and Engineering, 2017, 219, 012046.	0.6	5
26	Assessment of Wind Conditions at a Fjord Inlet by Complementary Use of Sonic Anemometers and Lidars. Energy Procedia, 2015, 80, 411-421.	1.8	4
27	Scanning Doppler lidar measurements of drag force on a solitary tree. Journal of Fluid Mechanics, 2021, 917, .	3.4	4
28	Drag coefficient and frontal area of a solitary mature tree. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 220, 104854.	3.9	4
29	The relationship between aerosol backscatter coefficient and atmospheric relative humidity in an urban area over Athens, Greece, using Raman lidar and radiosonde data. International Journal of Remote Sensing, 2011, 32, 8983-9006.	2.9	3
30	Laser scanning of a recirculation zone on the Bolund escarpment. Journal of Physics: Conference Series, 2014, 555, 012066.	0.4	3
31	Lidars for Wind Tunnels - an IRPWind Joint Experiment Project. Energy Procedia, 2017, 137, 339-345.	1.8	2
32	Wind lidars reveal turbulence transport mechanism in the wake of a tree. Atmospheric Chemistry and Physics, 2022, 22, 2255-2268.	4.9	2
33	The fence experiment — a first evaluation of shelter models. Journal of Physics: Conference Series, 2016, 753, 072009.	0.4	Ο