
Chongwen Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7002022/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rapid field determination of SARS-CoV-2 by a colorimetric and fluorescent dual-functional lateral flow immunoassay biosensor. Sensors and Actuators B: Chemical, 2022, 351, 130897.	4.0	56
2	Difunctional immunochromatographic assay based on magnetic quantum dot for ultrasensitive and simultaneous detection of multiple mycotoxins in foods. Sensors and Actuators B: Chemical, 2022, 359, 131528.	4.0	32
3	Graphene oxide-based three-dimensional Au nanofilm with high-density and controllable hotspots: A powerful film-type SERS tag for immunochromatographic analysis of multiple mycotoxins in complex samples. Chemical Engineering Journal, 2022, 448, 137760.	6.6	28
4	Ultrasensitive multichannel immunochromatographic assay for rapid detection of foodborne bacteria based on two-dimensional film-like SERS labels. Journal of Hazardous Materials, 2022, 437, 129347.	6.5	54
5	Ultrasensitive and multiplex detection of four pathogenic bacteria on a bi-channel lateral flow immunoassay strip with three-dimensional membrane-like SERS nanostickers. Biosensors and Bioelectronics, 2022, 214, 114525.	5.3	62
6	Development of a SERS-based lateral flow immunoassay for rapid and ultra-sensitive detection of anti-SARS-CoV-2 IgM/IgG in clinical samples. Sensors and Actuators B: Chemical, 2021, 329, 129196.	4.0	206
7	Dual-signal lateral flow assay using vancomycin-modified nanotags for rapid and sensitive detection of <i>Staphylococcus aureus</i> . RSC Advances, 2021, 11, 13297-13303.	1.7	13
8	Rapid Detection Method for Pathogenic Candida Captured by Magnetic Nanoparticles and Identified Using SERS via AgNPs+. International Journal of Nanomedicine, 2021, Volume 16, 941-950.	3.3	19
9	In Situ Exosomal MicroRNA Determination by Target-Triggered SERS and Fe ₃ O ₄ @TiO ₂ -Based Exosome Accumulation. ACS Sensors, 2021, 6, 852-862.	4.0	56
10	A universal SERS-label immunoassay for pathogen bacteria detection based on Fe3O4@Au-aptamer separation and antibody-protein A orientation recognition. Analytica Chimica Acta, 2021, 1160, 338421.	2.6	61
11	Ultrasensitive and Simultaneous Detection of Two Specific SARS-CoV-2 Antigens in Human Specimens Using Direct/Enrichment Dual-Mode Fluorescence Lateral Flow Immunoassay. ACS Applied Materials & Interfaces, 2021, 13, 40342-40353.	4.0	78
12	Development of an ultrasensitive fluorescent immunochromatographic assay based on multilayer quantum dot nanobead for simultaneous detection of SARS-CoV-2 antigen and influenza A virus. Sensors and Actuators B: Chemical, 2021, 345, 130372.	4.0	58
13	Sensitive detection of Escherichia coli O157:H7 and Salmonella typhimurium in food samples using two-channel fluorescence lateral flow assay with liquid Si@quantum dot. Food Chemistry, 2021, 363, 130400.	4.2	46
14	Synthesis of two-dimensional graphene oxide-fluorescent nanoprobe for ultrasensitive and multiplex immunochromatographic detection of respiratory bacteria. Chemical Engineering Journal, 2021, 426, 131836.	6.6	27
15	Development of spike protein-based fluorescence lateral flow assay for the simultaneous detection of SARS-CoV-2 specific IgM and IgG. Analyst, The, 2021, 146, 3908-3917.	1.7	41
16	Rapid SERS identification of methicillin-susceptible and methicillin-resistant <i>Staphylococcus aureus via</i> aptamer recognition and deep learning. RSC Advances, 2021, 11, 34425-34431.	1.7	20
17	An efficient SERS platform for the ultrasensitive detection of Staphylococcus aureus and Listeria monocytogenes via wheat germ agglutinin-modified magnetic SERS substrate and streptavidin/aptamer co-functionalized SERS tags. Analytica Chimica Acta, 2021, 1187, 339155.	2.6	40
18	Personalized detection of circling exosomal PD-L1 based on Fe3O4@TiO2 isolation and SERS immunoassay. Biosensors and Bioelectronics, 2020, 148, 111800.	5.3	150

CHONGWEN WANG

#	Article	IF	CITATIONS
19	Layer-by-layer assembly of magnetic-core dual quantum dot-shell nanocomposites for fluorescence lateral flow detection of bacteria. Nanoscale, 2020, 12, 795-807.	2.8	77
20	Rapid, quantitative and ultra-sensitive detection of cancer biomarker by a SERRS-based lateral flow immunoassay using bovine serum albumin coated Au nanorods. RSC Advances, 2020, 10, 271-281.	1.7	32
21	Portable and multiplexed lateral flow immunoassay reader based on SERS for highly sensitive point-of-care testing. Biosensors and Bioelectronics, 2020, 168, 112524.	5.3	77
22	Rapid Enrichment and Ultrasensitive Detection of Influenza A Virus in Human Specimen using Magnetic Quantum Dot Nanobeads Based Test Strips. Sensors and Actuators B: Chemical, 2020, 325, 128780.	4.0	55
23	Sensitive and Simultaneous Detection of SARS-CoV-2-Specific IgM/IgG Using Lateral Flow Immunoassay Based on Dual-Mode Quantum Dot Nanobeads. Analytical Chemistry, 2020, 92, 15542-15549.	3.2	134
24	Rapid, Quantitative, High-Sensitive Detection of Escherichia coli O157:H7 by Gold-Shell Silica-Core Nanospheres-Based Surface-Enhanced Raman Scattering Lateral Flow Immunoassay. Frontiers in Microbiology, 2020, 11, 596005.	1.5	36
25	A novel method for identifying and distinguishing Cryptococcus neoformans and Cryptococcus gattii by surface-enhanced Raman scattering using positively charged silver nanoparticles. Scientific Reports, 2020, 10, 12480.	1.6	17
26	Quantitative and simultaneous detection of two inflammation biomarkers via a fluorescent lateral flow immunoassay using dual-color SiO2@QD nanotags. Mikrochimica Acta, 2020, 187, 570.	2.5	37
27	Synthesis of raspberry-like nanogapped Fe ₃ O ₄ @Au nanocomposites for SERS-based lateral flow detection of multiple tumor biomarkers. Journal of Materials Chemistry C, 2020, 8, 12854-12864.	2.7	49
28	Fe3O4@Au SERS tags-based lateral flow assay for simultaneous detection of serum amyloid A and C-reactive protein in unprocessed blood sample. Sensors and Actuators B: Chemical, 2020, 320, 128350.	4.0	94
29	Polyethyleneimine-interlayered silica-core quantum dot-shell nanocomposites for sensitive detection of <i>Salmonella typhimurium via</i> a lateral flow immunoassay. RSC Advances, 2020, 10, 2483-2489.	1.7	29
30	Rapid identification and antibiotic susceptibility test of pathogens in blood based on magnetic separation and surface-enhanced Raman scattering. Mikrochimica Acta, 2019, 186, 475.	2.5	43
31	Magnetic quantum dot based lateral flow assay biosensor for multiplex and sensitive detection of protein toxins in food samples. Biosensors and Bioelectronics, 2019, 146, 111754.	5.3	98
32	Dual-color magnetic-quantum dot nanobeads as versatile fluorescent probes in test strip for simultaneous point-of-care detection of free and complexed prostate-specific antigen. Biosensors and Bioelectronics, 2019, 145, 111719.	5.3	87
33	Dual-SERS biosensor for one-step detection of microRNAs in exosome and residual plasma of blood samples for diagnosing pancreatic cancer. Biosensors and Bioelectronics, 2019, 130, 204-213.	5.3	193
34	Dual-recognition surface-enhanced Raman scattering(SERS)biosensor for pathogenic bacteria detection by using vancomycin-SERS tags and aptamer-Fe3O4@Au. Analytica Chimica Acta, 2019, 1077, 288-296.	2.6	142
35	Magnetic SERS Strip for Sensitive and Simultaneous Detection of Respiratory Viruses. ACS Applied Materials & amp; Interfaces, 2019, 11, 19495-19505.	4.0	207
36	Magnetic plasmonic particles for SERS-based bacteria sensing: A review. AIP Advances, 2019, 9, .	0.6	31

CHONGWEN WANG

#	Article	IF	CITATIONS
37	Dualâ€Selective and Dualâ€Enhanced SERS Nanoprobes Strategy for Circulating Hepatocellular Carcinoma Cells Detection. Chemistry - A European Journal, 2018, 24, 7060-7067.	1.7	43
38	Label-free identification carbapenem-resistant <i>Escherichia coli</i> based on surface-enhanced resonance Raman scattering. RSC Advances, 2018, 8, 4761-4765.	1.7	29
39	Sensitive and specific detection of clinical bacteria <i>via</i> vancomycin-modified Fe ₃ O ₄ @Au nanoparticles and aptamer-functionalized SERS tags. Journal of Materials Chemistry B, 2018, 6, 3751-3761.	2.9	101
40	Fast and non-invasive serum detection technology based on surface-enhanced Raman spectroscopy and multivariate statistical analysis for liver disease. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 451-459.	1.7	44
41	Facile synthesis of high-performance SiO ₂ @Au core–shell nanoparticles with high SERS activity. RSC Advances, 2018, 8, 30825-30831.	1.7	29
42	Dual dye-loaded Au@Ag coupled to a lateral flow immunoassay for the accurate and sensitive detection of <i>Mycoplasma pneumoniae</i> infection. RSC Advances, 2018, 8, 21243-21251.	1.7	44
43	Combined use of vancomycin-modified Ag-coated magnetic nanoparticles and secondary enhanced nanoparticles for rapid surface-enhanced Raman scattering detection of bacteria. International Journal of Nanomedicine, 2018, Volume 13, 1159-1178.	3.3	82
44	Polyethyleneimine-mediated seed growth approach for synthesis of silver-shell silica-core nanocomposites and their application as a versatile SERS platform. RSC Advances, 2017, 7, 13138-13148.	1.7	28
45	Streptomycin-modified Fe3O4–Au@Ag core–satellite magnetic nanoparticles as an effective antibacterial agent. Journal of Materials Science, 2017, 52, 1357-1368.	1.7	27
46	Silver coated magnetic microflowers as efficient and recyclable catalysts for catalytic reduction. New Journal of Chemistry, 2017, 41, 14199-14208.	1.4	23
47	Vancomycin-modified Fe ₃ 0 ₄ @SiO ₂ @Ag microflowers as effective antimicrobial agents. International Journal of Nanomedicine, 2017, Volume 12, 3077-3094.	3.3	40
48	Magnetic immunoassay for cancer biomarker detection based on surface-enhanced resonance Raman scattering from coupled plasmonic nanostructures. Biosensors and Bioelectronics, 2016, 84, 15-21.	5.3	66
49	A rapid SERS method for label-free bacteria detection using polyethylenimine-modified Au-coated magnetic microspheres and Au@Ag nanoparticles. Analyst, The, 2016, 141, 6226-6238.	1.7	134
50	Non-invasive detection of hepatocellular carcinoma serum metabolic profile through surface-enhanced Raman spectroscopy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 2475-2484.	1.7	58
51	Facile Synthesis of Au-Coated Magnetic Nanoparticles and Their Application in Bacteria Detection via a SERS Method. ACS Applied Materials & Interfaces, 2016, 8, 19958-19967.	4.0	196
52	Sonochemical synthesis of highly branched flower-like Fe3O4@SiO2@Ag microcomposites and their application as versatile SERS substrates. Nanoscale, 2016, 8, 19816-19828.	2.8	59
53	Seed-mediated synthesis of high-performance silver-coated magnetic nanoparticles and their use as effective SERS substrates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 506, 393-401.	2.3	26
54	Fe3O4@Ag magnetic nanoparticles for microRNA capture and duplex-specific nuclease signal amplification based SERS detection in cancer cells. Biosensors and Bioelectronics, 2016, 79, 574-580.	5.3	180

CHONGWEN WANG

#	Article	IF	CITATIONS
55	Polyethylenimine-interlayered silver-shell magnetic-core microspheres as multifunctional SERS substrates. Journal of Materials Chemistry C, 2015, 3, 8684-8693.	2.7	65
56	A graphene-interlayered magnetic composite as a multifunctional SERS substrate. RSC Advances, 2015, 5, 62101-62109.	1.7	12
57	Plasmonic Ag Core–Satellite Nanostructures with a Tunable Silica-Spaced Nanogap for Surface-Enhanced Raman Scattering. Langmuir, 2015, 31, 8129-8137.	1.6	34
58	Magnetically Assisted Surface-Enhanced Raman Spectroscopy for the Detection of <i>Staphylococcus aureus</i> Based on Aptamer Recognition. ACS Applied Materials & Interfaces, 2015, 7, 20919-20929.	4.0	162
59	Polyethylenimine-interlayered core–shell–satellite 3D magnetic microspheres as versatile SERS substrates. Nanoscale, 2015, 7, 18694-18707.	2.8	79