Yuzhou Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7001776/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Eculizumab for Dense Deposit Disease and C3 Glomerulonephritis. Clinical Journal of the American Society of Nephrology: CJASN, 2012, 7, 748-756.	4.5	295
2	C3 glomerulonephritis: clinicopathological findings, complement abnormalities, glomerular proteomic profile, treatment, and follow-up. Kidney International, 2012, 82, 465-473.	5.2	264
3	Human Male Infertility Caused by Mutations in the CATSPER1 Channel Protein. American Journal of Human Genetics, 2009, 84, 505-510.	6.2	206
4	Causes of Alternative Pathway Dysregulation in Dense Deposit Disease. Clinical Journal of the American Society of Nephrology: CJASN, 2012, 7, 265-274.	4.5	166
5	Atypical postinfectious glomerulonephritis is associated with abnormalities in the alternative pathway of complement. Kidney International, 2013, 83, 293-299.	5.2	161
6	C3 Glomerulonephritis Associated With Monoclonal Gammopathy: A Case Series. American Journal of Kidney Diseases, 2013, 62, 506-514.	1.9	150
7	Genetic male infertility and mutation of CATSPER ion channels. European Journal of Human Genetics, 2010, 18, 1178-1184.	2.8	139
8	Proliferative Glomerulonephritis Secondary to Dysfunction of the Alternative Pathway of Complement. Clinical Journal of the American Society of Nephrology: CJASN, 2011, 6, 1009-1017.	4.5	133
9	Small-molecule factor B inhibitor for the treatment of complement-mediated diseases. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7926-7931.	7.1	116
10	Dense Deposit Disease Associated With Monoclonal Gammopathy of Undetermined Significance. American Journal of Kidney Diseases, 2010, 56, 977-982.	1.9	107
11	A Claudin-9–Based Ion Permeability Barrier Is Essential for Hearing. PLoS Genetics, 2009, 5, e1000610.	3.5	102
12	Inactivation of NADPH oxidase organizer 1 Results in Severe Imbalance. Current Biology, 2006, 16, 208-213.	3.9	98
13	Sensorineural deafness and male infertility: a contiguous gene deletion syndrome. Journal of Medical Genetics, 2007, 44, 233-240.	3.2	98
14	Allelic Variants of Complement Genes Associated with Dense Deposit Disease. Journal of the American Society of Nephrology: JASN, 2011, 22, 1551-1559.	6.1	90
15	Eculizumab and recurrent C3 glomerulonephritis. Pediatric Nephrology, 2013, 28, 1975-1981.	1.7	82
16	Soluble CR1 Therapy Improves Complement Regulation in C3 Glomerulopathy. Journal of the American Society of Nephrology: JASN, 2013, 24, 1820-1829.	6.1	80
17	Diagnosis of complement alternative pathway disorders. Kidney International, 2016, 89, 278-288.	5.2	74
18	Partial ADAMTS13 deficiency in atypical hemolytic uremic syndrome. Blood, 2013, 122, 1487-1493.	1.4	72

Yuzhou Zhang

#	Article	IF	CITATIONS
19	Defining the Complement Biomarker Profile of C3 Glomerulopathy. Clinical Journal of the American Society of Nephrology: CJASN, 2014, 9, 1876-1882.	4.5	72
20	Selective Cochlear Degeneration in Mice Lacking the F-Box Protein, Fbx2, a Glycoprotein-Specific Ubiquitin Ligase Subunit. Journal of Neuroscience, 2007, 27, 5163-5171.	3.6	70
21	A Comparative Study of Eya1 and Eya4 Protein Function and Its Implication in Branchio-oto-renal Syndrome and DFNA10. JARO - Journal of the Association for Research in Otolaryngology, 2004, 5, 295-304.	1.8	67
22	Soluble C5b-9 as a Biomarker for Complement Activation in Atypical Hemolytic Uremic Syndrome. American Journal of Kidney Diseases, 2015, 65, 968-969.	1.9	55
23	HOMER2, a Stereociliary Scaffolding Protein, Is Essential for Normal Hearing in Humans and Mice. PLoS Genetics, 2015, 11, e1005137.	3.5	52
24	Genetic Analysis of 400 Patients Refines Understanding and Implicates a New Gene in Atypical Hemolytic Uremic Syndrome. Journal of the American Society of Nephrology: JASN, 2018, 29, 2809-2819.	6.1	50
25	Compstatin analog Cp40 inhibits complement dysregulation in vitro in C3 glomerulopathy. Immunobiology, 2015, 220, 993-998.	1.9	49
26	C4 Nephritic Factors in C3 Glomerulopathy: A Case Series. American Journal of Kidney Diseases, 2017, 70, 834-843.	1.9	45
27	A novel deletion in the RCA gene cluster causes atypical hemolytic uremic syndrome. Nephrology Dialysis Transplantation, 2011, 26, 739-741.	0.7	44
28	CFTR-deficient pigs display peripheral nervous system defects at birth. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3083-3088.	7.1	44
29	Exonic mutations and exon skipping: Lessons learned from <i>DFNA5</i> . Human Mutation, 2018, 39, 433-440.	2.5	44
30	A novel hybrid CFHR1/CFH gene causes atypical hemolytic uremic syndrome. Pediatric Nephrology, 2013, 28, 2221-2225.	1.7	43
31	Familial C3 glomerulonephritis caused by a novel CFHR5-CFHR2 fusion gene. Molecular Immunology, 2016, 77, 89-96.	2.2	41
32	Secondary Focal and Segmental Glomerulosclerosis Associated With Single-Nucleotide Polymorphisms in the Genes Encoding Complement Factor H and C3. American Journal of Kidney Diseases, 2012, 60, 316-321.	1.9	31
33	Characterization of C3 in C3 glomerulopathy. Nephrology Dialysis Transplantation, 2017, 32, gfw290.	0.7	29
34	Functional characterization of 105 factor H variants associated with aHUS: lessons for variant classification. Blood, 2021, 138, 2185-2201.	1.4	29
35	Factor H Autoantibodies and Complement-Mediated Diseases. Frontiers in Immunology, 2020, 11, 607211.	4.8	20
36	C3 glomerulonephritis and autoimmune disease: more than a fortuitous association?. Journal of Nephrology, 2016, 29, 203-209.	2.0	18

Yuzhou Zhang

#	Article	IF	CITATIONS
37	C3 glomerulonephritis secondary to mutations in factors H and I: rapid recurrence in deceased donor kidney transplant effectively treated with eculizumab. Nephrology Dialysis Transplantation, 2018, 33, 2260-2265.	0.7	17
38	C3(H2O) prevents rescue of complement-mediated C3 glomerulopathy in Cfh–/– Cfd–/– mice. JCI Insight 2020, 5, .	5. 0	13
39	Sensorineural deafness and male infertility: a contiguous gene deletion syndrome. BMJ Case Reports, 2009, 2009, bcr0820080645-bcr0820080645.	0.5	12
40	Mutation of complement factor B causing massive fluid-phase dysregulation of the alternative complement pathway can result in atypical hemolytic uremic syndrome. Kidney International, 2020, 98, 1265-1274.	5.2	10
41	Factor B and C4b2a Autoantibodies in C3 Glomerulopathy. Frontiers in Immunology, 2019, 10, 668.	4.8	4
42	Monoclonal Gammopathy of Renal Significance Causes C3 Glomerulonephritis Via Monoclonal IgG Kappa Inhibition of Complement Factor H. Kidney International Reports, 2021, 6, 2505-2509.	0.8	4
43	Novel FHR fusion genes identified by MLPA and Western blot analysis. Molecular Immunology, 2018, 102, 199.	2.2	1
44	Complement Factor I Variants in Complement-Mediated Renal Diseases. Frontiers in Immunology, 2022, 13, .	4.8	1
45	Severe deficiency of plasma factor H is associated with early-onset atypical hemolytic uremic syndrome. Molecular Immunology, 2018, 102, 232-233.	2.2	0
46	Genetic Abnormalities in Complement Regulating Proteins in C3 Glomerulopathy. American Journal of Clinical Pathology, 2018, 150, S131-S131.	0.7	0
47	A common variant in the C7 gene reduces complement activity. Molecular Immunology, 2018, 102, 233.	2.2	0
48	Combined C2 and C7 deficiencies cause STEC hemolytic uremic syndrome. Molecular Immunology, 2018, 102, 187.	2.2	0