Shi-yin Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7001364/publications.pdf

Version: 2024-02-01

		87888	102487
153	5,660	38	66
papers	citations	h-index	g-index
162	162	162	3409
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The second Chinese glacier inventory: data, methods and results. Journal of Glaciology, 2015, 61, 357-372.	2.2	399
2	A regional-scale assessment of Himalayan glacial lake changes using satellite observations from 1990 to 2015. Remote Sensing of Environment, 2017, 189 , $1-13$.	11.0	240
3	Changes of climate and seasonally frozen ground over the past 30 years in Qinghai–Xizang (Tibetan) Plateau, China. Global and Planetary Change, 2004, 43, 19-31.	3.5	230
4	Estimation on the response of glaciers in China to the global warming in the 21st century. Science Bulletin, 2000, 45, 668-672.	1.7	187
5	Glacial change and hydrological implications in the Himalaya and Karakoram. Nature Reviews Earth & Environment, 2021, 2, 91-106.	29.7	182
6	Status and Change of the Cryosphere in the Extended Hindu Kush Himalaya Region. , 2019, , 209-255.		139
7	The retreat of glaciers in response to recent climate warming in western China. Annals of Glaciology, 2006, 43, 97-105.	1.4	137
8	An inventory of historical glacial lake outburst floods in the Himalayas based on remote sensing observations and geomorphological analysis. Geomorphology, 2018, 308, 91-106.	2.6	132
9	Distribution of debris thickness and its effect on ice melt at Hailuogou glacier, southeastern Tibetan Plateau, using in situ surveys and ASTER imagery. Journal of Glaciology, 2011, 57, 1147-1157.	2.2	130
10	Observed degree-day factors and their spatial variation on glaciers in western China. Annals of Glaciology, 2006, 43, 301-306.	1.4	120
11	The glaciers of the Hindu Kush Himalayas: current status and observed changes from the 1980s to 2010. International Journal of Water Resources Development, 2015, 31, 161-173.	2.0	113
12	Glacial lake inventory of high-mountain Asia in 1990 and 2018 derived from Landsat images. Earth System Science Data, 2020, 12, 2169-2182.	9.9	112
13	Glacier retreat as a result of climate warming and increased precipitation in the Tarim river basin, northwest China. Annals of Glaciology, 2006, 43, 91-96.	1.4	108
14	Inclusion of glacier processes for distributed hydrological modeling at basin scale with application to a watershed in Tianshan Mountains, northwest China. Journal of Hydrology, 2013, 477, 72-85.	5.4	108
15	Changes of glacial lakes and implications in Tian Shan, central Asia, based on remote sensing data from 1990 to 2010. Environmental Research Letters, 2013, 8, 044052.	5.2	104
16	Glacial Lake Expansion in the Central Himalayas by Landsat Images, 1990–2010. PLoS ONE, 2013, 8, e83973.	2.5	97
17	Glacier changes during the last forty years in the Tarim Interior River basin, northwest China. Progress in Natural Science: Materials International, 2009, 19, 727-732.	4.4	79
18	Glacier changes in the Qilian Mountains in the past half-century: Based on the revised First and Second Chinese Glacier Inventory. Journal of Chinese Geography, 2018, 28, 206-220.	3.9	70

#	Article	IF	CITATIONS
19	Backwasting rate on debris-covered Koxkar glacier, Tuomuer mountain, China. Journal of Glaciology, 2010, 56, 287-296.	2.2	66
20	Definition and classification system of glacial lake for inventory and hazards study. Journal of Chinese Geography, 2018, 28, 193-205.	3.9	66
21	ESR dating of glacial tills and glaciations in the Urumqi River headwaters, Tianshan Mountains, China. Quaternary International, 2006, 144, 61-67.	1.5	64
22	Glacier change and glacier runoff variation in the Tuotuo River basin, the source region of Yangtze River in western China. Environmental Geology, 2008, 56, 59-68.	1.2	63
23	Recent shrinkage and hydrological response of Hailuogou glacier, a monsoon temperate glacier on the east slope of Mount Gongga, China. Journal of Glaciology, 2010, 56, 215-224.	2.2	62
24	Recent glacier mass balance and area changes in the Kangri Karpo Mountains from DEMs and glacier inventories. Cryosphere, 2018, 12, 103-121.	3.9	61
25	Monitoring the glacier changes in the Muztag Ata and Konggur mountains, east Pamirs, based on Chinese Glacier Inventory and recent satellite imagery. Annals of Glaciology, 2006, 43, 79-85.	1.4	55
26	Multi-decadal ice-velocity and elevation changes of a monsoonal maritime glacier: Hailuogou glacier, China. Journal of Glaciology, 2010, 56, 65-74.	2.2	54
27	Spatial Heterogeneity in Glacier Mass-Balance Sensitivity across High Mountain Asia. Water (Switzerland), 2019, 11, 776.	2.7	53
28	Volume calculation and analysis of the changes in moraine-dammed lakes in the north Himalaya: a case study of Longbasaba lake. Journal of Glaciology, 2012, 58, 753-760.	2.2	51
29	Glacier changes in the west Kunlun Shan from 1970 to 2001 derived from Landsat TM/ETM+ and Chinese glacier inventory data. Annals of Glaciology, 2007, 46, 204-208.	1.4	50
30	Climatic control on the peak discharge of glacier outburst floods. Geophysical Research Letters, 2007, 34, .	4.0	49
31	Quaternary glacial chronology of the Ateaoyinake River Valley, Tianshan Mountains, China. Geomorphology, 2009, 103, 276-284.	2.6	48
32	Glacier runoff and its impact in a highly glacierized catchment in the southeastern Tibetan Plateau: past and future trends. Journal of Glaciology, 2015, 61, 713-730.	2.2	47
33	Response of glacier mass balance to climate change in the Tianshan Mountains during the second half of the twentieth century. Climate Dynamics, 2016, 46, 303-316.	3.8	47
34	Mass Change of Glaciers in Muztag Ata–Kongur Tagh, Eastern Pamir, China from 1971/76 to 2013/14 as Derived from Remote Sensing Data. PLoS ONE, 2016, 11, e0147327.	2.5	47
35	Characterizing the May 2015 Karayaylak Glacier surge in the eastern Pamir Plateau using remote sensing. Journal of Glaciology, 2016, 62, 944-953.	2.2	46
36	Evaluation and Hydrological Simulation of CMADS and CFSR Reanalysis Datasets in the Qinghai-Tibet Plateau. Water (Switzerland), 2018, 10, 513.	2.7	46

#	Article	IF	Citations
37	Catchment-scale reconstruction of glacier mass balance using observations and global climate data: Case study of the Hailuogou catchment, south-eastern Tibetan Plateau. Journal of Hydrology, 2012, 444-445, 146-160.	5.4	45
38	Glacier anomalies and relevant disaster risks on the Tibetan Plateau and surroundings. Chinese Science Bulletin, 2019, 64, 2770-2782.	0.7	44
39	Glacier meltwater and runoff modelling, Keqicar Baqi glacier, southwestern Tien Shan, China. Journal of Glaciology, 2007, 53, 91-98.	2.2	40
40	Observed changes of cryosphere in China over the second half of the 20th century: an overview. Annals of Glaciology, 2007, 46, 382-390.	1.4	40
41	Glacial geomorphology and glacial history of the Muzart River valley, Tianshan Range, China. Quaternary Science Reviews, 2010, 29, 1453-1463.	3.0	40
42	Quaternary glacial chronology of the Kanas River valley, Altai Mountains, China. Quaternary International, 2013, 311, 44-53.	1.5	40
43	Glacier change in China over past decades: Spatiotemporal patterns and influencing factors. Earth-Science Reviews, 2022, 226, 103926.	9.1	40
44	Interannual flow dynamics driven by frontal retreat of a lake-terminating glacier in the Chinese Central Himalaya. Earth and Planetary Science Letters, 2020, 546, 116450.	4.4	39
45	Thinning and shrinkage of Laohugou No. 12 glacier in the Western Qilian Mountains, China, from 1957 to 2007. Journal of Mountain Science, 2012, 9, 343-350.	2.0	37
46	Temporal dynamics of a jökulhlaup system. Journal of Glaciology, 2009, 55, 651-665.	2.2	36
47	A modified monthly degreeâ€day model for evaluating glacier runoff changes in China. Part I: model development. Hydrological Processes, 2012, 26, 1686-1696.	2.6	36
48	The 2008/09 surge of central Yulinchuan glacier, northern Tibetan Plateau, as monitored by remote sensing. Annals of Glaciology, 2013, 54, 299-310.	1.4	36
49	Impact of climate change on the streamflow in the glacierized Chu River Basin, Central Asia. Journal of Arid Land, 2015, 7, 501-513.	2.3	36
50	Glacier mass balance over the central Nyainqentanglha Range during recent decades derived from remote-sensing data. Journal of Glaciology, 2019, 65, 422-439.	2.2	36
51	Changes in the elevation and extent of two glaciers along the Yanglonghe river, Qilian Shan, China. Journal of Glaciology, 2010, 56, 309-317.	2.2	35
52	Thinning and retreat of Xiao Dongkemadi glacier, Tibetan Plateau, since 1993. Journal of Glaciology, 2008, 54, 949-951.	2.2	34
53	Changes of glaciers and glacial lakes implying corridor-barrier effects and climate change in the Hengduan Shan, southeastern Tibetan Plateau. Journal of Glaciology, 2017, 63, 535-542.	2.2	34
54	Glacier changes during the past century in the Gangrigabu mountains, southeast Qinghai–Xizang (Tibetan) Plateau, China. Annals of Glaciology, 2006, 43, 187-193.	1.4	33

#	Article	IF	CITATIONS
55	Recent Changes in Glacial Area and Volume on Tuanjiefeng Peak Region of Qilian Mountains, China. PLoS ONE, 2013, 8, e70574.	2.5	33
56	Glacier changes during the past 40 years in the West Kunlun Shan. Journal of Mountain Science, 2015, 12, 344-357.	2.0	32
57	Farmers' perceptions of and adaptations to drought in Herat Province, Afghanistan. Journal of Mountain Science, 2018, 15, 1741-1756.	2.0	32
58	Heterogeneity in supraglacial debris thickness and its role in glacier mass changes of the Mount Gongga. Science China Earth Sciences, 2016, 59, 170-184.	5.2	31
59	Dynamics of glacier surface velocity and ice thickness for maritime glaciers in the southeastern Tibetan Plateau. Journal of Hydrology, 2020, 590, 125527.	5.4	31
60	Mass-balance characteristics of Ürümqi glacier No. 1, Tien Shan, China. Annals of Glaciology, 2006, 43, 323-328.	1.4	30
61	Index for hazard of Glacier Lake Outburst flood of Lake Merzbacher by satellite-based monitoring of lake area and ice cover. Global and Planetary Change, 2013, 107, 229-237.	3.5	29
62	Glacial runoff characteristics of the Koxkar Glacier, Tuomuer-Khan Tengri Mountain Ranges, China. Environmental Earth Sciences, 2010, 61, 665-674.	2.7	28
63	Distribution and interannual variability of supraglacial lakes on debris-covered glaciers in the Khan Tengri-Tumor Mountains, Central Asia. Environmental Research Letters, 2015, 10, 014014.	5.2	28
64	Spatio-temporal trends in snow extent and their linkage to hydro-climatological and topographical factors in the Chitral River Basin (Hindukush, Pakistan). Geocarto International, 2020, 35, 711-734.	3.5	27
65	Upward Expansion of Supra-Glacial Debris Cover in the Hunza Valley, Karakoram, During 1990 \hat{a}^4 2019. Frontiers in Earth Science, 2020, 8, .	1.8	27
66	Overview of terrestrial water storage changes over the Indus River Basin based on GRACE/GRACE-FO solutions. Science of the Total Environment, 2021, 799, 149366.	8.0	27
67	Glacier changes in the Koshi River basin, central Himalaya, from 1976 to 2009, derived from remote-sensing imagery. Annals of Glaciology, 2014, 55, 61-68.	1.4	25
68	Recent glacier and glacial lake changes and their interactions in the Bugyai Kangri, southeast Tibet. Annals of Glaciology, 2016, 57, 61-69.	1.4	25
69	Heterogeneity of glacial lake expansion and its contrasting signals with climate change in Tarim Basin, Central Asia. Environmental Earth Sciences, 2016, 75, 1.	2.7	25
70	Quick Release of Internal Water Storage in a Glacier Leads to Underestimation of the Hazard Potential of Glacial Lake Outburst Floods From Lake Merzbacher in Central Tian Shan Mountains. Geophysical Research Letters, 2017, 44, 9786-9795.	4.0	25
71	OSL and ESR dating of glacial deposits and its implications for glacial landform evolution in the Bogeda Peak area, Tianshan range, China. Quaternary Geochronology, 2012, 10, 237-243.	1.4	24
72	Glacier variations at Aru Co in western Tibet from 1971 to 2016 derived from remote-sensing data. Journal of Glaciology, 2018, 64, 397-406.	2.2	24

#	Article	IF	CITATIONS
73	Mass balance sensitivity to climate change: A case study of glacier No. 1 at urumqi riverhead, Tianshan Mountains, China. Chinese Geographical Science, 1999, 9, 134-140.	3.0	23
74	The land ecological evolutional patterns in the source areas of the Yangtze and Yellow Rivers in the past 15 years, China. Environmental Monitoring and Assessment, 2006, 116, 137-156.	2.7	23
75	Regional difference of annual precipitation and discharge variation over west China during the last 50 years. Science in China Series D: Earth Sciences, 2007, 50, 936-945.	0.9	22
76	Movement estimate of the Dongkemadi Glacier on the Qinghai–Tibetan Plateau using L-band and C-band spaceborne SAR data. International Journal of Remote Sensing, 2011, 32, 6911-6928.	2.9	22
77	Mass loss from glaciers in the Chinese Altai Mountains between 1959 and 2008 revealed based on historical maps, SRTM, and ASTER images. Journal of Mountain Science, 2015, 12, 330-343.	2.0	22
78	Peculiar phenomena regarding climatic and glacial variations on the Tibetan Plateau. Annals of Glaciology, 2006, 43, 106-110.	1.4	21
79	Monitoring thickness and volume changes of the Dongkemadi Ice Field on the Qinghai-Tibetan Plateau (1969–2000) using Shuttle Radar Topography Mission and map data. International Journal of Digital Earth, 2012, 5, 516-532.	3.9	21
80	Spatial-temporal characteristics of lake area variations in Hoh Xil region from 1970 to 2011. Journal of Chinese Geography, 2014, 24, 689-702.	3.9	21
81	Application of a degree-day model for the determination of contributions to glacier meltwater and runoff near Keqicar Baqi glacier, southwestern Tien Shan. Annals of Glaciology, 2006, 43, 280-284.	1.4	20
82	Globally elevated chemical weathering rates beneath glaciers. Nature Communications, 2022, 13, 407.	12.8	20
83	Progress on observation of cryospheric components and climate-related studies in China. Advances in Atmospheric Sciences, 2008, 25, 164-180.	4.3	19
84	Analyzing Yengisogat Glacier surface velocities with ALOS PALSAR data feature tracking, Karakoram, China. Environmental Earth Sciences, 2012, 67, 1033-1043.	2.7	19
85	Development of Threshold Levels and a Climate-Sensitivity Model of the Hydrological Regime of the High-Altitude Catchment of the Western Himalayas, Pakistan. Water (Switzerland), 2019, 11, 1454.	2.7	19
86	Monitoring the Ice Phenology of Qinghai Lake from 1980 to 2018 Using Multisource Remote Sensing Data and Google Earth Engine. Remote Sensing, 2020, 12, 2217.	4.0	19
87	Surging Dynamics of Glaciers in the Hunza Valley under an Equilibrium Mass State since 1990. Remote Sensing, 2020, 12, 2922.	4.0	19
88	Appraisal of Climate Change and Its Impact on Water Resources of Pakistan: A Case Study of Mangla Watershed. Atmosphere, 2020, 11, 1071.	2.3	19
89	Study on the glacier variation and its runoff responses in the arid region of Northwest China. Science in China Series D: Earth Sciences, 1999, 42, 64-71.	0.9	18
90	Glacial Area Changes in the Ili River Catchment (Northeastern Tian Shan) in Xinjiang, China, from the 1960s to 2009. Advances in Meteorology, 2015, 2015, 1-12.	1.6	17

#	Article	IF	CITATIONS
91	Glacier changes since the early 1960s, eastern Pamir, China. Journal of Mountain Science, 2016, 13, 276-291.	2.0	16
92	Spatiotemporal heterogeneity of snow cover in the central and western Karakoram Mountains based on a refined MODIS product during 2002–2018. Atmospheric Research, 2021, 250, 105402.	4.1	16
93	Identification of ice elevation change of the Shuiguan River No. 4 glacier in the Qilian Mountains, China. Journal of Mountain Science, 2010, 7, 375-379.	2.0	15
94	Glacial changes in the Gangdis \tilde{A}^a Mountains from 1970 to 2016. Journal of Chinese Geography, 2020, 30, 131-144.	3.9	15
95	Glacier-Related Hazards Along the International Karakoram Highway: Status and Future Perspectives. Frontiers in Earth Science, 2021, 9, .	1.8	15
96	Remote Sensing Monitoring of Advancing and Surging Glaciers in the Tien Shan, 1990–2019. Remote Sensing, 2021, 13, 1973.	4.0	15
97	Enumerating the Effects of Climate Change on Water Resources Using GCM Scenarios at the Xin'anjiang Watershed, China. Water (Switzerland), 2018, 10, 1296.	2.7	14
98	Knowledge Priorities on Climate Change and Water in the Upper Indus Basin: A Horizon Scanning Exercise to Identify the Top 100 Research Questions in Social and Natural Sciences. Earth's Future, 2022, 10, .	6.3	14
99	Glacier changes from a new inventory, Nianchu river basin, Tibetan Plateau. Annals of Glaciology, 2009, 50, 87-92.	1.4	12
100	Glacier changes and their impacts on the discharge in the past half-century in Tekes watershed, Central Asia. Physics and Chemistry of the Earth, 2015, 89-90, 96-103.	2.9	12
101	The Role of Debris Cover in Catchment Runoff: A Case Study of the Hailuogou Catchment, South-Eastern Tibetan Plateau. Water (Switzerland), 2019, 11, 2601.	2.7	12
102	Improving the accuracy of glacial lake volume estimation: A case study in the Poiqu basin, central Himalayas. Journal of Hydrology, 2022, 610, 127973.	5.4	12
103	Initial estimate of the contribution of cryospheric change in China to sea level rise. Science Bulletin, 2011, 56, 1661-1664.	1.7	11
104	Glacier change in the western Nyainqentanglha Range, Tibetan Plateau using historical maps and Landsat imagery: 1970-2014. Journal of Mountain Science, 2016, 13, 1358-1374.	2.0	11
105	Spatio-temporal changes in the six major glaciers of the Chitral River basin (Hindukush Region of) Tj ETQq1 I	0.784314 rgB	T /Overlock
106	A new automatic approach for extracting glacier centerlines based on Euclidean allocation. Cryosphere, 2021, 15, 1955-1973.	3.9	11
107	Response of meltwater runoff to air-temperature fluctuations on Keqikaer glacier, south slope of Tuomuer mountain, western China. Annals of Glaciology, 2006, 43, 275-279.	1.4	10
108	Effects of atmospheric circulation on summertime precipitation variability and glacier mass balance over the Tuyuksu Glacier in Tianshan Mountains, Kazakhstan. Journal of Arid Land, 2015, 7, 687-695.	2.3	10

#	Article	IF	Citations
109	Glacier change in the Tanggula Mountains, Tibetan Plateau, in 1969–2015. Journal of Mountain Science, 2019, 16, 2663-2678.	2.0	10
110	Exploring the links between variations in snow cover area and climatic variables in a Himalayan catchment using earth observations and CMIP6 climate change scenarios. Journal of Hydrology, 2022, 608, 127648.	5.4	10
111	Glacial advances and ESR chronology of the Pochengzi Glaciation, Tianshan Mountains, China. Science China Earth Sciences, 2010, 53, 403-410.	5.2	9
112	Imaging the debris internal structure and estimating the effect of debris layer on ablation of Glacier ice. Journal of the Geological Society of India, 2012, 80, 825-835.	1.1	9
113	Full-Stokes modeling of a polar continental glacier: the dynamic characteristics response of the XD Glacier to ice thickness. Acta Mechanica, 2018, 229, 2393-2411.	2.1	9
114	Seasonal Variation of Drainage System in the Lower Ablation Area of a Monsoonal Temperate Debris-Covered Glacier in Mt. Gongga, South-Eastern Tibet. Water (Switzerland), 2018, 10, 1050.	2.7	9
115	Declining glaciers endanger sustainable development of the oases along the Aksu-Tarim River (Central) Tj ETQq1	1 0.78431	.4 gBT /Ove
116	Longbasaba Glacier recession and contribution to its proglacial lake volume between 1988 and 2018. Journal of Glaciology, 2021, 67, 473-484.	2.2	9
117	Hydrological Response of the Kunhar River Basin in Pakistan to Climate Change and Anthropogenic Impacts on Runoff Characteristics. Water (Switzerland), 2021, 13, 3163.	2.7	9
118	Fluctuation analysis in the dynamic characteristics of continental glacier based on Full-Stokes model. Scientific Reports, 2019, 9, 20245.	3.3	8
119	Lake inventory and potentially dangerous glacial lakes in the Nyang Qu Basin of China between 1970 and 2016. Journal of Mountain Science, 2020, 17, 851-870.	2.0	8
120	Quantification of glacier mass budgets in the Karakoram region of Upper Indus Basin during the early twenty-first century. Journal of Hydrology, 2021, 603, 127095.	5.4	8
121	Spatio-temporal variations in terrestrial water storage and its controlling factors in the Eastern Qinghai-Tibet Plateau. Hydrology Research, 2021, 52, 323-338.	2.7	7
122	Characterizing the behaviour of surge-type glaciers in the Geladandong Mountain Region, Inner Tibetan Plateau, from 1986 to 2020. Geomorphology, 2021, 389, 107806.	2.6	7
123	The glacier area changes in the Qangtang Plateau based on the multi-temporal grid method and its sensitivity to climate change. Journal of Mountain Science, 2011, 8, 882-893.	2.0	6
124	Accelerated thinning of Hei Valley No. 8 Glacier in the Tianshan Mountains, China. Journal of Earth Science (Wuhan, China), 2013, 24, 1044-1055.	3.2	6
125	The surface energy budget on the debris-covered Koxkar Glacier in China. Environmental Earth Sciences, 2014, 72, 4503-4510.	2.7	6
126	Quaternary glaciations and glacial landform evolution in the Tailan River valley, Tianshan Range, China. Quaternary International, 2015, 358, 2-11.	1.5	6

#	Article	IF	Citations
127	Glacier Variations at Xinqingfeng and Malan Ice Caps in the Inner Tibetan Plateau Since 1970. Remote Sensing, 2020, 12, 421.	4.0	6
128	A framework of numerical simulation on moraine-dammed glacial lake outburst floods. Journal of Arid Land, 2015, 7, 728-740.	2.3	5
129	Regimes of runoff components on the debris-covered Koxkar glacier in western China. Journal of Mountain Science, 2015, 12, 313-329.	2.0	5
130	Monitoring and simulation of hydrothermal conditions indicating the deteriorating stability of a perennially frozen moraine dam in the Himalayas. Journal of Glaciology, 2018, 64, 407-416.	2.2	5
131	Applying SAR interferometric coherence to outline debris-covered glacier. , 2011, , .		4
132	Glacier mass changes over Duxueshan, Burog Kangri, and Zangser Kangri in the Inner Tibetan Plateau. Environmental Earth Sciences, 2020, 79, 1.	2.7	4
133	Remote sensing monitoring of advancing glaciers in the Bukatage Mountains from 1973 to 2018. Journal of Natural Resources, 2019, 34, 1666.	0.6	4
134	Remote sensing based glacial lake inventory in the Hindu Kush-Himalaya region. , 2011, , .		3
135	The relationship between runoff and ground temperature in glacierized catchments in China. Environmental Earth Sciences, 2012, 65, 681-687.	2.7	3
136	Numerical Modeling of the Seasonal Dynamic Characteristics of the Koxkar Glacier, in West Tianshan, China. Journal of the Geological Society of India, 2018, 92, 457-464.	1.1	3
137	DERIVATION OF SUPRAGLACIAL DEBRIS COVER BY MACHINE LEARNING ALGORITHMS ON THE GEE PLATFORM: A CASE STUDY OF GLACIERS IN THE HUNZA VALLEY. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, V-3-2020, 417-424.	0.0	3
138	Monitoring the Surface Elevation Changes of a Monsoon Temperate Glacier with Repeated UAV Surveys, Mainri Mountains, China. Remote Sensing, 2022, 14, 2229.	4.0	3
139	Optimal antenna of ground penetrating radar for depicting the debris thickness and structure of the Koxkar Glacier, Tianshan, China. Journal of Earth Science (Wuhan, China), 2013, 24, 830-842.	3.2	2
140	An accurate and fast forward model of threeâ€dimensional electromagnetic wave scattering in a layered structure with multilayer rough interfaces. Radio Science, 2015, 50, 211-228.	1.6	2
141	Prediction of changes in water balance of Nam Co Lake under projected climate change scenarios. Hydrological Sciences Journal, 2021, 66, 1712-1727.	2.6	2
142	Assessment of Spatial and Temporal Pattern of Hydrological Droughts in the Upper Indus Basin, Pakistan. Polish Journal of Environmental Studies, 2021, 30, 4633-4645.	1.2	2
143	The Evolution of the Glacier Surges in the Tuanjie Peak, the Qilian Mountains. Remote Sensing, 2022, 14, 852.	4.0	2
144	The study of glacier fluctuations using remote sensing on the Mt. Geladandong and A'nyemaqen in the Qinghai-Tibetan Plateau. , 0 , , .		1

SHI-YIN LIU

#	Article	IF	CITATIONS
145	Construction of the Apparent Moisture Sink Index for the Movement of the South Asian High and Associated Indicative Significance. Atmosphere - Ocean, 2021, 59, 15-28.	1.6	1
146	Modeling of the Mass Balance of Glaciers with Debris Cover. Advances in Geographical and Environmental Sciences, 2021, , 191-212.	0.6	1
147	Flood Hazard Mapping of Rivers in Snow- and Glacier-Fed Basins of Different Hydrological Regimes Using a Hydrodynamic Model under RCP Scenarios. Water (Switzerland), 2021, 13, 2806.	2.7	1
148	An analysis of the ice temperature and velocity along the main flowline of Guliya Ice Cap of Western Kunlun Mountains based on glacier dynamical model. Chinese Science Bulletin, 2017, 62, 3910-3920.	0.7	1
149	Progresses in the ice formation of glaciers in China. Frontiers of Earth Science, 2008, 2, 346-355.	0.5	0
150	Expansion of moraine-dammed glacial lake in the central Himalayas from 1977 to 2009., 2011, , .		0
151	Radar signal simulation on investigation of subsurface structure by radar ice depth sounder. , 2014, , .		O
152	Multilayer simulations for Martian subsurface radar soundings. , 2015, , .		0
153	Analysis on the Evolution and Microphysical Characteristics of Two Consecutive Hailstorms in Spring in Yunnan, China. Atmosphere, 2021, 12, 63.	2.3	0