Rajaram S Mane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7000890/publications.pdf Version: 2024-02-01

		31976	54911
324	11,517	53	84
papers	citations	h-index	g-index
333	333	333	11553
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Room-temperature solution-processed sharp-edged nanoshapes of molybdenum oxide for supercapacitor and electrocatalysis applications. Chemical Engineering Journal, 2022, 433, 133627.	12.7	13
2	Self-assembled α-Fe2O3-GO nanocomposites: Studies on physical, magnetic and ammonia sensing properties. Materials Chemistry and Physics, 2022, 278, 125617.	4.0	13
3	Inherent characteristics of ultra-photosensitive Al/Cu–CeO ₂ /p-Si metal oxide semiconductor diodes. Journal of Materials Chemistry C, 2022, 10, 1445-1457.	5.5	7
4	Ammonia gas sensing and magnetic permeability of enhanced surface area and high porosity lanthanum substituted Co–Zn nano ferrites. Ceramics International, 2022, 48, 15043-15055.	4.8	21
5	Grain and grain boundaries influenced magnetic and dielectric properties of lanthanum-doped copper cadmium ferrites. Journal of Materials Science: Materials in Electronics, 2022, 33, 7636-7647.	2.2	7
6	Human urine-derived naturally heteroatom doped highly porous carbonaceous material for gas sensing and supercapacitor applications. Ceramics International, 2022, 48, 28942-28950.	4.8	4
7	Assessment of antibacterial and anti-biofilm effects of zinc ferrite nanoparticles against Klebsiella pneumoniae. Folia Microbiologica, 2022, 67, 747-755.	2.3	5
8	Effect of Pd-Sensitization on Poisonous Chlorine Gas Detection Ability of TiO2: Green Synthesis and Low-Temperature Operation. Sensors, 2022, 22, 4200.	3.8	3
9	Self-promoted Nickel-chalcogenide Nanostructures: A Novel Electrochemical Supercapacitor Device-design Strategy. Materials Research Bulletin, 2022, 156, 111975.	5.2	8
10	Bismuth oxide-doped graphene-oxide nanocomposite electrode for energy storage application. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 651, 129690.	4.7	16
11	Solution-method processed Bi-type nanoelectrode materials for supercapacitor applications: A review. Renewable and Sustainable Energy Reviews, 2021, 135, 110084.	16.4	30
12	Energy storage potential of sprayed <i>α</i> -MoO ₃ thin films. New Journal of Chemistry, 2021, 45, 582-589.	2.8	14
13	Tungsten oxides: green and sustainable heterogeneous nanocatalysts for the synthesis of bioactive heterocyclic compounds. Dalton Transactions, 2021, 50, 2032-2041.	3.3	4
14	Recasting Ni-foam into NiF ₂ nanorod arrays <i>via</i> a hydrothermal process for hydrogen evolution reaction application. Dalton Transactions, 2021, 50, 6500-6505.	3.3	14
15	Ultra-sensitive behaviour of ruthenium-doped nickel ferrite thin film humidity sensor. Journal of Experimental Nanoscience, 2021, 16, 43-50.	2.4	10
16	Hopping Electrochemical Supercapacitor Performance of Ultrathin BiOCl Petals Grown by a Room-Temperature Soft-Chemical Process. Energy & Fuels, 2021, 35, 6892-6897.	5.1	12
17	Coconut-Water-Mediated Carbonaceous Electrode: A Promising Eco-Friendly Material for Bifunctional Water Splitting Application. ACS Omega, 2021, 6, 12623-12630.	3.5	7
18	Porous metal-graphene oxide nanocomposite sensors with high ammonia detectability. Journal of Colloid and Interface Science, 2021, 589, 401-410.	9.4	34

#	Article	IF	CITATIONS
19	Structure-sensitive magnetic properties of nanocrystalline Co2+-substituted Ni–Zn ferrite aluminates. Ceramics International, 2021, 47, 26492-26500.	4.8	15
20	"Mn―Incorporated Coconut Water Derived Carbon for Supercapacitor Application. ECS Journal of Solid State Science and Technology, 2021, 10, 091003.	1.8	2
21	Natural coconut liquid derived nanosheets structured carbonaceous material for high-performance supercapacitors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626, 127012.	4.7	7
22	Ultraviolet induced random mutagenesis in Bacillus amyloliquefaciens (MF 510169) for improving biodiesel production. Fuel, 2021, 304, 121380.	6.4	11
23	Hydrangea-type bismuth molybdate as a room-temperature smoke and humidity sensor. Sensors and Actuators B: Chemical, 2021, 348, 130643.	7.8	11
24	Role of composition and grain size in controlling the structure sensitive magnetic properties of Sm3+ substituted nanocrystalline Co-Zn ferrites. Journal of Rare Earths, 2020, 38, 1069-1075.	4.8	37
25	Superparamagnetic cobalt-substituted copper zinc ferrialuminate: synthesis, morphological, magnetic and dielectric properties investigation. Journal of Sol-Gel Science and Technology, 2020, 93, 633-642.	2.4	17
26	Utilization of pomegranate waste-peel as a novel substrate for biodiesel production by <i>Bacillus cereus</i> (MF908505). Sustainable Energy and Fuels, 2020, 4, 1199-1207.	4.9	9
27	Tailoring ammonia gas sensing performance of La3+-doped copper cadmium ferrite nanostructures. Solid State Sciences, 2020, 100, 106089.	3.2	28
28	Pristine and palladium-doped perovskite bismuth ferrites and their nitrogen dioxide gas sensor studies. Journal of King Saud University - Science, 2020, 32, 3125-3130.	3.5	18
29	Electrochemically grown MnO ₂ nanowires for supercapacitor and electrocatalysis applications. New Journal of Chemistry, 2020, 44, 17864-17870.	2.8	33
30	In-vitro antibacterial and anti-biofilm efficiencies of chitosan-encapsulated zinc ferrite nanoparticles. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	19
31	Ferrites in energy. , 2020, , 173-187.		2
32	Effect of Vd-doping on dielectric, magnetic and gas sensing properties of nickel ferrite nanoparticles. Journal of Materials Science: Materials in Electronics, 2020, 31, 16728-16736.	2.2	11
33	Mesoporous Carbon of Carbonized Human Urine Waste: A Valuable Heterogeneous Catalyst for Chromene and Xanthene Derivative Synthesis. Catalysts, 2020, 10, 1369.	3.5	10
34	Antimycobacterial, Antioxidant and Cytotoxicity Activities of Mesoporous Nickel Oxide Nanoparticles for Healthcare. Coatings, 2020, 10, 1242.	2.6	4
35	Room-temperature synthesis and CO ₂ -gas sensitivity of bismuth oxide nanosensors. RSC Advances, 2020, 10, 17217-17227.	3.6	26
36	Bismuth-Ferrite-Based Electrochemical Supercapacitors. SpringerBriefs in Materials, 2020, , .	0.3	7

#	Article	IF	CITATIONS
37	Electrodeposited spruce leaf-like structured copper bismuth oxide electrode for supercapacitor application. Microelectronic Engineering, 2020, 229, 111359.	2.4	16
38	Self-grown one-dimensional nickel sulfo-selenide nanostructured electrocatalysts for water splitting reactions. International Journal of Hydrogen Energy, 2020, 45, 15904-15914.	7.1	25
39	NiF ₂ Nanorod Arrays for Supercapattery Applications. ACS Omega, 2020, 5, 9768-9774.	3.5	19
40	Ferrites for Electrochemical Supercapacitors. , 2020, , 83-122.		7
41	Structural modifications in Co–Zn nanoferrites by Gd substitution triggering to dielectric and gas sensing applications. Journal of Alloys and Compounds, 2020, 844, 156178.	5.5	30
42	Facile synthesis of Bi2O3@MnO2 nanocomposite material: A promising electrode for high performance supercapacitors. Solid State Sciences, 2020, 102, 106158.	3.2	29
43	Facile one-step hydrothermal synthesis and room-temperature NO2 sensing application of α-Fe2O3 sensor. Materials Chemistry and Physics, 2020, 246, 122799.	4.0	21
44	The role of La3+ substitution in modification of the magnetic and dielectric properties of the nanocrystalline Co-Zn ferrites. Journal of Magnetism and Magnetic Materials, 2020, 502, 166490.	2.3	45
45	A reliable chemiresistive sensor of nickel-doped tin oxide (Ni-SnO ₂) for sensing carbon dioxide gas and humidity. RSC Advances, 2020, 10, 3796-3804.	3.6	30
46	Continuous hydrothermal flow-inspired synthesis and ultra-fast ammonia and humidity room-temperature sensor activities of WO ₃ nanobricks. Materials Research Express, 2020, 7, 015076.	1.6	20
47	Phase controlled synthesis of bifunctional TiO ₂ nanocrystallites <i>via</i> <scp>d</scp> -mannitol for dye-sensitized solar cells and heterogeneous catalysis. RSC Advances, 2020, 10, 14826-14836.	3.6	8
48	Enhanced humidity sensing properties of Fe-doped CeO2 nanoparticles. Journal of Materials Science: Materials in Electronics, 2020, 31, 8815-8824.	2.2	4
49	Room-temperature chemical synthesis of 3â€D dandelionâ€ŧype nickel chloride (NiCl2@NiF) supercapattery nanostructured materials. Journal of Colloid and Interface Science, 2020, 578, 547-554.	9.4	13
50	Electrochemical Supercapacitors: History, Types, Designing Processes, Operation Mechanisms, and Advantages and Disadvantages. SpringerBriefs in Materials, 2020, , 11-36.	0.3	6
51	Electrochemical Supercapacitors of Bismuth Ferrites. SpringerBriefs in Materials, 2020, , 69-84. Room temperature LPG sensing properties of tin substituted copper ferrite <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><</mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math 	0.3	2

#	Article	IF	CITATIONS
55	Role of Ruthenium in the Dielectric, Magnetic Properties of Nickel Ferrite (Ru–NiFe ₂ O ₄) Nanoparticles and Their Application in Hydrogen Sensors. ACS Omega, 2019, 4, 12919-12926.	3.5	26
56	Synthesis of Bi2O3-MnO2 Nanocomposite Electrode for Wide-Potential Window High Performance Supercapacitor. Energies, 2019, 12, 3320.	3.1	42
57	Microwave-assisted hierarchical bismuth oxide worm-like nanostructured films as room-temperature hydrogen gas sensors. Journal of Alloys and Compounds, 2019, 802, 244-251.	5.5	32
58	Facile Chemical Synthesis and Potential Supercapattery Energy Storage Application of Hydrangea-type Bi ₂ MoO ₆ . ACS Omega, 2019, 4, 11093-11102.	3.5	57
59	Room temperature LPG sensing properties using spray pyrolysis deposited nano-crystalline CdO thin films. Surfaces and Interfaces, 2019, 17, 100339.	3.0	24
60	Advances in Applications of Polymer Nanocomposites. Advances in Materials Science and Engineering, 2019, 2019, 1-2.	1.8	3
61	Ambient temperature operable Bi-Co ferrite NO2 sensors with high sensitivity and selectivity. Materials Research Bulletin, 2019, 115, 150-158.	5.2	11
62	Sol–gel auto-combustionÂmediated cobalt ferrite nanoparticles: a potential material for antimicrobial applications. International Nano Letters, 2019, 9, 141-147.	5.0	32

#	Article	IF	CITATIONS
73	Room Temperature Gas Sensing Properties of Sn-Substituted Nickel Ferrite (NiFe2O4) Thin Film Sensors Prepared by Chemical Co-Precipitation Method. Journal of Electronic Materials, 2018, 47, 3403-3408.	2.2	13
74	High current density cation-exchanged SnO ₂ –CdSe/ZnSe and SnO ₂ –CdSe/SnSe quantum-dot photoelectrochemical cells. New Journal of Chemistry, 2018, 42, 9028-9036.	2.8	5
75	Hydrothermally grown α-MnO2 interlocked mesoporous micro-cubes of several nanocrystals as selective and sensitive nitrogen dioxide chemoresistive gas sensors. Applied Surface Science, 2018, 442, 178-184.	6.1	34
76	Fabrication of tin substituted nickel ferrite (Sn-NiFe2O4) thin film and its application as opto-electronic humidity sensor. Sensors and Actuators A: Physical, 2018, 272, 267-273.	4.1	44
77	Performance enhancement of mesoporous TiO2-based perovskite solar cells by ZnS ultrathin-interfacial modification layer. Journal of Alloys and Compounds, 2018, 738, 405-414.	5.5	36
78	Sprayed tungsten-doped and undoped bismuth ferrite nanostructured films for reducing and oxidizing gas sensor applications. Sensors and Actuators A: Physical, 2018, 271, 37-43.	4.1	28
79	Study of gamma ray energy absorption and exposure buildup factors for ferrites by geometric progression fitting method. Radiation Effects and Defects in Solids, 2018, 173, 329-338.	1.2	13
80	Bismuth Oxychloride/MXene symmetric supercapacitor with high volumetric energy density. Electrochimica Acta, 2018, 271, 351-360.	5.2	144
81	Enhanced acetone sensing properties of titanium dioxide nanoparticles with a sub-ppm detection limit. Sensors and Actuators B: Chemical, 2018, 255, 1701-1710.	7.8	110
82	Microwave-assisted synthesis and magneto-electrical properties of Mg-Zn ferrimagnetic oxide nanostructures. Physica B: Condensed Matter, 2018, 530, 177-182.	2.7	34
83	Enhanced DSSCs performance of TiO2 nanostructure by surface passivation layers. Materials Research Bulletin, 2018, 99, 491-495.	5.2	17
84	Hybrid composite polyaniline-nickel hydroxide electrode materials for supercapacitor applications. Heliyon, 2018, 4, e00801.	3.2	20
85	Promoted room-temperature LPG gas sensor activities of graphene oxide@Fe ₂ O ₃ composite sensor over individuals. Materials Research Express, 2018, 5, 125001.	1.6	15
86	Annealing environment effects on the electrochemical behavior of supercapacitors using Ni foam current collectors. Materials Research Express, 2018, 5, 125004.	1.6	8
87	Sprayed bismuth oxide interconnected nanoplate supercapacitor electrode materials. Applied Surface Science, 2018, 453, 214-219.	6.1	47
88	Metal-free heterogeneous and mesoporous biogenic graphene-oxide nanoparticle-catalyzed synthesis of bioactive benzylpyrazolyl coumarin derivatives. RSC Advances, 2018, 8, 17373-17379.	3.6	26
89	Low-Temperature Ionic Layer Adsorption and Reaction Grown Anatase TiO2 Nanocrystalline Films for Efficient Perovskite Solar Cell and Gas Sensor Applications. Scientific Reports, 2018, 8, 11016.	3.3	36
90	Magneto-structural behaviour of Gd doped nanocrystalline Co-Zn ferrites governed by domain wall movement and spin rotations. Ceramics International, 2018, 44, 21675-21683.	4.8	64

#	Article	IF	CITATIONS
91	Seawater electrolyte-mediated high volumetric MXene-based electrochemical symmetric supercapacitors. Dalton Transactions, 2018, 47, 8676-8682.	3.3	45
92	Chemical bath deposition of ZnO films at low pH for high chemoresistivity towards NO2 gas. Materials Research Express, 2018, 5, 075021.	1.6	4
93	Enhancement in room-temperature ammonia sensor activity of size-reduced cobalt ferrite nanoparticles on <i>î³</i> -irradiation. Materials Research Express, 2018, 5, 065035.	1.6	18
94	Room-temperature successive ion transfer chemical synthesis and the efficient acetone gas sensor and electrochemical energy storage applications of Bi ₂ O ₃ nanostructures. New Journal of Chemistry, 2018, 42, 12530-12538.	2.8	37
95	Low-temperature wet chemical synthesis strategy of In2O3 for selective detection of NO2 down to ppb levels, lournal of Allovs and Compounds, 2018, 735, 2102-2110 Structural, dielectric and enhanced soft magnetic properties of lithium (Li) substituted nickel ferrite (complement synthesized soft magnetic properties of lithium =="si6 gif") Ti FTO20.0.0 rgBT (Overlock -	5.5	26
96	(<mml:math)="" 0="" 3<="" altimg="si6.gif" etqq0="" overlock="" rgbt="" td="" tj="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>2.3</td><td>34</td></mml:math>	2.3	34
97	Magnet Journal of the Korean Ceramic Society, 2018, 55, 407-418.	2.3	19
98	Electrochemical supercapacitors of cobalt hydroxide nanoplates grown on conducting cadmium oxide base-electrodes. Arabian Journal of Chemistry, 2017, 10, 515-522.	4.9	16
99	NiO@CuO@Cu bilayered electrode: two-step electrochemical synthesis supercapacitor properties. Journal of Solid State Electrochemistry, 2017, 21, 2609-2614.	2.5	14
100	Nanostructured tin oxide films: Physical synthesis, characterization, and gas sensing properties. Journal of Colloid and Interface Science, 2017, 493, 162-170.	9.4	49
101	Solution-processed rapid synthesis strategy of Co3O4 for the sensitive and selective detection of H2S. Sensors and Actuators B: Chemical, 2017, 245, 524-532.	7.8	71
102	Enhanced electrochemical activity of perforated graphene in nickel-oxide-based supercapacitors and fabrication of potential asymmetric supercapacitors. Sustainable Energy and Fuels, 2017, 1, 529-539.	4.9	16
103	Low-temperature chemical synthesis of rutile and anatase mixed phase TiO2 nanostructures for DSSCs photoanodes. Journal of Alloys and Compounds, 2017, 704, 187-192.	5.5	17
104	Pseudocapacitive performance of a solution-processed β-Co(OH) ₂ electrode monitored through its surface morphology and area. Dalton Transactions, 2017, 46, 3393-3399.	3.3	19
105	High volumetric energy density annealed-MXene-nickel oxide/MXene asymmetric supercapacitor. RSC Advances, 2017, 7, 11000-11011.	3.6	166
106	Direct successive ionic layer adsorption and reaction (SILAR) synthesis of nickel and cobalt hydroxide composites for supercapacitor applications. Journal of Alloys and Compounds, 2017, 722, 809-817.	5.5	45
107	The structural and magnetic properties of dual phase cobalt ferrite. Scientific Reports, 2017, 7, 2524.	3.3	93
108	Electrochemical deposition of cadmium selenide films and their properties: a review. Journal of Solid State Electrochemistry, 2017, 21, 2517-2530.	2.5	19

#	Article	IF	CITATIONS
109	A binder-free wet chemical synthesis approach to decorate nanoflowers of bismuth oxide on Ni-foam for fabricating laboratory scale potential pencil-type asymmetric supercapacitor device. Dalton Transactions, 2017, 46, 6601-6611.	3.3	118
110	Galvanostatically electroplated MnO2 nanoplate-type electrode for potential electrochemical pseudocapacitor application. Journal of Solid State Electrochemistry, 2017, 21, 1817-1826.	2.5	19
111	Low-Temperature Solution-Processed Thiophene-Sulfur-Doped Planar ZnO Nanorods as Electron-Transporting Layers for Enhanced Performance of Organic Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 3831-3841.	8.0	8
112	Gold sensitized sprayed SnO2 nanostructured film for enhanced LPG sensing. Journal of Analytical and Applied Pyrolysis, 2017, 124, 362-368.	5.5	32
113	Flexible camphor sulfonic acid-doped PAni/α-Fe2O3 nanocomposite films and their room temperature ammonia sensing activity. Materials Chemistry and Physics, 2017, 189, 191-197.	4.0	45
114	Non-magnetic thin films for magnetic field position sensor. Sensors and Actuators A: Physical, 2017, 254, 89-94.	4.1	15
115	Large, Linear, and Tunable Positive Magnetoresistance of Mechanically Stable Graphene Foam–Toward High-Performance Magnetic Field Sensors. ACS Applied Materials & Interfaces, 2017, 9, 1891-1898.	8.0	27
116	Cation distribution, magnetic properties and cubic-perovskite phase transition in bismuth-doped nickel ferrite. Solid State Sciences, 2017, 74, 88-94.	3.2	28
117	Irreconcilable room temperature magnetotransport properties of polypyrrole nanoparticles and nanorods. Journal Physics D: Applied Physics, 2017, 50, 365002.	2.8	8
118	Ethanol gas sensing properties of hydrothermally grown α-MnO2 nanorods. Journal of Alloys and Compounds, 2017, 727, 362-369.	5.5	54
119	A simple wet-chemical synthesis, reaction mechanism, and charge storage application of cobalt oxide electrodes of different morphologies. Electrochimica Acta, 2017, 253, 151-162.	5.2	22
120	Natural Carbonized Sugar as a Low-Temperature Ammonia Sensor Material: Experimental, Theoretical, and Computational Studies. ACS Applied Materials & Interfaces, 2017, 9, 43051-43060.	8.0	32
121	Solution-processed nickel oxide films and their liquefied petroleum gas sensing activity. Journal of Alloys and Compounds, 2017, 695, 2008-2015.	5.5	41
122	Solid-state synthesis strategy of ZnO nanoparticles for the rapid detection of hazardous Cl2. Sensors and Actuators B: Chemical, 2017, 238, 1102-1110.	7.8	71
123	Green synthesis and dye-sensitized solar cell application of rutile and anatase TiO2 nanorods. Journal of Solid State Electrochemistry, 2017, 21, 2713-2718.	2.5	15
124	Electrochemical synthesis and potential electrochemical energy storage performance of nodule-type polyaniline. Journal of Colloid and Interface Science, 2017, 487, 458-464.	9.4	28
125	Tailoring the morphology followed by the electrochemical performance of NiMn-LDH nanosheet arrays through controlled Co-doping for high-energy and power asymmetric supercapacitors. Dalton Transactions, 2017, 46, 12876-12883.	3.3	38
126	Sprayed zinc oxide films: Ultra-violet light-induced reversible surface wettability and platinum-sensitization-assisted improved liquefied petroleum gas response. Journal of Colloid and Interface Science, 2016, 480, 109-117.	9.4	33

#	Article	IF	CITATIONS
127	Hexamethylenetetramine-mediated TiO2 films: Facile chemical synthesis strategy and their use in nitrogen dioxide detection. Materials Letters, 2016, 173, 9-12.	2.6	13
128	Protective role of biogenic selenium nanoparticles in immunological and oxidative stress generated by enrofloxacin in broiler chicken. Dalton Transactions, 2016, 45, 8845-8853.	3.3	30
129	An eco-friendly physicocultural-based rapid synthesis of selenium nanoparticles. RSC Advances, 2016, 6, 48420-48426.	3.6	14
130	Pristine and cadmium-doped zinc oxide: chemical synthesis and characterizations. Journal of Materials Science: Materials in Electronics, 2016, 27, 12335-12339.	2.2	14
131	Synthesis of nickel sulfide as a promising electrode material for pseudocapacitor application. RSC Advances, 2016, 6, 112589-112593.	3.6	30
132	Structural, morphological and electrochemical supercapacitive properties of sprayed manganese ferrite thin film electrode. Journal of Analytical and Applied Pyrolysis, 2016, 122, 224-229.	5.5	35
133	D-sorbitol-induced phase control of TiO2 nanoparticles and its application for dye-sensitized solar cells. Scientific Reports, 2016, 6, 20103.	3.3	93
134	Polyaniline-cobalt hydroxide hybrid nanostructures and their supercapacitor studies. Materials Chemistry and Physics, 2016, 180, 226-236.	4.0	35
135	Co-functionalized organic/inorganic hybrid ZnO nanorods as electron transporting layers for inverted organic solar cells. Nanoscale, 2016, 8, 5024-5036.	5.6	22
136	Facile Synthesis of Microsphere Copper Cobalt Carbonate Hydroxides Electrode for Asymmetric Supercapacitor. Electrochimica Acta, 2016, 188, 898-908.	5.2	126
137	Nanomorphology-dependent pseudocapacitive properties of NiO electrodes engineered through a controlled potentiodynamic electrodeposition process. RSC Advances, 2016, 6, 24478-24483.	3.6	34
138	Photosensitization of ZnO nanowire-based electrodes using one-step hydrothermally synthesized CdSe/CdS (core/shell) sensitizer. Solar Energy, 2016, 125, 125-134.	6.1	15
139	Mixed-phase bismuth ferrite nanoflake electrodes for supercapacitor application. Applied Nanoscience (Switzerland), 2016, 6, 511-519.	3.1	92
140	Revisiting Metal Sulfide Semiconductors: A Solutionâ€Based General Protocol for Thin Film Formation, Hall Effect Measurement, and Application Prospects. Advanced Functional Materials, 2015, 25, 5739-5747.	14.9	70
141	Highâ€Performance Platinumâ€Free Dyeâ€Sensitized Solar Cells with Molybdenum Disulfide Films as Counter Electrodes. ChemPhysChem, 2015, 16, 3959-3965.	2.1	27
142	Influence of Bi ³⁺ -doping on the magnetic and Mössbauer properties of spinel cobalt ferrite. Dalton Transactions, 2015, 44, 6384-6390.	3.3	108
143	Electrochemical supercapacitor development based on electrodeposited nickel oxide film. RSC Advances, 2015, 5, 51961-51965.	3.6	82
144	Synthesis and structural, morphological, compositional, optical and electrical properties of DBSA-doped PPy–WO3 nanocomposites. Progress in Organic Coatings, 2015, 87, 88-94.	3.9	14

#	Article	IF	CITATIONS
145	Biosynthesis of silver nanoparticles by using <i>Ganoderma</i> -mushroom extract. Modern Physics Letters B, 2015, 29, 1540047.	1.9	7
146	Microstructure and electro-optical properties of Cu–Ni co-doped AZO transparent conducting thin films by sol–gel method. Journal of Materials Science: Materials in Electronics, 2015, 26, 1151-1158.	2.2	3
147	Ultra-sensitive polyaniline–iron oxide nanocomposite room temperature flexible ammonia sensor. RSC Advances, 2015, 5, 68964-68971.	3.6	91
148	Morphology-inspired low-temperature liquefied petroleum gas sensors of indium oxide. Scripta Materialia, 2015, 107, 54-58.	5.2	9
149	An ion exchange mediated shape-preserving strategy for constructing 1-D arrays of porous CoS _{1.0365} nanorods for electrocatalytic reduction of triiodide. Journal of Materials Chemistry A, 2015, 3, 7900-7909.	10.3	57
150	Diameter-dependent electrochemical supercapacitive properties of anodized titanium oxide nanotubes. Scripta Materialia, 2015, 104, 60-63.	5.2	11
151	La ₂ O ₃ -encapsulated SnO ₂ nanocrystallite-based photoanodes for enhanced DSSCs performance. Dalton Transactions, 2015, 44, 3075-3081.	3.3	12
152	Interfacial Engineering Importance of Bilayered ZnO Cathode Buffer on the Photovoltaic Performance of Inverted Organic Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 7951-7960.	8.0	37
153	Calcium carbonate electronic-insulating layers improve the charge collection efficiency of tin oxide photoelectrodes in dye-sensitized solar cells. Electrochimica Acta, 2015, 167, 379-387.	5.2	7
154	Bio-green synthesis of Ni-doped tin oxide nanoparticles and its influence on gas sensing properties. RSC Advances, 2015, 5, 72849-72856.	3.6	84
155	Synthesis and electrochemical supercapacitive performance of nickel–manganese ferrite composite films. Journal of Analytical and Applied Pyrolysis, 2015, 116, 177-182.	5.5	38
156	Selenium nanostructures: microbial synthesis and applications. RSC Advances, 2015, 5, 92799-92811.	3.6	65
157	Simple and low-temperature polyaniline-based flexible ammonia sensor: a step towards laboratory synthesis to economical device design. Journal of Materials Chemistry C, 2015, 3, 9461-9468.	5.5	130
158	Improved Photoelectrochemical Cell Performance of Tin Oxide with Functionalized Multiwalled Carbon Nanotubes–Cadmium Selenide Sensitizer. ACS Applied Materials & Interfaces, 2015, 7, 25094-25104.	8.0	24
159	Preparation of camphor-sulfonic acid doped PPy–NiO hybrid nanocomposite for detection of toxic nitrogen dioxide. Synthetic Metals, 2015, 209, 426-433.	3.9	32
160	Facile synthesis of manganese carbonate quantum dots/Ni(HCO ₃) ₂ –MnCO ₃ composites as advanced cathode materials for high energy density asymmetric supercapacitors. Journal of Materials Chemistry A, 2015, 3, 22102-22117.	10.3	127
161	Sputtering and sulfurization-combined synthesis of a transparent WS ₂ counter electrode and its application to dye-sensitized solar cells. RSC Advances, 2015, 5, 103567-103572.	3.6	32
162	Electrochemical supercapacitors of anodized-brass-templated NiO nanostrutured electrodes. Scripta Materialia, 2015, 99, 29-32.	5.2	32

#	Article	IF	CITATIONS
163	Room Temperature Ammonia Gas Sensing Properties of Biosynthesized tin Oxide Nanoparticle Thin Films. Current Nanoscience, 2015, 11, 253-260.	1.2	10
164	Electrochemical Properties of Anodized Copper Hydroxide Nanostructures. Journal of Nanoengineering and Nanomanufacturing, 2014, 4, 168-172.	0.3	9
165	Photovoltaic properties of nanocrystalline SnSe–CdS. Materials Letters, 2014, 115, 244-247.	2.6	34
166	Highly efficient and stable DSSCs of wet-chemically synthesized MoS ₂ counter electrode. Dalton Transactions, 2014, 43, 5256-5259.	3.3	77
167	Development of highly transparent seedless ZnO nanorods engineered for inverted polymer solar cells. Nanoscale, 2014, 6, 12130-12141.	5.6	25
168	Effect of a deposition container on the nanostructural growth and DSSC application of rutile TiO ₂ . Journal of Materials Chemistry A, 2014, 2, 478-483.	10.3	9
169	Promising ZnO-based DSSC performance using HMP molecular dyes of high extinction coefficients. Dalton Transactions, 2014, 43, 11305-11308.	3.3	22
170	Studies on facile synthesis of polyaniline/cadmium sulfide composites and their morphology. High Performance Polymers, 2014, 26, 660-665.	1.8	5
171	Spraying distance and titanium chloride surface treatment effects on DSSC performance of electrosprayed SnO ₂ photoanodes. RSC Advances, 2014, 4, 35919.	3.6	15
172	Low-temperature solution-processed Zn-doped SnO ₂ photoanodes: enhancements in charge collection efficiency and mobility. RSC Advances, 2014, 4, 20527-20530.	3.6	13
173	Polyelectrolyte multilayer-assisted fabrication of p-Cu2S/n-CdS heterostructured thin-film phototransistors. Journal of Materials Chemistry C, 2014, 2, 8012-8017.	5.5	10
174	A coordination chemistry approach for shape controlled synthesis of indium oxide nanostructures and their photoelectrochemical properties. Journal of Materials Chemistry A, 2014, 2, 5490-5498.	10.3	65
175	DSSCs synergic effect in thin metal oxide layer-functionalized SnO2 photoanodes. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 295, 64-69.	3.9	22
176	Mass scale sugar-mediated green synthesis and DSSCs application of tin oxide nanostructured photoanode: Effect of zinc sulphide layering on charge collection efficiency. Electrochimica Acta, 2014, 147, 408-417.	5.2	13
177	A simple, room temperature, solid-state synthesis route for metal oxide nanostructures. Journal of Materials Chemistry A, 2014, 2, 13519-13526.	10.3	37
178	Electrochemical Supercapacitive Properties of Sprayed Nickel Ferrite Nanostructured Thin Film Electrode. Journal of Nanoengineering and Nanomanufacturing, 2014, 4, 93-97.	0.3	10
179	Concentration-dependent electrochemical supercapacitive performance of Fe2O3. Current Applied Physics, 2013, 13, 985-989.	2.4	53
180	Photoelectrochemical cells by design: 3D nanoporous CdO–CdSe architectures on ITO. Journal of Materials Chemistry A, 2013, 1, 10436.	10.3	9

#	Article	IF	CITATIONS
181	Hematite nanostructures: Morphology-mediated liquefied petroleum gas sensors. Sensors and Actuators B: Chemical, 2013, 188, 669-674.	7.8	31
182	Current density enhancement in ZnO/CdSe photoelectrochemical cells in the presence of a charge separating SnO2 nanoparticles interfacing-layer. Dalton Transactions, 2013, 42, 13065.	3.3	14
183	Boron-doped cadmium oxide composite structures and their electrochemical measurements. Materials Research Bulletin, 2013, 48, 2978-2983.	5.2	33
184	Falcipain inhibitors as potential therapeutics for resistant strains of malaria: a patent review. Expert Opinion on Therapeutic Patents, 2013, 23, 165-187.	5.0	22
185	Enhanced synergism of antibiotics with zinc oxide nanoparticles against extended spectrum β-lactamase producers implicated in urinary tract infections. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	37
186	Bismuth oxide nanoplates-based efficient DSSCs: Influence of ZnO surface passivation layer. Electrochimica Acta, 2013, 111, 593-600.	5.2	42
187	Crystallographic phase-mediated dye-sensitized solar cell performance of ZnO nanostructures. Scripta Materialia, 2013, 69, 291-294.	5.2	7
188	Enhanced gas sensitivity in TiO2 nanoneedles grown on upright SnO2 nanoplates. Scripta Materialia, 2013, 68, 735-738.	5.2	14
189	Low temperature chemically synthesized rutile TiO2 photoanodes with high electron lifetime for organic dye-sensitized solar cells. Chemical Communications, 2013, 49, 2921.	4.1	37
190	Templateâ€free electrochemical synthesis and electrochemical supercapacitors application of polyaniline nanobuds. Journal of Applied Polymer Science, 2013, 128, 3660-3664.	2.6	15
191	Monoclinic WO3 nanorods–rutile TiO2 nanoparticles core–shell interface for efficient DSSCs. Dalton Transactions, 2013, 42, 10085.	3.3	23
192	Liquefied petroleum gas sensing properties of sprayed nanocrystalline zinc oxide thin films. Sensors and Actuators A: Physical, 2013, 189, 339-343.	4.1	9
193	Anodically fabricated self-organized nanoporous tin oxide film as a supercapacitor electrode material. RSC Advances, 2013, 3, 9431.	3.6	38
194	Electrodeposition of copper selenide films from acidic bath and their properties. , 2012, , .		2
195	Photoelectrochemistry of solution processed hematite nanoparticles, nanoparticle-chains and nanorods. RSC Advances, 2012, 2, 11808.	3.6	10
196	Roughness-based monitoring of transparency and conductivity in boron-doped ZnO thin films prepared by spray pyrolysis. Materials Research Bulletin, 2012, 47, 4257-4262.	5.2	25
197	SnO2 nanowall-arrays coated with rutile-TiO2 nanoneedles for high performance dye-sensitized solar cells. Dalton Transactions, 2012, 41, 10161.	3.3	23
198	Wet-chemical polyaniline nanorice mass-production for electrochemical supercapacitors. Synthetic Metals, 2012, 162, 1303-1307.	3.9	16

#	Article	IF	CITATIONS
199	Upright-standing SnO2 nanowalls: Fabrication, dual-photosensitization and photovoltaic properties. Chemical Physics Letters, 2012, 542, 66-69.	2.6	11
200	Nanocrystalline ZnO films deposited by spray pyrolysis: Effect of gas flow rate. International Journal of Self-Propagating High-Temperature Synthesis, 2012, 21, 178-182.	0.5	11
201	Efficient gas sensitivity in mixed bismuth ferrite micro (cubes) and nano (plates) structures. Materials Research Bulletin, 2012, 47, 4169-4173.	5.2	42
202	CdS buffer-layer free highly efficient ZnO-CdSe photoelectrochemical cells. Applied Physics Letters, 2012, 101, .	3.3	26
203	Functional Nanomaterials. Journal of Nanotechnology, 2012, 2012, 1-2.	3.4	1
204	Nitrogen-doped ZnO shells: Studies on optical transparency and electrical conductivity. Materials Research Bulletin, 2012, 47, 1246-1250.	5.2	7
205	Structural analysis and dye-sensitized solar cell application of electrodeposited tin oxide nanoparticles. Materials Letters, 2012, 79, 29-31.	2.6	21
206	pH Dependent Morphological Evolution of <i>β</i> Bi ₂ O ₃ /PANI Composite for Supercapacitor Applications. Journal of Nanoscience and Nanotechnology, 2011, 11, 589-592.	0.9	11
207	Baking impact on photoelectrochemical cells performance of electrodeposited CdSe films. Journal of Physics and Chemistry of Solids, 2011, 72, 1122-1127.	4.0	15
208	Indoline-dye immobilized ZnO nanoparticles for whopping 5.44% light conversion efficiency. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 222, 366-369.	3.9	25
209	A bismuth oxide nanoplate-based carbon dioxide gas sensor. Scripta Materialia, 2011, 65, 1081-1084.	5.2	87
210	Magnetic studies on one-step chemically synthesized nickel ferrite thin films. Ceramics International, 2011, 37, 3357-3360.	4.8	16
211	Self-organized growth of magnetic nanoporous thin film by alloy anodization. Microporous and Mesoporous Materials, 2011, 144, 200-204.	4.4	7
212	A simple CdS nanoparticles cascading approach for boosting N3 dye/ZnO nanoplates DSSCs overall performance. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 217, 267-270.	3.9	6
213	Cobalt Ferrite Nanocrystallites for Sustainable Hydrogen Production Application. International Journal of Electrochemistry, 2011, 2011, 1-6.	2.4	37
214	Large area (9×9cm2) electrostatically sprayed nanocrystalline zincite thin films for hydrogen production application. International Journal of Hydrogen Energy, 2010, 35, 6549-6553.	7.1	9
215	Stereospecific growth of densely populated rutile mesoporous TiO2nanoplate films: a facile low temperature chemical synthesis approach. Nanotechnology, 2010, 21, 105603.	2.6	8
216	Influences in high quality zinc oxide films and their photoelectrochemical performance. Journal of Alloys and Compounds, 2010, 503, 416-421.	5.5	39

#	Article	IF	CITATIONS
217	Electrochemically intercalated indium-tin-oxide/poly(3-hexylthiophene): A solid-state heterojunction solar cell. Journal of Chemical Physics, 2009, 130, 111101.	3.0	5
218	Room temperature synthesis of nanostructured mixed-ordered-vacancy compounds (OVCs) and chalcopyrite CuInSe2(CIS) thin films in alkaline chemical bath. Journal Physics D: Applied Physics, 2009, 42, 055313.	2.8	5
219	Contact angle measurement: A preliminary diagnostic method for evaluating the performance of ZnO platelet-based dye-sensitized solar cells. Scripta Materialia, 2009, 61, 12-15.	5.2	34
220	Electrochemical supercapacitor application of electroless surface polymerization of polyaniline nanostructures. Materials Chemistry and Physics, 2009, 113, 14-17.	4.0	52
221	Optimization of growth of ternary CuInS2 thin films by ionic reactions in alkaline chemical bath as n-type photoabsorber layer. Materials Chemistry and Physics, 2009, 116, 28-33.	4.0	23
222	Study on photoelectrochemical solar cells of nanocrystalline Cd0.7Zn0.3Se -water soluble conjugated polymer. Electrochimica Acta, 2009, 54, 3169-3175.	5.2	26
223	Preparation of transparent and conducting boron-doped ZnO electrode for its application in dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2009, 93, 524-527.	6.2	100
224	Electrochromism in indium-tin-oxide films for laser-writing application. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 1263-1266.	2.7	2
225	Electrochemical capacitive properties of micron-sized chemically grown cadmium oxide discrete crystals. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 1741-1745.	2.7	23
226	Growth of nanocrystalline CuIn3Se5 (OVC) thin films by ion exchange reactions at room temperature and their characterization as photo-absorbing layers. Applied Surface Science, 2009, 255, 8158-8163.	6.1	13
227	A novel HMP-2 dye of high extinction coefficient designed for enhancing the performance of ZnO platelets. Electrochemistry Communications, 2009, 11, 752-755.	4.7	20
228	Dye-sensitized solar cell and electrochemical supercapacitor applications of electrochemically deposited hydrophilic and nanocrystalline tin oxide film electrodes. Current Applied Physics, 2009, 9, 87-91.	2.4	56
229	Upright-standing ZnO nano-sheets growth using wet chemistry. Current Applied Physics, 2009, 9, 492-495.	2.4	15
230	Electrochemical capacitive properties of spray-pyrolyzed copper-ferrite thin films. Current Applied Physics, 2009, 9, S98-S100.	2.4	25
231	Liquid phase deposition of amorphous In2S3 nanorods: Effect of annealing on phase change. Current Applied Physics, 2009, 9, S62-S64.	2.4	18
232	Multiple band gap energy layered electrode for photoelectrochemical cells. Current Applied Physics, 2009, 9, 384-389.	2.4	9
233	ZnO Nanoparticlesâ^'CdS Quantum Dots/N3 Dye Molecules: Dual Photosensitization. Journal of Physical Chemistry C, 2009, 113, 7666-7669.	3.1	48
234	Aggregation-Free ZnO Nanocrystals Coupled HMP-2 Dye of Higher Extinction Coefficient for Enhancing Energy Conversion Efficiency. Journal of Physical Chemistry C, 2009, 113, 9206-9209.	3.1	32

#	Article	IF	CITATIONS
235	Efficient ZnO Nanowire Solid-State Dye-Sensitized Solar Cells Using Organic Dyes and Coreâ^'shell Nanostructures. Journal of Physical Chemistry C, 2009, 113, 18515-18522.	3.1	85
236	Effect of high electronic energy loss of 100MeV gold heavy ions in copper chalcogenides (CuX, X=S,) Tj ETQq0 1653-1658.	0 0 rgBT /C 3.1	Overlock 10 Tf 8
237	Structural and optical properties of electrodeposited Cd0.7Zn0.3Se thin films: Effect of annealing. Journal of Alloys and Compounds, 2009, 474, 210-213.	5.5	12
238	CBD grown ZnO-based gas sensors and dye-sensitized solar cells. Journal of Alloys and Compounds, 2009, 475, 304-311.	5.5	93
239	Optimization of growth of In2O3 nano-spheres thin films by electrodeposition for dye-sensitized solar cells. Journal of Alloys and Compounds, 2009, 479, 840-843.	5.5	65
240	Dye anchored ZnO nanoparticles: The positive and negative photoluminescence quenching effects. Journal of Applied Physics, 2009, 106, 084304.	2.5	6
241	Protective Antigen Detection Using Horizontally Stacked Hexagonal ZnO Platelets. Analytical Chemistry, 2009, 81, 4280-4284.	6.5	38
242	Hydrogel-Assisted Polyaniline Microfiber as Controllable Electrochemical Actuatable Supercapacitor. Journal of the Electrochemical Society, 2009, 156, A313.	2.9	61
243	Structural and optical properties of chemically synthesized monodispersed CdCr2S4 films. Journal of Physics and Chemistry of Solids, 2008, 69, 1802-1807.	4.0	9
244	Fluorine-doped zinc oxide transparent and conducting electrode by chemical spray synthesis. Applied Surface Science, 2008, 254, 6294-6297.	6.1	35
245	CdSe thin film growth: Primarily amorphous nanograins to self-assembled nanowires. Journal of Electroanalytical Chemistry, 2008, 615, 175-179.	3.8	21
246	Viologen-assisted manganese oxide electrode for improved electrochemical supercapacitors. Journal of Electroanalytical Chemistry, 2008, 624, 167-173.	3.8	19
247	Controlled repeated chemical growth of ZnO films for dye-sensitized solar cells. Current Applied Physics, 2008, 8, 549-553.	2.4	26
248	Structural and magnetic properties of single-step electrochemically deposited nanocrystalline cobalt ferrite thin films. Current Applied Physics, 2008, 8, 612-615.	2.4	10
249	Liquid-phase synthesized mesoporous electrochemical supercapacitors of nickel hydroxide. Electrochimica Acta, 2008, 53, 5016-5021.	5.2	56
250	Polymer-sensitized photoelectrochemical solar cells based on water-soluble polyacetylene and β-In2S3 nanorods. Electrochimica Acta, 2008, 54, 714-719.	5.2	14
251	Enhanced photocurrent in RuL2(NCS)2/di-(3-aminopropyl)-viologen/SnO2/ITO system. Materials Chemistry and Physics, 2008, 112, 208-212.	4.0	8
252	Morphology-Dependent Electrochemical Supercapacitor Properties of Indium Oxide. Electrochemical and Solid-State Letters, 2008, 11, A9.	2.2	40

#	Article	IF	CITATIONS
253	Direct Polymerized Polyaniline Nanostructures on Modified Indium-Tin Oxide Surface for Electrochemical Supercapacitors. Electrochemical and Solid-State Letters, 2008, 11, A167.	2.2	9
254	Field emission of bismuth sulfide upright-standing platelets. Journal of Applied Physics, 2008, 103, .	2.5	2
255	Nonthermal Electrochemical Synthesis of Single-Phase, Porous, Nanostructured BiFeO[sub 3] Platelets. Electrochemical and Solid-State Letters, 2007, 10, D1.	2.2	6
256	Room temperature PbS nanoparticle growth, incubation in porous TiO2 electrode for photosensitization application. Journal of Non-Crystalline Solids, 2007, 353, 1645-1649.	3.1	24
257	Implication of Liquid-Phase Deposited Amorphous RuO[sub 2] Electrode for Electrochemical Supercapacitor. Electrochemical and Solid-State Letters, 2007, 10, A225.	2.2	28
258	Co-deposition of TiO2/CdS films electrode for photo-electrochemical cells. Solar Energy, 2007, 81, 290-293.	6.1	24
259	Photoelectrochemical studies of chemically deposited nanocrystalline p-type HgS thin films. Solar Energy, 2007, 81, 648-652.	6.1	14
260	Cd0.5Zn0.5Se wide range composite thin films for solar cell buffer layer application. Applied Surface Science, 2007, 253, 3109-3112.	6.1	28
261	Photosensitization of nanocrystalline TiO2 film electrode with cadmium sulphoselenide. Applied Surface Science, 2007, 253, 3922-3926.	6.1	22
262	Preparation and characterization of ZnTe thin films by SILAR method. Applied Surface Science, 2007, 253, 4335-4337.	6.1	44
263	Electrochemically deposited photoactive CdIn2Se4 thin films: Structural and optical studies. Applied Surface Science, 2007, 253, 8588-8591.	6.1	10
264	Use of chemically synthesized ZnO thin film as a liquefied petroleum gas sensor. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2007, 137, 119-125.	3.5	76
265	Enhanced photocurrent generations in RuL2(NCS)2/di-(3-aminopropyl)-viologen self-assembled on In2O3 nanorods. Electrochemistry Communications, 2007, 9, 1502-1507.	4.7	14
266	Electrochemical supercapacitor application of pervoskite thin films. Electrochemistry Communications, 2007, 9, 1805-1809.	4.7	112
267	Systematic interconnected web-like architecture growth of sprayed TiO2 films. Micron, 2007, 38, 500-504.	2.2	23
268	Unprecedented coloration of rutile titanium dioxide nanocrystalline thin films. Micron, 2007, 38, 85-90.	2.2	16
269	CdSe nanofiber based photoelectrochemical cells: Influence of annealing temperatures. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 187, 133-137.	3.9	27
270	Development of morphological dependent chemically deposited nanocrystalline ZnO films for liquefied petroleum gas (LPG) sensor. Sensors and Actuators B: Chemical, 2007, 123, 882-887.	7.8	53

#	Article	IF	CITATIONS
271	Copper ferrite thin films: Single-step non-aqueous growth and properties. Journal of Crystal Growth, 2007, 303, 387-390.	1.5	14
272	Room temperature single-step electrosynthesized copper ferrite thin films and study of their magnetic properties. Journal of Magnetism and Magnetic Materials, 2007, 313, 69-75.	2.3	12
273	Nanocrystalline CdS-water-soluble conjugated-polymers: High performance photoelectrochemical cells. Applied Physics Letters, 2007, 90, 263503.	3.3	38
274	Electrochemical capacitive properties of cadmium oxide films. Electrochimica Acta, 2007, 53, 695-699.	5.2	37
275	A non-thermal chemical synthesis of hydrophilic and amorphous cobalt oxide films for supercapacitor application. Applied Surface Science, 2007, 253, 3952-3956.	6.1	70
276	Gold nanoparticle-catalysed [3 + 2]dipolar cycloaddition of 1,6-allenynebenzaldehydes: construction of polycyclic ring systems. Green Chemistry, 2006, 8, 25-28.	9.0	42
277	Achievement of 4.51% conversion efficiency using ZnO recombination barrier layer in TiO2 based dye-sensitized solar cells. Applied Physics Letters, 2006, 89, 253512.	3.3	122
278	Formation of highly textured (111) Bi2O3 films by anodization of electrodeposited bismuth films. Applied Surface Science, 2006, 252, 2747-2751.	6.1	28
279	Use of successive ionic layer adsorption and reaction (SILAR) method for amorphous titanium dioxide thin films growth. Applied Surface Science, 2006, 253, 421-424.	6.1	44
280	Tubular end-capped electrodeposited CdSe nanofibers: Enhanced photochemistry. Electrochemistry Communications, 2006, 8, 223-226.	4.7	29
281	Successive ionic layer adsorption and reaction (SILAR) trend for nanocrystalline mercury sulfide thin films growth. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 129, 59-63.	3.5	23
282	Use of modified chemical route for ZnSe nanocrystalline thin films growth: Study on surface morphology and physical properties. Applied Surface Science, 2006, 252, 5768-5775.	6.1	27
283	A simple and low temperature process for super-hydrophilic rutile TiO 2 thin films growth. Applied Surface Science, 2006, 253, 581-585.	6.1	14
284	Chemical synthesis of p-type nanocrystalline copper selenide thin films for heterojunction solar cells. Applied Surface Science, 2006, 253, 2123-2126.	6.1	38
285	p-Type crystalline HgCr2S4 semiconductor electrode synthesis and its photoelectrochemical studies. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 181, 33-36.	3.9	3
286	Nanobeads of crystalline ZnO synthesis from pyrolytic decomposition. Journal of Crystal Growth, 2006, 296, 6-10.	1.5	7
287	An effective use of nanocrystalline CdO thin films in dye-sensitized solar cells. Solar Energy, 2006, 80, 185-190.	6.1	137
288	Studies on p-type copper (I) selenide crystalline thin films for hetero-junction solar cells. Vacuum, 2006, 80, 631-635.	3.5	43

#	Article	IF	CITATIONS
289	Growth of crystalline HgCr2S4 thin films at mild reaction conditions. Vacuum, 2006, 80, 962-966.	3.5	4
290	A comparative photo-electrochemical study of compact In2O3/In2S3 multilayer thin films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 133, 222-225.	3.5	17
291	Use of amorphous monodispersed spinel film electrode in photo-electrochemical cells. Electrochimica Acta, 2006, 51, 4674-4679.	5.2	7
292	Mn doped and undoped ZnO films: A comparative structural, optical and electrical properties study. Materials Chemistry and Physics, 2006, 96, 326-330.	4.0	243
293	Influence of strain on the surface wettability in crystalline HgCr2S4thin films. Nanotechnology, 2006, 17, 5393-5396.	2.6	13
294	Low-Temperature Synthesis ofcAxis Oriented Submicrometer-scale ZnO Cones. Chemistry Letters, 2005, 34, 536-537.	1.3	4
295	Improved performance of dense TiO2/CdSe coupled thin films by low temperature process. Electrochimica Acta, 2005, 50, 2453-2459.	5.2	61
296	Hydrophobic and textured ZnO films deposited by chemical bath deposition: annealing effect. Applied Surface Science, 2005, 245, 407-413.	6.1	235
297	Room temperature synthesis of compact TiO2 thin films for 3-D solar cells by chemical arrested route. Applied Surface Science, 2005, 246, 271-278.	6.1	41
298	Bismuth oxide thin films prepared by chemical bath deposition (CBD) method: annealing effect. Applied Surface Science, 2005, 250, 161-167.	6.1	117
299	Rapid growth of nanocrystalline CuInS2 thin films in alkaline medium at room temperature. Applied Surface Science, 2005, 252, 1981-1987.	6.1	10
300	Growth of limited quantum dot chains of cadmium hydroxide thin films by chemical route. Electrochemistry Communications, 2005, 7, 205-208.	4.7	33
301	Preparation and characterization of indium selenide thin films from a chemical route. Materials Chemistry and Physics, 2005, 93, 16-20.	4.0	56
302	Nanocrystalline TiO2/ZnO Thin Films:Â Fabrication and Application to Dye-Sensitized Solar Cells. Journal of Physical Chemistry B, 2005, 109, 24254-24259.	2.6	252
303	Low temperature synthesis of nanocrystalline As2S3 thin films using novel chemical bath deposition route. Applied Surface Science, 2004, 227, 48-55.	6.1	9
304	Photoelectrochemical cells based on nanocrystalline Sb2S3 thin films. Materials Chemistry and Physics, 2003, 78, 385-392.	4.0	35
305	Studies on structural, optical and electrical properties of indium sulfide thin films. Materials Chemistry and Physics, 2003, 78, 15-17.	4.0	75
306	Thickness-dependent properties of chemically deposited Sb2S3 thin films. Materials Chemistry and Physics, 2003, 82, 347-354.	4.0	81

#	Article	IF	CITATIONS
307	HRTEM, SEM and XRD characterization of nanocrystalline Sb2S3 thin films deposited by chemical bath route. Surface and Coatings Technology, 2003, 172, 51-56.	4.8	13
308	Structural characterization of chemically deposited Bi2S3 and Bi2Se3 thin films. Applied Surface Science, 2002, 187, 108-115.	6.1	48
309	XRD, SEM, AFM, HRTEM, EDAX and RBS studies of chemically deposited Sb2S3 and Sb2Se3 thin films. Applied Surface Science, 2002, 193, 1-10.	6.1	60
310	A chemical method for the deposition of Bi2S3 thin films from a non-aqueous bath. Thin Solid Films, 2000, 359, 136-140.	1.8	56
311	Chemical deposition method for metal chalcogenide thin films. Materials Chemistry and Physics, 2000, 65, 1-31.	4.0	717
312	A new chemical method for the preparation of Ag2S thin films. Materials Chemistry and Physics, 2000, 63, 226-229.	4.0	47
313	Preparation and characterization of Bi2Se3 thin films deposited by successive ionic layer adsorption and reaction (SILAR) method. Materials Chemistry and Physics, 2000, 63, 230-234.	4.0	61
314	Thickness dependent properties of chemically deposited As2S3 thin films from thioacetamide bath. Materials Chemistry and Physics, 2000, 64, 215-221.	4.0	50
315	Deposition of CdS thin films by the successive ionic layer adsorption and reaction (SILAR) method. Materials Research Bulletin, 2000, 35, 177-184.	5.2	97
316	Studies on chemically deposited nanocrystalline Bi2S3 thin films. Materials Research Bulletin, 2000, 35, 587-601.	5.2	43
317	Successive ionic layer adsorption and reaction (SILAR) method for the deposition of large area (â^1/410) Tj ETQq1	1 0.7843 5.2	14 _{.rg} BT /Ove
318	Non-aqueous chemical bath deposition of Sb2S3 thin films. Thin Solid Films, 1999, 353, 29-32.	1.8	43
319	Preparation of CdCr2S4 and HgCr2S4 thin films by chemical bath deposition. Materials Research Bulletin, 1999, 34, 2035-2042.	5.2	15
320	Photoelectrochemical cells based on chemically deposited nanocrystalline Bi2S3 thin films. Materials Chemistry and Physics, 1999, 60, 196-203.	4.0	74
321	Photoelectrochemical (PEC) characterization of chemically deposited Bi2S3 thin films from non-aqueous medium. Materials Chemistry and Physics, 1999, 60, 158-162.	4.0	49
322	Title is missing!. Journal of Materials Science Letters, 1999, 18, 1453-1455.	0.5	34
323	Studies on chemically deposited cadmium sulphoselenide (CdSSe) films. Thin Solid Films, 1997, 304, 56-60.	1.8	69

Nanostructures in Dye-Sensitized and Perovskite Solar Cells. , 0, , .

3