
Shankar Chakraborty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7000777/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CoCoSo method-based optimization of cryogenic drilling on multi-walled carbon nanotubes reinforced composites. International Journal on Interactive Design and Manufacturing, 2023, 17, 279-297.	1.3	13
2	A Conceptual Comparison of Dragonfly Algorithm Variants for CEC-2021 Global Optimization Problems. Arabian Journal for Science and Engineering, 2023, 48, 1563-1593.	1.7	12
3	A comparative analysis on metamodel-based predictive modeling of electrical discharge machining processes. International Journal on Interactive Design and Manufacturing, 2023, 17, 385-406.	1.3	3
4	A comparative study on the metaheuristic-based optimization of skew composite laminates. Engineering With Computers, 2022, 38, 3549-3566.	3.5	13
5	Discriminant analysis-based modeling of cotton fiber and yarn properties. Research Journal of Textile and Apparel, 2022, 26, 18-40.	0.6	1
6	A multi-attributive ideal-real comparative analysis-based approach for piston material selection. Opsearch, 2022, 59, 207-228.	1.1	5
7	A path analysis-based approach for parametric study of an electrochemical machining process. Advances in Materials and Processing Technologies, 2022, 8, 2918-2940.	0.8	1
8	A SWARA-CoCoSo-Based Approach for Spray Painting Robot Selection. Informatica, 2022, , 35-54.	1.5	38
9	A Comprehensive Review on High-Fidelity and Metamodel-Based Optimization of Composite Laminates. Archives of Computational Methods in Engineering, 2022, 29, 3305-3340.	6.0	9
10	Application of simultaneous evaluation of criteria and alternatives (SECA) method for parametric optimization of hybrid machining processes. International Journal on Interactive Design and Manufacturing, 2022, 16, 1497-1509.	1.3	7
11	SWARA-CoCoSo method-based parametric optimization of green dry milling processes. Journal of Engineering and Applied Science, 2022, 69, .	0.8	11
12	Parametric optimization of CVD process for DLC Thin film coatings: a comparative analysis. Sadhana - Academy Proceedings in Engineering Sciences, 2022, 47, 1.	0.8	7
13	A Scoping Review on the Applications of MCDM Techniques for Parametric Optimization of Machining Processes. Archives of Computational Methods in Engineering, 2022, 29, 4165-4186.	6.0	39
14	A hybrid MCDM approach for parametric optimization of a micro-EDM process. International Journal on Interactive Design and Manufacturing, 2022, 16, 1739-1759.	1.3	11
15	An integrated IRN-SWARA-MABAC-based approach for evaluation of tourism websites of the Indian states. Opsearch, 2022, 59, 974-1017.	1.1	2
16	A Hybrid TOPSIS-PR-GWO Approach for Multi-objective Process Parameter Optimization. Process Integration and Optimization for Sustainability, 2022, 6, 1011-1026.	1.4	18
17	Structural equation modeling-based performance estimation and parametric analysis of wire electrical discharge machining processes. Sadhana - Academy Proceedings in Engineering Sciences, 2021, 46, 1.	0.8	4
18	Development of an intelligent decision model for non-traditional machining processes. Decision Making: Applications in Management and Engineering, 2021, 4, 194-214.	3.3	11

#	Article	IF	CITATIONS
19	An integrated performance evaluation approach for the Indian smart cities. Opsearch, 2021, 58, 906-941.	1.1	4
20	Application of Grey-PROMETHEE Method for Parametric Optimization of a Green Powder Mixed EDM Process. Process Integration and Optimization for Sustainability, 2021, 5, 645-661.	1.4	11
21	Prediction of Responses in a Sustainable Dry Turning Operation: A Comparative Analysis. Mathematical Problems in Engineering, 2021, 2021, 1-15.	0.6	9
22	Performance Analysis of Radial Basis Function Metamodels for Predictive Modelling of Laminated Composites. Materials, 2021, 14, 3306.	1.3	11
23	Teaching-learning-based optimization of ring and rotor spinning processes. Soft Computing, 2021, 25, 10287-10307.	2.1	6
24	Grey wolf optimizer-based design of ventilated brake disc. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43, 1.	0.8	10
25	Optimization of Process Parameters for Friction Materials Using Multi-Criteria Decision Making: A Comparative Analysis. Processes, 2021, 9, 1570.	1.3	10
26	Material selection of a mechanical component based on criteria relationship evaluation and MCDM approach. Materials Today: Proceedings, 2021, 44, 1621-1626.	0.9	3
27	A Comparative Analysis on Prediction Performance of Regression Models during Machining of Composite Materials. Materials, 2021, 14, 6689.	1.3	15
28	Parametric analysis of a green electrical discharge machining process using DEMATEL and SIR methods. Opsearch, 2020, 57, 513-540.	1.1	16
29	Metaheuristics-based parametric optimization of multi-pass turning process: a comparative analysis. Opsearch, 2020, 57, 414-437.	1.1	3
30	Development of a decision support framework for sustainable freight transport system evaluation using rough numbers. International Journal of Production Research, 2020, 58, 4325-4351.	4.9	44
31	Parametric Optimization of Electrochemical Machining Process Using Taguchi Method and Super Ranking Concept While Machining on Inconel 825. Advances in Intelligent Systems and Computing, 2020, , 407-415.	0.5	2
32	Non-traditional machining processes selection and evaluation: A rough multi-attributive border approximation area comparison approach. Computers and Industrial Engineering, 2020, 139, 106201.	3.4	18
33	Application of Superiority and Inferiority Multi-criteria Ranking Method for Parametric Optimization of Laser Cutting Processes. Process Integration and Optimization for Sustainability, 2020, 4, 409-427.	1.4	10
34	A DEMATEL-MABAC-based approach for grading and evaluation of jute fibers. Research Journal of Textile and Apparel, 2020, 24, 341-355.	0.6	8
35	Multi-response Optimization of Hybrid Machining Processes Using Evaluation Based on Distance from Average Solution Method in Intuitionistic Fuzzy Environment. Process Integration and Optimization for Sustainability, 2020, 4, 481-495.	1.4	10
36	Grey-fuzzy method-based parametric analysis of abrasive water jet machining on GFRP composites. Sadhana - Academy Proceedings in Engineering Sciences, 2020, 45, 1.	0.8	14

#	Article	IF	CITATIONS
37	Optimization of the multi-hole drilling path sequence for concentric circular patterns. Opsearch, 2020, 57, 746-764.	1.1	9
38	A novel decision-making approach for light weight environment friendly material selection. Materials Today: Proceedings, 2020, 22, 1460-1469.	0.9	8
39	Development of an integrated decision making model for location selection of logistics centers in the Spanish autonomous communities. Expert Systems With Applications, 2020, 148, 113208.	4.4	75
40	A grey correlation-based TOPSIS approach for optimization of surface roughness and micro hardness of Nitinol during WEDM operation. Materials Today: Proceedings, 2020, 28, 568-573.	0.9	10
41	Lexicographic method-based parametric optimization of non-traditional machining processes for ceramic materials. Opsearch, 2020, 57, 700-715.	1.1	2
42	TEACHING-LEARNING-BASED PARAMETRIC OPTIMIZATION OF AN ELECTRICAL DISCHARGE MACHINING PROCESS. Facta Universitatis, Series: Mechanical Engineering, 2020, 18, 281.	2.3	11
43	A CLOUD TOPSIS MODEL FOR GREEN SUPPLIER SELECTION. Facta Universitatis, Series: Mechanical Engineering, 2020, 18, 375.	2.3	43
44	Application of grey correlation-based EDAS method for parametric optimization of non-traditional machining processes. Scientia Iranica, 2020, .	0.3	14
45	An integrated D-MARCOS method for supplier selection in an iron and steel industry. Decision Making: Applications in Management and Engineering, 2020, 3, 49-69.	3.3	61
46	Fuzzy modeling and parametric analysis of wire-cut electrical discharge machining process in cutting of 2205 grade duplex stainless steel. AIP Conference Proceedings, 2020, , .	0.3	0
47	A Taguchi based super ranking method in parametric optimization of powder mixed electro-discharge machining processes. AIP Conference Proceedings, 2020, , .	0.3	1
48	A hybrid optimization approach for parametric optimization of wire electrical discharge machining of EN-8 carbon steel. AIP Conference Proceedings, 2020, , .	0.3	1
49	Optimization of electrochemical machining process parameters using teaching-learning-based algorithm. AIP Conference Proceedings, 2020, , .	0.3	2
50	Application of multivariate loss function and distance function approaches for materials selection. AIP Conference Proceedings, 2020, , .	0.3	0
51	Development of association rules to study the parametric influences in non-traditional machining processes. Sadhana - Academy Proceedings in Engineering Sciences, 2019, 44, 1.	0.8	3
52	A quick convergent artificial bee colony algorithm for solving quadratic assignment problems. Computers and Industrial Engineering, 2019, 137, 106070.	3.4	11
53	A DoE–TOPSIS meta-model for parametric optimization of silicon carbonitride (SiCN) thin film deposition process. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41, 1.	0.8	5
54	A DoE–TOPSIS method-based meta-model for parametric optimization of non-traditional machining processes. Journal of Modelling in Management, 2019, 14, 430-455.	1.1	16

#	Article	IF	CITATIONS
55	Improvement in the performance with less stiff air layer formation around the rubber tube-pasted grinding wheel. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233, 5175-5189.	1.1	9
56	Determination of the optimal drill path sequence using bat algorithm and analysis of its optimization performance. Journal of Industrial and Production Engineering, 2019, 36, 97-112.	2.1	10
57	Cotton Fabric Selection Using a Grey Fuzzy Relational Analysis Approach. Journal of the Institution of Engineers (India): Series E, 2019, 100, 21-36.	0.5	10
58	OPTIMIZATION OF MULTI-PASS FACE MILLING PARAMETERS USING METAHEURISTIC ALGORITHMS. Facta Universitatis, Series: Mechanical Engineering, 2019, 17, 365.	2.3	19
59	Parametric optimization of non-traditional machining processes using Taguchi method and super ranking concept. Yugoslav Journal of Operations Research, 2019, 29, 249-271.	0.5	9
60	Applications of optimization techniques for parametric analysis of non-traditional machining processes: A Review. Management Science Letters, 2019, , 467-494.	0.8	11
61	Fuzzy Modelling and Parametric Analysis of the Ring Spinning Process. Tekstil Ve Muhendis, 2019, 26, 132-148.	0.3	4
62	A Rough Decision-Making Model for Biomaterial Selection. Materials Horizons, 2019, , 227-256.	0.3	2
63	A decision guidance framework for non-traditional machining processes selection. Ain Shams Engineering Journal, 2018, 9, 203-214.	3.5	10
64	An Integrated DEMATEL–VIKOR Method-Based Approach for Cotton Fibre Selection and Evaluation. Journal of the Institution of Engineers (India): Series E, 2018, 99, 63-73.	0.5	27
65	A multi-criteria decision support model for optimal cotton fibre blending. Journal of the Textile Institute, 2018, 109, 1482-1492.	1.0	5
66	A Quality Function Deployment-Based Expert System for Cotton Fibre Selection. Journal of the Institution of Engineers (India): Series E, 2018, 99, 43-53.	0.5	9
67	Application of grey-fuzzy logic technique for parametric optimization of non-traditional machining processes. Grey Systems Theory and Application, 2018, 8, 46-68.	1.0	29
68	A Multivariate Quality Loss Function Approach for Optimization of Spinning Processes. Journal of the Institution of Engineers (India): Series E, 2018, 99, 101-109.	0.5	1
69	Parametric optimization of abrasive water-jet machining processes using grey wolf optimizer. Materials and Manufacturing Processes, 2018, 33, 1471-1482.	2.7	53
70	Development of a meta-model for the determination of technological value of cotton fiber using design of experiments and the TOPSIS method. Journal of Natural Fibers, 2018, 15, 882-895.	1.7	11
71	Application of fuzzy axiomatic design principles for cotton fibre selection. Journal of the Textile Institute, 2018, 109, 730-739.	1.0	8
72	A multivariate quality loss function approach for parametric optimization of non-traditional machining processes. Management Science Letters, 2018, , 873-884.	0.8	10

#	Article	IF	CITATIONS
73	Multi-Objective Optimization of Wire Electro Discharge Machining (WEDM) Process Parameters Using Grey-FuzzyÂApproach. Periodica Polytechnica, Mechanical Engineering, 2018, 63, 16-25.	0.8	21
74	A quality function deployment-based model for coordinate measuring machine selection. International Journal of Productivity and Quality Management, 2018, 25, 368.	0.1	0
75	A state-wise performance appraisal of the Indian roads using PROMETHEE-GIS approach. Benchmarking, 2018, 25, 3338-3356.	2.9	4
76	Bi-objective dependent location quadratic assignment problem: Formulation and solution using a modified artificial bee colony algorithm. Computers and Industrial Engineering, 2018, 121, 8-26.	3.4	15
77	Multi-objective Optimization of Yarn Characteristics Using Evolutionary Algorithms: A Comparative Study. Journal of the Institution of Engineers (India): Series E, 2018, 99, 129-140.	0.5	6
78	A modified principal component analysis-based utility theory approach for optimization of correlated responses of EDM process. International Journal of Engineering, Science and Technology, 2018, 4, 34-45.	0.3	6
79	Analysis of Cotton Fibre Properties: A Data Mining Approach. Journal of the Institution of Engineers (India): Series E, 2018, 99, 163-176.	0.5	10
80	A material selection approach using the TODIM (TOmada de Decisao Interativa Multicriterio) method and its analysis. International Journal of Materials Research, 2017, 108, 345-354.	0.1	44
81	A developed case-based reasoning system for machine tool selection. Benchmarking, 2017, 24, 1364-1385.	2.9	14
82	A Grey Fuzzy Logic Approach for Cotton Fibre Selection. Journal of the Institution of Engineers (India): Series E, 2017, 98, 1-9.	0.5	17
83	Application of the grey-based fuzzy logic approach for materials selection. International Journal of Materials Research, 2017, 108, 702-709.	0.1	9
84	Cotton fibre selection and grading – a PROMETHEE-GAIA-based approach. International Journal of Clothing Science and Technology, 2017, 29, 646-660.	0.5	10
85	A Developed Meta-model for Selection of Cotton Fabrics Using Design of Experiments and TOPSIS Method. Journal of the Institution of Engineers (India): Series E, 2017, 98, 79-90.	0.5	9
86	Evaluation of educational performance of Indian states using PROMETHEE-GIS approach. Benchmarking, 2017, 24, 1709-1728.	2.9	7
87	Multi-objective optimization of electrochemical discharge machining processes: a posteriori approach based on bird mating optimizer. Opsearch, 2017, 54, 306-335.	1.1	4
88	A NOVEL HYBRID METHOD FOR NON-TRADITIONAL MACHINING PROCESS SELECTION USING FACTOR RELATIONSHIP AND MULTI-ATTRIBUTIVE BORDER APPROXIMATION METHOD. Facta Universitatis, Series: Mechanical Engineering, 2017, 15, 439.	2.3	44
89	A comparative analysis of VIKOR method and its variants. Decision Science Letters, 2016, , 469-486.	0.5	62
90	A Quality Function Deployment-Based Model for Cutting Fluid Selection. Advances in Tribology, 2016, 2016, 1-10.	2.1	9

#	Article	IF	CITATIONS
91	A QFD-based expert system for industrial truck selection in manufacturing organizations. Journal of Manufacturing Technology Management, 2016, 27, 800-817.	3.3	15
92	Performance evaluation of Indian Railway zones using DEMATEL and VIKOR methods. Benchmarking, 2016, 23, 78-95.	2.9	51
93	Application of fuzzy axiomatic design principles for selection of non-traditional machining processes. International Journal of Advanced Manufacturing Technology, 2016, 83, 529-543.	1.5	16
94	Performance evaluation of Indian states in tourism using an integrated PROMETHEE-GAIA approach. Opsearch, 2016, 53, 63-84.	1.1	26
95	Q-analysis in Materials Selection. Decision Science Letters, 2015, , 51-62.	0.5	3
96	Parameter selection in non-traditional machining processes using a data mining approach. Decision Science Letters, 2015, 4, 211-226.	0.5	6
97	Decision-making for materials selection using fuzzy axiomatic design principles. International Journal of Industrial and Systems Engineering, 2015, 20, 117.	0.1	6
98	SMALL HYDRO-POWER PLANT PROJECT SELECTION USING FUZZY AXIOMATIC DESIGN PRINCIPLES. Technological and Economic Development of Economy, 2015, 21, 756-772.	2.3	15
99	Development of a QFD-based expert system for CNC turning centre selection. Journal of Industrial Engineering International, 2015, 11, 575-594.	1.8	8
100	Parametric optimization of ultrasonic machining process using gravitational search and fireworks algorithms. Ain Shams Engineering Journal, 2015, 6, 315-331.	3.5	39
101	Tool steel material selection using PROMETHEE II method. International Journal of Advanced Manufacturing Technology, 2015, 78, 1537-1547.	1.5	47
102	A software prototype for material handling equipment selection for construction sites. Automation in Construction, 2015, 57, 120-131.	4.8	22
103	Supplier Selection Using Weighted Utility Additive Method. Journal of the Institution of Engineers (India): Series C, 2015, 96, 397-406.	0.7	2
104	Evaluating performance of engineering departments in an Indian University using DEMATEL and compromise ranking methods. Opsearch, 2015, 52, 307-328.	1.1	36
105	Flexible manufacturing system selection using preference ranking methods : A comparative study. International Journal of Industrial Engineering Computations, 2014, 5, 315-338.	0.4	39
106	A decision-making model for non-traditional machining processes selection. Decision Science Letters, 2014, 3, 467-478.	0.5	10
107	A DEA-TOPSIS-based approach for performance evaluation of Indian technical institutes. Decision Science Letters, 2014, 3, 397-410.	0.5	17
108	Applications of WASPAS Method in Manufacturing Decision Making. Informatica, 2014, 25, 1-20.	1.5	253

#	Article	IF	CITATIONS
109	Nontraditional machining processes selection using evaluation of mixed data method. International Journal of Advanced Manufacturing Technology, 2013, 68, 1613-1626.	1.5	13
110	Applications of utility concept and desirability function for materials selection. Materials & Design, 2013, 45, 349-358.	5.1	55
111	Selection of the optimal electrochemical machining process parameters using biogeography-based optimization algorithm. International Journal of Advanced Manufacturing Technology, 2013, 64, 781-791.	1.5	57
112	A quality function deployment-based model for materials selection. Materials & Design, 2013, 49, 525-535.	5.1	54
113	Grinding Wheel Abrasive Material Selection Using Fuzzy TOPSIS Method. Materials and Manufacturing Processes, 2013, 28, 408-417.	2.7	69
114	Advanced manufacturing systems selection using ORESTE method. International Journal of Advanced Operations Management, 2013, 5, 337.	0.3	11
115	Using MACBETH method for supplier selection in manufacturing environment. International Journal of Industrial Engineering Computations, 2013, 4, 259-272.	0.4	30
116	Selection of materials using multi-criteria decision-making methods with minimum data. Decision Science Letters, 2013, , 135-148.	0.5	44
117	Non-conventional optimization techniques in optimizing non-traditional machining processes: A review. Management Science Letters, 2013, 4, 23-38.	0.8	15
118	A solution to robot selection problems using data envelopment analysis. International Journal of Industrial Engineering Computations, 2013, 4, 355-372.	0.4	20
119	Parametric Optimization of Nd:YAG Laser Beam Machining Process Using Artificial Bee Colony Algorithm. Journal of Industrial Engineering, 2013, 2013, 1-15.	0.6	17
120	Material Handling Equipment Selection Using Weighted Utility Additive Theory. Journal of Industrial Engineering, 2013, 2013, 1-9.	0.6	24
121	Material Selection in Manufacturing Environment Using Compromise Ranking and Regret Theory-based Compromise Ranking Methods: A Comparative Study. Universal Journal of Materials Science, 2013, 1, 69-77.	0.3	17
122	Application of PROMETHEE-GAIA method for non-traditional machining processes selection. Management Science Letters, 2012, 2, 2049-2060.	0.8	29
123	Material selection using multi-criteria decision-making methods: a comparative study. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2012, 226, 266-285.	0.7	38
124	Turbine blade material selection using fuzzy analytic network process. International Journal of Materials and Structural Integrity, 2012, 6, 169.	0.1	10
125	Optimization of Correlated Responses of EDM Process. Materials and Manufacturing Processes, 2012, 27, 337-347.	2.7	56
126	Selection of EDM Process Parameters Using Biogeography-Based Optimization Algorithm. Materials and Manufacturing Processes, 2012, 27, 954-962.	2.7	45

#	Article	IF	CITATIONS
127	Selection of wire electrical discharge machining process parameters using non-traditional optimization algorithms. Applied Soft Computing Journal, 2012, 12, 2506-2516.	4.1	88
128	Materials selection using COPRAS and COPRAS-G methods. International Journal of Materials and Structural Integrity, 2012, 6, 111.	0.1	19
129	An expert system for control chart pattern recognition. International Journal of Advanced Manufacturing Technology, 2012, 62, 291-301.	1.5	41
130	Material selection using preferential ranking methods. Materials & Design, 2012, 35, 384-393.	5.1	193
131	Cutting tool material selection using grey complex proportional assessment method. Materials & Design, 2012, 36, 372-378.	5.1	103
132	Application of multi-objective optimization on the basis of ratio analysis (MOORA) method for materials selection. Materials & Design, 2012, 37, 317-324.	5.1	256
133	Optimization of correlated multiple responses of ultrasonic machining (USM) process. International Journal of Advanced Manufacturing Technology, 2011, 53, 1115-1127.	1.5	51
134	Applications of the MOORA method for decision making in manufacturing environment. International Journal of Advanced Manufacturing Technology, 2011, 54, 1155-1166.	1.5	342
135	Decision making for material selection using the UTA method. International Journal of Advanced Manufacturing Technology, 2011, 57, 11-22.	1.5	44
136	Parametric optimization of some non-traditional machining processes using artificial bee colony algorithm. Engineering Applications of Artificial Intelligence, 2011, 24, 946-957.	4.3	138
137	Non-traditional machining processes selection using data envelopment analysis (DEA). Expert Systems With Applications, 2011, 38, 8770-8781.	4.4	25
138	Selection of non-traditional machining processes using analytic network process. Journal of Manufacturing Systems, 2011, 30, 41-53.	7.6	61
139	Materials selection using complex proportional assessment and evaluation of mixed data methods. Materials & Design, 2011, 32, 851-860.	5.1	284
140	A comparative study on the ranking performance of some multi-criteria decision-making methods for industrial robot selection. International Journal of Industrial Engineering Computations, 2011, 2, 831-850.	0.4	81
141	A study on the performance of some multi-response optimisation methods for WEDM processes. International Journal of Advanced Manufacturing Technology, 2010, 49, 155-166.	1.5	42
142	Selection of industrial robots using compromise ranking and outranking methods. Robotics and Computer-Integrated Manufacturing, 2010, 26, 483-489.	6.1	145
143	Recognition of control chart patterns using improved selection of features. Computers and Industrial Engineering, 2009, 56, 1577-1588.	3.4	85
144	Optimisation of multiple responses for WEDM processes using weighted principal components. International Journal of Advanced Manufacturing Technology, 2009, 40, 1102-1110.	1.5	31

#	Article	IF	CITATIONS
145	Multi-response optimisation of WEDM process using principal component analysis. International Journal of Advanced Manufacturing Technology, 2009, 41, 741-748.	1.5	29
146	A digraph-based expert system for non-traditional machining processes selection. International Journal of Advanced Manufacturing Technology, 2009, 43, 226-237.	1.5	37
147	Selection of materials using compromise ranking and outranking methods. Materials & Design, 2009, 30, 4043-4053.	5.1	182
148	Improved recognition of control chart patterns using artificial neural networks. International Journal of Advanced Manufacturing Technology, 2008, 36, 1191-1201.	1.5	40
149	Feature-Based Recognition of Control Chart Patterns: A Generalized Approach. Quality Technology and Quantitative Management, 2008, 5, 203-220.	1.1	1
150	A study on the various features for effective control chart pattern recognition. International Journal of Advanced Manufacturing Technology, 2007, 34, 385-398.	1.5	43
151	QFD-based expert system for non-traditional machining processes selection. Expert Systems With Applications, 2007, 32, 1208-1217.	4.4	52
152	Feature-based recognition of control chart patterns. Computers and Industrial Engineering, 2006, 51, 726-742.	3.4	73
153	Retrieval of machining information from feature patterns using artificial neural networks. International Journal of Advanced Manufacturing Technology, 2006, 27, 781-787.	1.5	11
154	Concurrent optimisation of a computer vision system's multiple responses. International Journal of Advanced Manufacturing Technology, 2006, 28, 577-583.	1.5	9
155	Design of a material handling equipment selection model using analytic hierarchy process. International Journal of Advanced Manufacturing Technology, 2006, 28, 1237-1245.	1.5	101
156	Design of an analytic-hierarchy-process-based expert system for non-traditional machining process selection. International Journal of Advanced Manufacturing Technology, 2006, 31, 490-500.	1.5	32
157	Real time statistical process advisor for effective quality control. Decision Support Systems, 2006, 42, 700-711.	3.5	10
158	Adaptive Neuro-fuzzy Inference System-based Modelling of Cotton Yarn Properties. Journal of the Institution of Engineers (India): Series E, O, , 1.	0.5	0
159	Parametric modelling of a wire electrical discharge machining process using path analysis approach. International Journal of Modelling and Simulation, 0, , 1-18.	2.3	1