List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6999908/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Single-layer MoS2 nanopores as nanopower generators. Nature, 2016, 536, 197-200.	13.7	830
2	Size and Chirality Dependent Elastic Properties of Graphene Nanoribbons under Uniaxial Tension. Nano Letters, 2009, 9, 3012-3015.	4.5	757
3	Why Are Carbon Nanotubes Fast Transporters of Water?. Nano Letters, 2008, 8, 452-458.	4.5	727
4	Water desalination with a single-layer MoS2 nanopore. Nature Communications, 2015, 6, 8616.	5.8	604
5	Water Transport through Ultrathin Graphene. Journal of Physical Chemistry Letters, 2010, 1, 1590-1594.	2.1	484
6	Calculation of pull-in voltages for carbon-nanotube-based nanoelectromechanical switches. Nanotechnology, 2002, 13, 120-131.	1.3	420
7	Anomalously Immobilized Water:  A New Water Phase Induced by Confinement in Nanotubes. Nano Letters, 2003, 3, 589-592.	4.5	411
8	Equilibrium swelling and kinetics of pH-responsive hydrogels: models, experiments, and simulations. Journal of Microelectromechanical Systems, 2002, 11, 544-555.	1.7	376
9	Ion concentrations and velocity profiles in nanochannel electroosmotic flows. Journal of Chemical Physics, 2003, 118, 4692-4701.	1.2	310
10	Temperature and strain-rate dependent fracture strength of graphene. Journal of Applied Physics, 2010, 108, .	1.1	309
11	DNA Base Detection Using a Single-Layer MoS ₂ . ACS Nano, 2014, 8, 7914-7922.	7.3	305
12	Mechanical properties of graphene under shear deformation. Applied Physics Letters, 2011, 98, .	1.5	280
13	Ultrasensitive detection of nucleic acids using deformed graphene channel field effect biosensors. Nature Communications, 2020, 11, 1543.	5.8	251
14	Critical Knowledge Gaps in Mass Transport through Single-Digit Nanopores: A Review and Perspective. Journal of Physical Chemistry C, 2019, 123, 21309-21326.	1.5	234
15	Electrolytic transport through a synthetic nanometer-diameter pore. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10445-10450.	3.3	220
16	Water Permeation through a Subnanometer Boron Nitride Nanotube. Journal of the American Chemical Society, 2007, 129, 2748-2749.	6.6	205
17	Charge Inversion and Flow Reversal in a Nanochannel Electro-osmotic Flow. Physical Review Letters, 2004, 92, 198301.	2.9	204
18	A point collocation method based on reproducing kernel approximations. International Journal for Numerical Methods in Engineering, 2000, 47, 1083-1121.	1.5	196

#	Article	IF	CITATIONS
19	Stacked Graphene-Al ₂ O ₃ Nanopore Sensors for Sensitive Detection of DNA and DNA–Protein Complexes. ACS Nano, 2012, 6, 441-450.	7.3	189
20	Electrolytic Transport in Modified Carbon Nanotubes. Nano Letters, 2003, 3, 1399-1403.	4.5	188
21	Measurement of adherent cell mass and growth. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20691-20696.	3.3	186
22	Curved neuromorphic image sensor array using a MoS2-organic heterostructure inspired by the human visual recognition system. Nature Communications, 2020, 11, 5934.	5.8	182
23	Ultrathin, transferred layers of thermally grown silicon dioxide as biofluid barriers for biointegrated flexible electronic systems. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11682-11687.	3.3	175
24	Effect of Cross-Linking on the Diffusion of Water, Ions, and Small Molecules in Hydrogels. Journal of Physical Chemistry B, 2009, 113, 3512-3520.	1.2	171
25	Structure and Dynamics of Water Confined in a Boron Nitride Nanotube. Journal of Physical Chemistry C, 2008, 112, 1812-1818.	1.5	158
26	Spatial Diffusion of Water in Carbon Nanotubes: From Fickian to Ballistic Motion. Journal of Physical Chemistry B, 2011, 115, 12145-12149.	1.2	153
27	Finite cloud method: a true meshless technique based on a fixed reproducing kernel approximation. International Journal for Numerical Methods in Engineering, 2001, 50, 2373-2410.	1.5	142
28	Pumping of Confined Water in Carbon Nanotubes by Rotation-Translation Coupling. Physical Review Letters, 2008, 101, 064502.	2.9	138
29	Graphitic Carbon–Water Nonbonded Interaction Parameters. Journal of Physical Chemistry B, 2013, 117, 8802-8813.	1.2	138
30	Simulating the behavior of MEMS devices: computational methods and needs. IEEE Computational Science and Engineering, 1997, 4, 30-43.	0.6	125
31	The Role of External Defects in Chemical Sensing of Graphene Field-Effect Transistors. Nano Letters, 2013, 13, 1962-1968.	4.5	125
32	Fast reverse osmosis using boron nitride and carbon nanotubes. Applied Physics Letters, 2008, 92, .	1.5	122
33	Full-Lagrangian Schemes for Dynamic Analysis of Electrostatic MEMS. Journal of Microelectromechanical Systems, 2004, 13, 737-758.	1.7	119
34	Doping-Induced Tunable Wettability and Adhesion of Graphene. Nano Letters, 2016, 16, 4708-4712.	4.5	119
35	Laterally extended atomically precise graphene nanoribbons with improved electrical conductivity for efficient gas sensing. Nature Communications, 2017, 8, 820.	5.8	113
36	Molecular and continuum hydrodynamics in graphene nanopores. RSC Advances, 2013, 3, 9365.	1.7	112

#	Article	IF	CITATIONS
37	Static and Dynamic Analysis of Carbon Nanotube-Based Switches. Journal of Engineering Materials and Technology, Transactions of the ASME, 2004, 126, 230-237.	0.8	111
38	Effect of quantum partial charges on the structure and dynamics of water in single-walled carbon nanotubes. Journal of Chemical Physics, 2006, 125, 114701.	1.2	109
39	DNA translocation through an array of kinkedÂnanopores. Nature Materials, 2010, 9, 667-675.	13.3	109
40	Electrochemistry at the Edge of a Single Graphene Layer in a Nanopore. ACS Nano, 2013, 7, 834-843.	7.3	105
41	A Combined Continuum/DSMC Technique for Multiscale Analysis of Microfluidic Filters. Journal of Computational Physics, 2002, 178, 342-372.	1.9	103
42	Mechanisms for Hydrolysis of Silicon Nanomembranes as Used in Bioresorbable Electronics. Advanced Materials, 2015, 27, 1857-1864.	11.1	98
43	A chemo-electro-mechanical mathematical model for simulation of pH sensitive hydrogels. Mechanics of Materials, 2004, 36, 395-410.	1.7	97
44	Ion separation using a Y-junction carbon nanotube. Nanotechnology, 2006, 17, 895-900.	1.3	96
45	Atypical Dependence of Electroosmotic Transport on Surface Charge in a Single-wall Carbon Nanotube. Nano Letters, 2003, 3, 1013-1017.	4.5	95
46	Ion transport in sub-5-nm graphene nanopores. Journal of Chemical Physics, 2014, 140, 084707.	1.2	95
47	An efficient numerical technique for electrochemical simulation of complicated microelectromechanical structures. Sensors and Actuators A: Physical, 1997, 58, 1-11.	2.0	92
48	Atomistic simulation of KCl transport in charged silicon nanochannels: Interfacial effects. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 267, 103-109.	2.3	91
49	Induced Electrokinetic Transport in Microâ^'Nanofluidic Interconnect Devices. Langmuir, 2007, 23, 13209-13222.	1.6	89
50	Hexagonal boron nitride and water interaction parameters. Journal of Chemical Physics, 2016, 144, 164118.	1.2	89
51	Complex Nonlinear Oscillations in Electrostatically Actuated Microstructures. Journal of Microelectromechanical Systems, 2006, 15, 355-369.	1.7	88
52	Reduced-Order Models of Finite Element Approximations of Electromagnetic Devices Exhibiting Statistical Variability. IEEE Transactions on Antennas and Propagation, 2012, 60, 301-309.	3.1	88
53	DNA Origami–Graphene Hybrid Nanopore for DNA Detection. ACS Applied Materials & Interfaces, 2017, 9, 92-100	4.0	88
54	Finite-temperature quasicontinuum method for multiscale analysis of silicon nanostructures. Physical Review B, 2006, 74, .	1.1	87

#	Article	IF	CITATIONS
55	Dissolution of Monocrystalline Silicon Nanomembranes and Their Use as Encapsulation Layers and Electrical Interfaces in Water-Soluble Electronics. ACS Nano, 2017, 11, 12562-12572.	7.3	82
56	Spectroscopic Investigation of the Wettability of Multilayer Graphene Using Highly Ordered Pyrolytic Graphite as a Model Material. Langmuir, 2014, 30, 12827-12836.	1.6	81
57	Meshless analysis of piezoelectric devices. Computational Mechanics, 2001, 27, 23-36.	2.2	75
58	A domain adaptive stochastic collocation approach for analysis of MEMS under uncertainties. Journal of Computational Physics, 2009, 228, 7662-7688.	1.9	75
59	Theory of thermoelastic damping in electrostatically actuated microstructures. Physical Review B, 2006, 74, .	1.1	72
60	Hierarchical Multiscale Simulation of Electrokinetic Transport in Silica Nanochannels at the Point of Zero Charge. Langmuir, 2006, 22, 9041-9051.	1.6	70
61	Strain-resilient electrical functionality in thin-film metal electrodes using two-dimensional interlayers. Nature Electronics, 2021, 4, 126-133.	13.1	67
62	Scaling of Electrokinetic Transport in Nanometer Channels. Langmuir, 2005, 21, 8972-8977.	1.6	66
63	Molecular Understanding of Osmosis in Semipermeable Membranes. Physical Review Letters, 2006, 97, 024501.	2.9	66
64	Development and modeling of electrically triggered hydrogels for microfluidic applications. Journal of Microelectromechanical Systems, 2005, 14, 1198-1207.	1.7	65
65	Kirigami-inspired strain-insensitive sensors based on atomically-thin materials. Materials Today, 2020, 34, 58-65.	8.3	65
66	Strain Modulation of Graphene by Nanoscale Substrate Curvatures: A Molecular View. Nano Letters, 2018, 18, 2098-2104.	4.5	62
67	Positivity conditions in meshless collocation methods. Computer Methods in Applied Mechanics and Engineering, 2004, 193, 1171-1202.	3.4	61
68	Resonant MEMS Mass Sensors for Measurement of Microdroplet Evaporation. Journal of Microelectromechanical Systems, 2012, 21, 702-711.	1.7	60
69	Modeling Water Flow Through Carbon Nanotube Membranes with Entrance/Exit Effects. Nanoscale and Microscale Thermophysical Engineering, 2017, 21, 247-262.	1.4	60
70	Highly Strain-Tunable Interlayer Excitons in MoS ₂ /WSe ₂ Heterobilayers. Nano Letters, 2021, 21, 3956-3964.	4.5	60
71	Ultrasensitive Detection of Dopamine, ILâ€6 and SARS oVâ€2 Proteins on Crumpled Graphene FET Biosensor. Advanced Materials Technologies, 2021, 6, 2100712.	3.0	60
72	Mechanism for stamp collapse in soft lithography. Applied Physics Letters, 2005, 87, 251925.	1.5	59

#	Article	IF	CITATIONS
73	Quasiharmonic models for the calculation of thermodynamic properties of crystalline silicon under strain. Journal of Applied Physics, 2006, 99, 064314.	1.1	59
74	Adsorption Kinetics Dictate Monolayer Self-Assembly for Both Lipid-In and Lipid-Out Approaches to Droplet Interface Bilayer Formation. Langmuir, 2015, 31, 12883-12893.	1.6	58
75	A reproducing kernel particle method for meshless analysis of microelectromechanical systems. Computational Mechanics, 1999, 23, 324-338.	2.2	57
76	Inducing Electronic Changes in Graphene through Silicon (100) Substrate Modification. Nano Letters, 2011, 11, 2735-2742.	4.5	57
77	Rotational motion of a single water molecule in a buckyball. Physical Chemistry Chemical Physics, 2013, 15, 17993.	1.3	56
78	Boundary cloud method: a combined scattered point/boundary integral approach for boundary-only analysis. Computer Methods in Applied Mechanics and Engineering, 2002, 191, 2337-2370.	3.4	55
79	Relative Entropy and Optimization-Driven Coarse-Graining Methods in VOTCA. PLoS ONE, 2015, 10, e0131754.	1.1	55
80	Meshless analysis of steady-state electro-osmotic transport. Journal of Microelectromechanical Systems, 2000, 9, 435-449.	1.7	54
81	Modeling and Simulation of Ionic Currents in Three-Dimensional Microfluidic Devices with Nanofluidic Interconnects. Journal of Nanoparticle Research, 2005, 7, 507-516.	0.8	54
82	Water-solubility-driven separation of gases using graphene membrane. Journal of Membrane Science, 2013, 428, 546-553.	4.1	54
83	Universal Reduction in Dielectric Response of Confined Fluids. ACS Nano, 2020, 14, 12761-12770.	7.3	54
84	Linear, nonlinear and mixed-regime analysis of electrostatic MEMS. Sensors and Actuators A: Physical, 2001, 91, 278-291.	2.0	53
85	A compact model for electroosmotic flows in microfluidic devices. Journal of Micromechanics and Microengineering, 2002, 12, 625-635.	1.5	53
86	Complex Oscillations and Chaos in Electrostatic Microelectromechanical Systems under Superharmonic Excitations. Physical Review Letters, 2005, 94, 204101.	2.9	53
87	Combined circuit/device modeling and simulation of integrated microfluidic systems. Journal of Microelectromechanical Systems, 2005, 14, 81-95.	1.7	53
88	A Lagrangian approach for electrostatic analysis of deformable conductors. Journal of Microelectromechanical Systems, 2002, 11, 245-254.	1.7	51
89	Akhiezer damping in nanostructures. Physical Review B, 2011, 84, .	1.1	50
90	Efficient mixed-domain analysis of electrostatic MEMS. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2003, 22, 1228-1242.	1.9	49

#	Article	IF	CITATIONS
91	Temperature-dependent wettability on a titanium dioxide surface. Molecular Simulation, 2009, 35, 31-37.	0.9	49
92	Existence of Multiple Phases of Water at Nanotube Interfaces. Journal of Physical Chemistry C, 2016, 120, 23763-23771.	1.5	49
93	Solution-Synthesized Chevron Graphene Nanoribbons Exfoliated onto H:Si(100). Nano Letters, 2017, 17, 170-178.	4.5	49
94	Surface-charge-induced asymmetric electrokinetic transport in confined silicon nanochannels. Applied Physics Letters, 2005, 86, 143105.	1.5	48
95	Ordering-Induced Fast Diffusion of Nanoscale Water Film on Graphene. Journal of Physical Chemistry C, 2010, 114, 2595-2599.	1.5	48
96	Modeling mechanophore activation within a crosslinked glassy matrix. Journal of Applied Physics, 2013, 114, .	1.1	48
97	Identification of amino acids with sensitive nanoporous MoS2: towards machine learning-based prediction. Npj 2D Materials and Applications, 2018, 2, .	3.9	47
98	Three-Dimensional Molecular Mapping of Ionic Liquids at Electrified Interfaces. ACS Nano, 2020, 14, 17515-17523.	7.3	47
99	A quasi-continuum hydrodynamic model for slit shaped nanochannel flow. Journal of Chemical Physics, 2013, 139, 074109.	1.2	46
100	Strong Electroosmotic Coupling Dominates Ion Conductance of 1.5 nm Diameter Carbon Nanotube Porins. ACS Nano, 2019, 13, 12851-12859.	7.3	46
101	Gated transport in nanofluidic devices. Microfluidics and Nanofluidics, 2011, 11, 297-306.	1.0	45
102	Interatomic potential-based semiclassical theory for Lennard-Jones fluids. Journal of Chemical Physics, 2007, 127, 174701.	1.2	41
103	Effect of induced electric field on single-file reverse osmosis. Physical Chemistry Chemical Physics, 2009, 11, 8614.	1.3	41
104	The role of A-site ion on proton diffusion in perovskite oxides (ABO3). Journal of Power Sources, 2020, 445, 227327.	4.0	39
105	Stochastic Analysis of Electrostatic MEMS Subjected to Parameter Variations. Journal of Microelectromechanical Systems, 2009, 18, 1454-1468.	1.7	36
106	Transfer-Learning-Based Coarse-Graining Method for Simple Fluids: Toward Deep Inverse Liquid-State Theory. Journal of Physical Chemistry Letters, 2019, 10, 1242-1250.	2.1	36
107	Title is missing!. Journal of Computational Electronics, 2003, 2, 29-47.	1.3	35
108	A chloride ion-selective boron nitride nanotube. Chemical Physics Letters, 2009, 478, 185-190.	1.2	35

#	Article	IF	CITATIONS
109	Coarse-Grained Potential Model for Structural Prediction of Confined Water. Journal of Chemical Theory and Computation, 2012, 8, 1828-1840.	2.3	35
110	Physical models for coupled electromechanical analysis of silicon nanoelectromechanical systems. Journal of Applied Physics, 2005, 97, 114304.	1.1	34
111	Differential Ion Transport Induced Electroosmosis and Internal Recirculation in Heterogeneous Osmosis Membranes. Nano Letters, 2006, 6, 995-999.	4.5	34
112	Coarse-Grained Force Field for Imidazolium-Based Ionic Liquids. Journal of Chemical Theory and Computation, 2018, 14, 3252-3261.	2.3	34
113	Highly Efficient Solarâ€Driven Carbon Dioxide Reduction on Molybdenum Disulfide Catalyst Using Choline Chlorideâ€Based Electrolyte. Advanced Energy Materials, 2019, 9, 1803536.	10.2	34
114	Measurements of the size and correlations between ions using an electrolytic point contact. Nature Communications, 2019, 10, 2382.	5.8	34
115	A multilevel Newton method for mixed-energy domain simulation of MEMS. Journal of Microelectromechanical Systems, 1999, 8, 299-308.	1.7	33
116	Separation of gases from gas–water mixtures using carbon nanotubes. Applied Physics Letters, 2010, 96, .	1.5	33
117	Nanofluidic Transport Theory with Enhancement Factors Approaching One. ACS Nano, 2020, 14, 272-281.	7.3	33
118	Ion Transport in Electrically Imperfect Nanopores. ACS Nano, 2020, 14, 10518-10526.	7.3	33
119	Application of a parallel DSMC technique to predict flow characteristics in microfluidic filters. Journal of Microelectromechanical Systems, 2001, 10, 538-549.	1.7	31
120	A boundary cloud method with a cloud-by-cloud polynomial basis. Engineering Analysis With Boundary Elements, 2003, 27, 57-71.	2.0	31
121	Self-consistent molecular dynamics formulation for electric-field-mediated electrolyte transport through nanochannels. Physical Review E, 2007, 76, 011202.	0.8	31
122	Crosslinking PMMA: Molecular dynamics investigation of the shear response. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 444-449.	2.4	31
123	Accelerated design and discovery of perovskites with high conductivity for energy applications through machine learning. Npj Computational Materials, 2021, 7, .	3.5	31
124	Capacitive Sensing of Intercalated H ₂ O Molecules Using Graphene. ACS Applied Materials & Interfaces, 2015, 7, 25804-25812.	4.0	30
125	Title is missing!. Journal of Computational Electronics, 2002, 1, 313-316.	1.3	28
126	Coupling of hierarchical fluid models with electrostatic and mechanical models for the dynamic analysis of MEMS. Journal of Micromechanics and Microengineering, 2006, 16, 1705-1719.	1.5	28

#	Article	IF	CITATIONS
127	New approximations and collocation schemes in the finite cloud method. Computers and Structures, 2005, 83, 1366-1385.	2.4	27
128	Calculation of thermodynamic and mechanical properties of silicon nanostructures using the local phonon density of states. Physical Review B, 2006, 74, .	1.1	27
129	Thermodynamic insight into spontaneous hydration and rapid water permeation in aquaporins. Applied Physics Letters, 2014, 105, 083702.	1.5	27
130	The interaction between hexagonal boron nitride and water from first principles. Journal of Chemical Physics, 2015, 142, 234702.	1.2	27
131	Multiscale Simulation of Electroosmotic Transport Using Embedding Techniques. International Journal for Multiscale Computational Engineering, 2004, 2, 173-188.	0.8	27
132	A finite element formulation for the hydrodynamic semiconductor device equations. Computer Methods in Applied Mechanics and Engineering, 1993, 107, 269-298.	3.4	26
133	Water Phase Transition Induced by a Stoneâ ` Wales Defect in a Boron Nitride Nanotube. Journal of the American Chemical Society, 2008, 130, 13649-13652.	6.6	26
134	Multiscale modeling of electroosmotic flow: Effects of discrete ion, enhanced viscosity, and surface friction. Journal of Chemical Physics, 2017, 146, .	1.2	26
135	Mechanistic Insights into Hydration of Solid Oxides. Chemistry of Materials, 2018, 30, 138-144.	3.2	26
136	Coarse-grained potential models for structural prediction of carbon dioxide (CO2) in confined environments. Journal of Chemical Physics, 2012, 136, 024102.	1.2	25
137	Antibody Subclass Detection Using Graphene Nanopores. Journal of Physical Chemistry Letters, 2017, 8, 1670-1676.	2.1	25
138	Machine Learning Assisted Screening of Two-Dimensional Materials for Water Desalination. ACS Nano, 2022, 16, 1929-1939.	7.3	25
139	Mathematical Modeling and Simulation of Dissolvable Hydrogels. Journal of Aerospace Engineering, 2003, 16, 55-64.	0.8	24
140	A stochastic Lagrangian approach for geometrical uncertainties in electrostatics. Journal of Computational Physics, 2007, 226, 156-179.	1.9	24
141	Thermodynamic state-dependent structure-based coarse-graining of confined water. Journal of Chemical Physics, 2012, 137, 214707.	1.2	24
142	Electrical Double Layer of Supported Atomically Thin Materials. Nano Letters, 2019, 19, 4588-4593.	4.5	24
143	Title is missing!. Journal of Computational Electronics, 2002, 1, 335-340.	1.3	23
144	Coupling of the mesh-free finite cloud method with the boundary element method: a collocation approach. Computer Methods in Applied Mechanics and Engineering, 2003, 192, 2355-2375.	3.4	23

#	Article	IF	CITATIONS
145	A dataâ€driven stochastic collocation approach for uncertainty quantification in MEMS. International Journal for Numerical Methods in Engineering, 2010, 83, 575-597.	1.5	23
146	Molybdenum disulfide and water interaction parameters. Journal of Chemical Physics, 2017, 147, 104706.	1.2	23
147	Asymmetric-Fluidic-Reservoirs Induced High Rectification Nanofluidic Diode. Scientific Reports, 2018, 8, 13941.	1.6	23
148	Ion Solvation and Transport in Narrow Carbon Nanotubes: Effects of Polarizability, Cationâ~ïi€ Interaction, and Confinement. Journal of Chemical Theory and Computation, 2021, 17, 1596-1605.	2.3	23
149	ATOMISTIC CAPACITANCE OF A NANOTUBE ELECTROMECHANICAL DEVICE. International Journal of Nanoscience, 2002, 01, 337-346.	0.4	22
150	Understanding anomalous current–voltage characteristics in microchannel–nanochannel interconnect devices. Journal of Colloid and Interface Science, 2012, 384, 162-171.	5.0	22
151	Optimization of solidification in die casting using numerical simulations and machine learning. Journal of Manufacturing Processes, 2020, 51, 130-141.	2.8	22
152	Modeling of dielectric charging in RF MEMS capacitive switches. Microwave and Optical Technology Letters, 2007, 49, 3188-3192.	0.9	21
153	Analysis of Hybrid Electrothermomechanical Microactuators With Integrated Electrothermal and Electrostatic Actuation. Journal of Microelectromechanical Systems, 2009, 18, 1126-1136.	1.7	21
154	Interfacial friction based quasi-continuum hydrodynamical model for nanofluidic transport of water. Journal of Chemical Physics, 2015, 143, 174702.	1.2	21
155	Selective filling of n-hexane in a tight nanopore. Nature Communications, 2021, 12, 310.	5.8	21
156	Nonlinear electrohydrodynamic ion transport in graphene nanopores. Science Advances, 2022, 8, eabj2510.	4.7	21
157	Atomistic simulations on the mechanical properties of a silicon nanofilm covered with graphene. Computational Materials Science, 2011, 50, 3063-3066.	1.4	20
158	Diameter Dependence of Water Filling in Lithographically Segmented Isolated Carbon Nanotubes. ACS Nano, 2021, 15, 2778-2790.	7.3	20
159	Super-resolved Optical Mapping of Reactive Sulfur-Vacancies in Two-Dimensional Transition Metal Dichalcogenides. ACS Nano, 2021, 15, 7168-7178.	7.3	20
160	Phonon-Fluid Coupling Enhanced Water Desalination in Flexible Two-Dimensional Porous Membranes. Nano Letters, 2022, 22, 419-425.	4.5	20
161	A transferable coarse-grained potential to study the structure of confined, supercritical Lennard-Jones fluids. Journal of Chemical Physics, 2010, 132, 044703.	1.2	19
162	Electromechanical Signatures for DNA Sequencing through a Mechanosensitive Nanopore. Journal of Physical Chemistry Letters, 2015, 6, 650-657.	2.1	19

#	Article	IF	CITATIONS
163	Water-Assisted Increase of Ionic Conductivity of Lithium Poly(acrylic acid)-Based Aqueous Polymer Electrolyte. ACS Applied Energy Materials, 2020, 3, 10119-10130.	2.5	19
164	Revisiting Sampson's theory for hydrodynamic transport in ultrathin nanopores. Physical Review Research, 2020, 2, .	1.3	19
165	Diffusion of water submonolayers on hydrophilic surfaces. Applied Physics Letters, 2008, 93, 253104.	1.5	18
166	Weighted Smolyak algorithm for solution of stochastic differential equations on nonâ€uniform probability measures. International Journal for Numerical Methods in Engineering, 2011, 85, 1365-1389.	1.5	18
167	Scanning tunneling spectroscopy and density functional calculation of silicon dangling bonds on the Si(100)-2×1:H surface. Surface Science, 2013, 609, 147-151.	0.8	18
168	Characterization of electrochemical properties of a micro–nanochannel integrated system using computational impedance spectroscopy (CIS). Electrochimica Acta, 2013, 105, 514-523.	2.6	18
169	A multiscale model for charge inversion in electric double layers. Journal of Chemical Physics, 2018, 148, 214102.	1.2	18
170	Stochastic modeling of coupled electromechanical interaction for uncertainty quantification in electrostatically actuated MEMS. Computer Methods in Applied Mechanics and Engineering, 2008, 197, 3456-3471.	3.4	17
171	Nano-electro-mechanical pump: Giant pumping of water in carbon nanotubes. Scientific Reports, 2016, 6, 26211.	1.6	17
172	Energy Dissipation in Fluid Coupled Nanoresonators: The Effect of Phonon-Fluid Coupling. ACS Nano, 2018, 12, 368-377.	7.3	17
173	Self-assembly of graphenes. Surface Science, 2011, 605, 1616-1620.	0.8	16
174	Simulation and experiment of substrate aluminum grain orientation dependent self-ordering in anodic porous alumina. Journal of Applied Physics, 2013, 113, .	1.1	16
175	Molecular Dynamics Properties without the Full Trajectory: A Denoising Autoencoder Network for Properties of Simple Liquids. Journal of Physical Chemistry Letters, 2019, 10, 7568-7576.	2.1	16
176	Interfacial Properties of Water on Hydrogenated and Fluorinated Graphene Surfaces: Parametrization of Nonbonded Interactions. Journal of Physical Chemistry C, 2020, 124, 21467-21475.	1.5	16
177	A fast boundary cloud method for exterior 2D electrostatic analysis. International Journal for Numerical Methods in Engineering, 2003, 56, 239-260.	1.5	15
178	Transient analysis of electro-osmotic transport by a reduced-order modelling approach. International Journal for Numerical Methods in Engineering, 2003, 56, 1023-1050.	1.5	15
179	Hybrid techniques for electrostatic analysis of nanoelectromechanical systems. Journal of Applied Physics, 2004, 96, 2221-2231.	1.1	15
180	Algorithms in FastStokes and Its Application to Micromachined Device Simulation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2006, 25, 248-257.	1.9	15

#	Article	IF	CITATIONS
181	Multiscale electrostatic analysis of silicon nanoelectromechanical systems (NEMS) via heterogeneous quantum models. Physical Review B, 2008, 77, .	1.1	15
182	Controlling the Ionic Current Rectification Factor of a Nanofluidic/Microfluidic Interface with Symmetric Nanocapillary Interconnects. Analytical Chemistry, 2015, 87, 3598-3605.	3.2	15
183	Nonlinear intrinsic dissipation in single layer MoS ₂ resonators. RSC Advances, 2017, 7, 6403-6410.	1.7	15
184	Numerical solution of two-carrier hydrodynamic semiconductor device equations employing a stabilized finite element method. Computer Methods in Applied Mechanics and Engineering, 1995, 125, 187-220.	3.4	14
185	Dispersion control in nano-channel systems by localized ζ-potential variations. Sensors and Actuators A: Physical, 2003, 104, 268-274.	2.0	14
186	Numerical analysis of 3D electrostatics of deformable conductors using a Lagrangian approach. Engineering Analysis With Boundary Elements, 2004, 28, 583-591.	2.0	14
187	Surface diffusion of n-alkanes: Mechanism and anomalous behavior. Chemical Physics Letters, 2007, 447, 310-315.	1.2	14
188	Carbon nanotube screening effects on the water-ion channels. Applied Physics Letters, 2008, 93, 43122.	1.5	14
189	A sparse grid based collocation method for model order reduction of finite element approximations of passive electromagnetic devices under uncertainty. , 2010, , .		14
190	Langevin-Poisson-EQT: A dipolar solvent based quasi-continuum approach for electric double layers. Journal of Chemical Physics, 2017, 146, 044108.	1.2	14
191	Quantitative Chemical Imaging of Nonplanar Microfluidics. Analytical Chemistry, 2017, 89, 1716-1723.	3.2	14
192	A Multiscale Model for Electrochemical Reactions in LSCF Based Solid Oxide Cells. Journal of the Electrochemical Society, 2018, 165, F1232-F1241.	1.3	14
193	Uncertainty quantification in three dimensional natural convection using polynomial chaos expansion and deep neural networks. International Journal of Heat and Mass Transfer, 2019, 139, 613-631.	2.5	14
194	Size and surface orientation effects on thermal expansion coefficient of one-dimensional silicon nanostructures. Journal of Applied Physics, 2009, 105, 104309.	1.1	13
195	Intrinsic dissipation in a nano-mechanical resonator. Journal of Applied Physics, 2014, 116, .	1.1	13
196	Multiscale modeling of droplet interface bilayer membrane networks. Biomicrofluidics, 2015, 9, 064101.	1.2	13
197	Understanding the effect of Ce and Zr on chemical expansion in yttrium doped strontium cerate and zirconate by high temperature X-ray analysis and density functional theory. Solid State Ionics, 2019, 333, 1-8.	1.3	13
198	Finite volume simulation framework for die casting with uncertainty quantification. Applied Mathematical Modelling, 2019, 74, 132-150.	2.2	13

#	Article	IF	CITATIONS
199	Confinement-Induced Enhancement of Parallel Dielectric Permittivity: Super Permittivity Under Extreme Confinement. Journal of Physical Chemistry Letters, 2020, 11, 10532-10537.	2.1	13
200	Efficient mixed-domain analysis of electrostatic MEMS. IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, 2002, , .	0.0	12
201	An EQT-cDFT approach to determine thermodynamic properties of confined fluids. Journal of Chemical Physics, 2015, 142, 244116.	1.2	12
202	Extended coarse-grained dipole model for polar liquids: Application to bulk and confined water. Physical Review E, 2018, 98, .	0.8	12
203	Integral equation theory based direct and accelerated systematic coarse-graining approaches. Journal of Chemical Physics, 2018, 148, 214105.	1.2	12
204	Chevron-type graphene nanoribbons with a reduced energy band gap: Solution synthesis, scanning tunneling microscopy and electrical characterization. Nano Research, 2020, 13, 1713-1722.	5.8	12
205	Toward Durable Protonic Ceramic Cells: Hydration-Induced Chemical Expansion Correlates with Symmetry in the Y-Doped BaZrO ₃ –BaCeO ₃ Solid Solution. Journal of Physical Chemistry C, 2021, 125, 26216-26228.	1.5	12
206	Surrogate neural network model for sensitivity analysis and uncertainty quantification of the mechanical behavior in the optical lens-barrel assembly. Computers and Structures, 2022, 270, 106843.	2.4	12
207	Improved multi-level Newton solvers for fully coupled multi-physics problems. International Journal for Numerical Methods in Engineering, 2003, 58, 463-480.	1.5	10
208	Water film thickness-dependent conformation and diffusion of single-strand DNA on poly(ethylene) Tj ETQq0 0 () rgBT /Ov 1.5	erlock 10 Tf 5
209	Suk and Aluru Reply:. Physical Review Letters, 2010, 105, .	2.9	10
210	Mechanical properties of a silicon nanofilm covered with defective graphene. Surface Science, 2013, 611, 80-85.	0.8	10
211	Current understanding and emerging applications of 3D crumpling mediated 2D material-liquid interactions. Current Opinion in Solid State and Materials Science, 2020, 24, 100836.	5.6	10
212	Simulation of the hydrodynamic device model on distributed memory parallel computers. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1996, 15, 1029-1047.	1.9	9
213	U -sequence in electrostatic microelectromechanical systems (MEMS). Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 462, 3435-3464.	1.0	9
214	Charge distribution on thin semiconducting silicon nanowires. Computer Methods in Applied Mechanics and Engineering, 2008, 197, 3366-3377.	3.4	9
215	Nonlinear Electrokinetic Transport Under Combined ac and dc Fields in Micro/Nanofluidic Interface Devices. Journal of Fluids Engineering, Transactions of the ASME, 2013, 135, .	0.8	9
216	AN ANALYSIS OF THE HYDRODYNAMIC SEMICONDUCTOR DEVICE MODEL â€" BOUNDARY CONDITIONS AND SIMULATIONS. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 1995, 14, 157-185.	0.5	8

#	Article	IF	CITATIONS
217	Accurate Simulation of RF MEMS VCO performance including phase noise. Journal of Microelectromechanical Systems, 2005, 14, 313-325.	1.7	8
218	A Lagrangian approach for quantum-mechanical electrostatic analysis of deformable silicon nanostructures. Engineering Analysis With Boundary Elements, 2006, 30, 925-939.	2.0	8
219	A hybrid full-Lagrangian technique for the static and dynamic analysis of magnetostatic MEMS. Journal of Micromechanics and Microengineering, 2006, 16, 2646-2658.	1.5	8
220	A nodeâ€based agglomeration AMG solver for linear elasticity in thin bodies. Communications in Numerical Methods in Engineering, 2009, 25, 219-236.	1.3	8
221	Mechanistic Analysis of Gas Enrichment in Gas–Water Mixtures near Extended Surfaces. Journal of Physical Chemistry C, 2011, 115, 17495-17502.	1.5	8
222	Phonon mediated loss in a graphene nanoribbon. Journal of Applied Physics, 2013, 114, .	1.1	8
223	Mechanical behavior of water filled C60. Applied Physics Letters, 2013, 103, .	1.5	8
224	Mechanically modulated electronic properties of water-filled fullerenes. MRS Communications, 2015, 5, 305-310.	0.8	8
225	Mixed role of surface on intrinsic losses in silicon nanostructures. Journal of Applied Physics, 2016, 119, 114304.	1.1	8
226	An EQT-based cDFT approach for thermodynamic properties of confined fluid mixtures. Journal of Chemical Physics, 2017, 146, 154102.	1.2	8
227	A multiscale transport model for non-classical nanochannel electroosmosis. Journal of Chemical Physics, 2017, 147, 214105.	1.2	8
228	Anomalous interfacial dynamics of single proton charges in binary aqueous solutions. Science Advances, 2021, 7, eabg8568.	4.7	8
229	The electricalâ€double layer revisited. Natural Sciences, 2022, 2, .	1.0	8
230	Applications in micro- and nanoelectromechanical systems. Engineering Analysis With Boundary Elements, 2006, 30, 909.	2.0	7
231	A compact model for dielectric charging in RF MEMS capacitive switches. International Journal of RF and Microwave Computer-Aided Engineering, 2009, 19, 197-203.	0.8	7
232	A methodology for fast finite element modeling of electrostatically actuated MEMS. International Journal for Numerical Methods in Engineering, 2009, 77, 1789-1808.	1.5	7
233	Pull-in/out analysis of nano/microelectromechanical switches with defective oxide layers. Applied Physics Letters, 2009, 95, 073112.	1.5	7
234	An EQT-based cDFT approach for a confined Lennard-Jones fluid mixture. Journal of Chemical Physics, 2015, 143, 124106.	1.2	7

#	Article	IF	CITATIONS
235	Memory effects in nanoparticle dynamics and transport. Journal of Chemical Physics, 2016, 145, 134108.	1.2	7
236	Simulation of Biological Ionic Channels by Technology Computer-Aided Design. VLSI Design, 2001, 13, 179-187.	0.5	7
237	Surface-Modified Hydrogels for Chemoselective Bioconjugation. Macromolecules, 2003, 36, 8846-8852.	2.2	6
238	Effect of size-asymmetric electrolyte on single-file osmosis. Applied Physics Letters, 2006, 89, 064107.	1.5	6
239	Combined semiclassical and effective-mass Schrödinger approach for multiscale analysis of semiconductor nanostructures. Physical Review B, 2007, 76, .	1.1	6
240	Multiscale mechanical analysis of silicon nanostructures by combined finite temperature models. Computer Methods in Applied Mechanics and Engineering, 2008, 197, 3215-3224.	3.4	6
241	Perturbation of Microfluidic Transport Following Electrokinetic Injection through a Nanocapillary Array Membrane: Injection and Biphasic Recovery. Journal of Physical Chemistry C, 2008, 112, 19242-19247.	1.5	6
242	Detection of defective DNA in carbon nanotubes by combined molecular dynamics/tight-binding technique. Applied Physics Letters, 2009, 95, 113116.	1.5	6
243	Intrinsic loss due to unstable modes in graphene. Nanotechnology, 2013, 24, 275701.	1.3	6
244	Thermal noise in confined fluids. Journal of Chemical Physics, 2014, 141, 174707.	1.2	6
245	Size effect on brittle and ductile fracture of two-dimensional interlinked carbon nanotube network. Physica B: Condensed Matter, 2017, 520, 82-88.	1.3	6
246	Anomalous scaling of flexural phonon damping in nanoresonators with confined fluid. Microsystems and Nanoengineering, 2019, 5, 2.	3.4	6
247	Cluster Expansion Framework for the Sr(Ti1–xFex)O3–x/2 (0 < x < 1) Mixed Ionic Electronic Conductor: Properties Based on Realistic Configurations. Chemistry of Materials, 2019, 31, 3144-3153.	3.2	6
248	A multiscale framework to predict electrochemical characteristics of yttrium doped Barium Zirconate based solid oxide cells. Journal of Power Sources, 2021, 481, 228969.	4.0	6
249	Pore-Scale Modeling of Electrokinetics in Geomaterials. Transport in Porous Media, 2021, 137, 651-666.	1.2	6
250	Electronic Structure and Transport in Graphene Nanoribbon Heterojunctions under Uniaxial Strain: Implications for Flexible Electronics. ACS Applied Nano Materials, 2021, 4, 5816-5824.	2.4	6
251	Extended DeepILST for Various Thermodynamic States and Applications in Coarse-Graining. Journal of Physical Chemistry A, 2022, 126, 1562-1570.	1.1	6
252	An empirical potential based quasicontinuum theory for structural prediction of water. Journal of Chemical Physics, 2009, 131, 184703.	1.2	5

#	Article	IF	CITATIONS
253	Uncertainty quantification of MEMS using a data-dependent adaptive stochastic collocation method. Computer Methods in Applied Mechanics and Engineering, 2011, 200, 3169-3182.	3.4	5
254	A conformal mappingâ€based approach for fast twoâ€dimensional FEM electrostatic analysis of MEMS devices. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2011, 24, 194-206.	1.2	5
255	A combined quasi-continuum/Langevin equation approach to study the self-diffusion dynamics of confined fluids. Journal of Chemical Physics, 2013, 138, 124109.	1.2	5
256	A multiscale transport model for Lennard-Jones binary mixtures based on interfacial friction. Journal of Chemical Physics, 2016, 145, 074115.	1.2	5
257	Intrinsic Dissipation Due to Mode Coupling in Two-Dimensional-Material Resonators Revealed Through a Multiscale Approach. Physical Review Applied, 2020, 14, .	1.5	5
258	Strainâ€induced tunable energy barrier of proton diffusion in Yâ€doped <scp> BaCeO ₃ </scp> and Yâ€doped <scp> BaZrO ₃ </scp> . International Journal of Energy Research, 2022, 46, 7816-7824.	2.2	5
259	Modified Lucas-Washburn theory for fluid filling in nanotubes. Physical Review E, 2022, 105, .	0.8	5
260	Improved statistical models for limited datasets in uncertainty quantification using stochastic collocation. Journal of Computational Physics, 2013, 255, 521-539.	1.9	4
261	Effect of intermolecular force on the static/dynamic behaviour of M/NEM devices. Nanotechnology, 2014, 25, 485204.	1.3	4
262	A NONSTATIONARY COVARIANCE FUNCTION MODEL FOR SPATIAL UNCERTAINTIES IN ELECTROSTATICALLY ACTUATED MICROSYSTEMS. , 2015, 5, 99-121.		4
263	Ab initio based interionic potential for silver iodide. Solid State Ionics, 2018, 325, 102-111.	1.3	4
264	Spatial Uncertainty Modeling for Surface Roughness of Additively Manufactured Microstructures via Image Segmentation. Applied Sciences (Switzerland), 2019, 9, 1093.	1.3	4
265	Simulations of Die Casting With Uncertainty Quantification. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2019, 141, .	1.3	4
266	Dynamic and weak electric double layers in ultrathin nanopores. Journal of Chemical Physics, 2021, 154, 134703.	1.2	4
267	Understanding simple liquids through statistical and deep learning approaches. Journal of Chemical Physics, 2021, 154, 204503.	1.2	4
268	Cultureâ€free biphasic approach for sensitive detection of <i>Escherichia coli</i> O157:H7 from beef samples. Biotechnology and Bioengineering, 2021, 118, 4516-4529.	1.7	4
269	Many-Body Neural Network-Based Force Field for Structure-Based Coarse-Graining of Water. Journal of Physical Chemistry A, 2022, 126, 2031-2041.	1.1	4
270	A fast boundary cloud method for 3D exterior electrostatic analysis. International Journal for Numerical Methods in Engineering, 2004, 59, 2019-2046.	1.5	3

#	Article	IF	CITATIONS
271	Silicon Nanomembranes: Mechanisms for Hydrolysis of Silicon Nanomembranes as Used in Bioresorbable Electronics (Adv. Mater. 11/2015). Advanced Materials, 2015, 27, 1856-1856.	11.1	3
272	Avalanche effects near nanojunctions. Physical Review E, 2016, 94, 012402.	0.8	3
273	Modeling of hydrogel swelling in buffered solutions. , 2001, , .		2
274	A semi-local quasi-harmonic model to compute the thermodynamic and mechanical properties of silicon nanostructures. Journal of Physics Condensed Matter, 2007, 19, 226202.	0.7	2
275	1/f pink chaos in nanopores. RSC Advances, 2017, 7, 46092-46100.	1.7	2
276	Prospects for sub-nanometer scale imaging of optical phenomena using electron microscopy. Applied Physics Letters, 2021, 118, 033104.	1.5	2
277	Carbon nanotubes as nanoelectromechanical systems components. , 2006, , 361-488.		1
278	Order reduction of finite element models of passive electromagnetic structures with statistical variability. , 2010, , .		1
279	Carbon Nanotube-Metal Contact. , 2012, , 388-391.		1
280	Data-driven stochastic models for spatial uncertainties in micromechanical systems. Journal of Micromechanics and Microengineering, 2015, 25, 115009.	1.5	1
281	Multiscale approach to modeling intrinsic dissipation in solids. Physical Review B, 2016, 94, .	1.1	1
282	Anomalous characteristics of pore formation in Graphene induced by Si-nanoparticle bombardment. MRS Communications, 2017, 7, 840-847.	0.8	1
283	Nonlocal hydrodynamic model for gravity-driven transport in nanochannels. Journal of Chemical Physics, 2022, 156, .	1.2	1
284	Interstitial proton transport through defective MXenes. Applied Physics Letters, 2022, 120, 211601.	1.5	1
285	Nonlinear Dynamics of Electrostatically Actuated MEMS. Computational and Experimental Methods in Structures, 2008, , 235-286.	0.2	0
286	A conformal mapping based approach for fast two-dimensional FEM electrostatic analysis of MEMS devices without re-meshing. , 2009, , .		0
287	Corrections to "Analysis of Hybrid Electrothermomechanical Microactuators With Integrated Electrothermal and Electrostatic Actuation―[Oct 09 1126-1136. Journal of Microelectromechanical Systems, 2010, 19, 430-430.	1.7	0
288	Capacitive MEMS Switches. , 2012, , 363-374.		0

#	Article	IF	CITATIONS
289	Chitosan Nanoparticles. , 2012, , 427-433.		0
290	Analysis of the Effect of Spatial Uncertainties on the Dynamic Behavior of Electrostatic Microactuators. Communications in Computational Physics, 2016, 20, 279-300.	0.7	0
291	Simulations show that a nanometre-thick sheet of MoS2 removes salt from sea water. Membrane Technology, 2016, 2016, 7.	0.5	0
292	Characterizing phonon dynamics using stochastic sampling. Journal of Applied Physics, 2016, 119, 115101.	1.1	0
293	Back Cover Image, Volume 118, Number 11, November 2021. Biotechnology and Bioengineering, 2021, 118, ii.	1.7	0
294	Finite Temperature Multiscale Methods for Silicon NEMS. , 2009, , 425-480.		0
295	Concentration Polarization at Micro-/Nanofluidic Interfaces. , 2016, , 651-660.		0