Mukul Gupta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6999846/publications.pdf

Version: 2024-02-01

295 papers 3,102 citations

172457 29 h-index 302126 39 g-index

297 all docs

297 docs citations

times ranked

297

2871 citing authors

#	Article	IF	CITATIONS
1	Nanostructured tungsten oxide thin films by the reactive pulsed laser deposition technique. Applied Physics A: Materials Science and Processing, 2008, 91, 637-649.	2.3	67
2	Development of soft X-ray polarized light beamline on Indus-2 synchrotron radiation source. AIP Conference Proceedings, 2014, , .	0.4	64
3	Graphene Quantum Dot Solid Sheets: Strong blue-light-emitting & photocurrent-producing band-gap-opened nanostructures. Scientific Reports, 2017, 7, 10850.	3.3	61
4	Nanocrystallization and amorphization induced by reactive nitrogen sputtering in iron and permalloy. Physical Review B, 2005, 72, .	3.2	60
5	Influence of <i>in-situ</i> annealing ambient on p-type conduction in dual ion beam sputtered Sb-doped ZnO thin films. Applied Physics Letters, 2013, 103, .	3.3	56
6	Preparation of nanocrystalline Sb doped PbS thin films and their structural, optical, and electrical characterization. Superlattices and Microstructures, 2014, 75, 601-612.	3.1	56
7	Effect of growth temperature on structural, electrical and optical properties of dual ion beam sputtered ZnO thin films. Journal of Materials Science: Materials in Electronics, 2013, 24, 2541-2547.	2.2	52
8	Study of iron nitride thin films deposited by pulsed laser deposition. Journal of Alloys and Compounds, 2001, 326, 265-269.	5.5	49
9	AMOR — the time-of-flight neutron reflectometer at SINQ/PSI. Pramana - Journal of Physics, 2004, 63, 57-63.	1.8	49
10	Nitrogen Diffusion in Amorphous Silicon Nitride Isotope Multilayers Probed by Neutron Reflectometry. Physical Review Letters, 2006, 96, 055901.	7.8	49
11	Structural characterization of diamond-like carbon films for ultracold neutron applications. Diamond and Related Materials, 2007, 16, 334-341.	3.9	46
12	Effect of oxygen partial pressure on the behavior of dual ion beam sputtered ZnO thin films. Semiconductor Science and Technology, 2013, 28, 085014.	2.0	41
13	Self-diffusion of iron in amorphous iron nitride. Physical Review B, 2002, 65, .	3.2	40
14	Iron self-diffusion in amorphousFeZrâ^•Fe57Zrmultilayers measured by neutron reflectometry. Physical Review B, 2004, 70, .	3.2	40
15	Thermal stability of nanometer range Ti/Ni multilayers. Thin Solid Films, 2006, 515, 2213-2219.	1.8	40
16	How to measure atomic diffusion processes in the sub-nanometer range. Acta Materialia, 2008, 56, 464-470.	7.9	40
17	Gradient doping – a case study with Ti-Fe ₂ O ₃ towards an improved photoelectrochemical response. Physical Chemistry Chemical Physics, 2016, 18, 32735-32743.	2.8	40
18	High Responsivity Mg _{<italic>x</italic>} Zn _{1–<italic>x</italic>} O Based Ultraviolet Photodetector Fabricated by Dual Ion Beam Sputtering. IEEE Sensors Journal, 2018, 18, 2744-2750.	4.7	40

#	Article	IF	Citations
19	Impact of Self-Trapped Excitons on Blue Photoluminescence in TiO ₂ Nanorods on Chemically Etched Si Pyramids. Journal of Physical Chemistry C, 2017, 121, 11448-11454.	3.1	38
20	Swift heavy ion irradiation and annealing effects in Fe/Si multilayers. Nuclear Instruments & Methods in Physics Research B, 1999, 156, 148-152.	1.4	37
21	Fe diffusion in amorphous and nanocrystalline alloys studied using nuclear resonance reflectivity. Physical Review B, 2005, 72, .	3.2	37
22	Depth profiling of marker layers using x-ray waveguide structures. Physical Review B, 2005, 72, .	3.2	35
23	3D Hierarchical Boron-Doped Diamond-Multilayered Graphene Nanowalls as an Efficient Supercapacitor Electrode. Journal of Physical Chemistry C, 2019, 123, 15458-15466.	3.1	35
24	$\langle i \rangle$ p $\langle i \rangle$ -type conduction from Sb-doped ZnO thin films grown by dual ion beam sputtering in the absence of oxygen ambient. Journal of Applied Physics, 2013, 114, .	2.5	34
25	Recommendation generation using personalized weight of meta-paths in heterogeneous information networks. European Journal of Operational Research, 2020, 284, 660-674.	5.7	34
26	Growth kinetics of intermetallic alloy phase at the interfaces of a Ni/Al multilayer using polarized neutron and x-ray reflectometry. Physical Review B, 2010, 81, .	3.2	33
27	Growth and characterization of dual ion beam sputtered Cu2ZnSn(S, Se)4 thin films for cost-effective photovoltaic application. Solar Energy, 2016, 139, 1-12.	6.1	31
28	Study of non-magnetic iron mononitride thin films. Journal of Alloys and Compounds, 2011, 509, 8283-8288.	5.5	30
29	Study of magnetic iron nitride thin films deposited by high power impulse magnetron sputtering. Surface and Coatings Technology, 2015, 275, 264-269.	4.8	30
30	Diamondlike carbon can replace beryllium in physics with ultracold neutrons. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2006, 642, 24-27.	4.1	27
31	Growth and characterizations of dual ion beam sputtered CIGS thin films for photovoltaic applications. Journal of Materials Science: Materials in Electronics, 2014, 25, 3069-3076.	2.2	26
32	Origin of anomalous diffusion in iron mononitride thin films. Physical Review B, 2015, 92, .	3.2	26
33	HeteClass: A Meta-path based framework for transductive classification of objects in heterogeneous information networks. Expert Systems With Applications, 2017, 68, 106-122.	7.6	26
34	Cauliflowerâ€shaped ternary nanocomposites with enhanced power and energy density for supercapacitors. International Journal of Energy Research, 2019, 43, 3446-3460.	4.5	26
35	Iron and nitrogen self-diffusion in non-magnetic iron nitrides. Journal of Applied Physics, 2011, 110, .	2.5	25
36	Influence of annealing temperature on ZnO thin films grown by dual ion beam sputtering. Bulletin of Materials Science, 2014, 37, 983-989.	1.7	25

#	Article	IF	CITATIONS
37	Phase formation, thermal stability and magnetic moment of cobalt nitride thin films. AIP Advances, 2015, 5, .	1.3	25
38	Spetroscopic ellipsometry study on electrical and elemental properties of Sb-doped ZnO thin films. Current Applied Physics, 2015, 15, 479-485.	2.4	25
39	Fe and N self-diffusion in amorphous FeN: A SIMS and neutron reflectivity study. Acta Materialia, 2009, 57, 1263-1271.	7.9	24
40	Evolution of structural and magnetic properties of amorphous CoFeB film with thermal annealing. Journal of Applied Physics, 2013, 114, .	2.5	24
41	Evaluation of the band alignment and valence plasmonic features of a DIBS grown Ga-doped Mg _{0.05} Zn _{0.95} O/CIGSe heterojunction by photoelectron spectroscopy. Journal Physics D: Applied Physics, 2015, 48, 485305.	2.8	24
42	Rigid-band electronic structure of scandium nitride across the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>n</mml:mi></mml:math> -type to <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>p</mml:mi></mml:math> -type carrier transition regime. Physical Review B, 2019, 99, .	3.2	23
43	On the coexistence of spin and lattice polarons in the La0.67â^'xEuxCa0.33MnO3 CMR system. Solid State Communications, 2005, 133, 77-81.	1.9	22
44	Measurement of the Fermi potential of diamond-like carbon and other materials. Nuclear Instruments & Methods in Physics Research B, 2007, 260, 647-656.	1.4	22
45	Effect of interface morphology on intermetallics formation upon annealing of Al–Ni multilayer. Journal of Alloys and Compounds, 2013, 576, 257-261.	5.5	22
46	Effect of defects and oxygen vacancies on the RTFM properties of pure and Gd-doped CeO2 nanomaterials through soft XAS. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	22
47	Development of an ion-beam sputtering system for depositing thin films and multilayers of alloys and compounds. Applied Surface Science, 2003, 205, 309-322.	6.1	21
48	Influence of ion-beam sputtering deposition parameters on highly photosensitive and transparent CdZnO thin films. Journal of Materials Science, 2014, 49, 6917-6929.	3.7	21
49	Investigation of dual ion beam sputtered transparent conductive Ga-doped ZnO films. Journal of Materials Science: Materials in Electronics, 2013, 24, 4919-4924.	2.2	20
50	Effect of dopants on thermal stability and self-diffusion in iron-nitride thin films. Physical Review B, 2014, 90, .	3.2	20
51	Improved hydrogen sensing behaviour in ion-irradiated Pd-Au alloy thin films. Sensors and Actuators B: Chemical, 2019, 301, 127006.	7.8	20
52	Origin of Blue Luminescence in <mml:math display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Mg</mml:mi></mml:math> -Doped <mml:math display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi><mml:mi><mml:mi><mml:mi>mathvariant="normal">N</mml:mi></mml:mi></mml:mi></mml:mi></mml:math> .	3.8	19
53	Physical Review Applied, 2019, 11, . N concentration effects on structure and superconductivity of NbN thin films. Journal of Alloys and Compounds, 2021, 851, 155925.	5 . 5	19
54	Iron self-diffusion inFeZrâ^•Fe57Zrmultilayers measured by neutron reflectometry: Effect of applied compressive stress. Physical Review B, 2006, 74, .	3.2	18

#	Article	IF	Citations
55	Formation of iron nitride thin films with Al and Ti additives. Journal of Applied Physics, 2012, 111, .	2.5	18
56	Behavior of dual ion beam sputtered MgZnO thin films for different oxygen partial pressure. Journal of Materials Science: Materials in Electronics, 2014, 25, 772-777.	2.2	18
57	Electronic structure of FeAl alloy studied by resonant photoemission spectroscopy and Ab initio calculations. Journal of Alloys and Compounds, 2016, 688, 187-194.	5.5	18
58	Microstructural study of iron nitride thin films deposited by ion beam sputtering. Vacuum, 2001, 60, 395-399.	3.5	17
59	Synthesis, microstructure and corrosion behavior of compositionally graded Ni-YSZ diffusion barrier coatings on inconel-690 for applications in high temperature environments. Corrosion Science, 2018, 135, 243-254.	6.6	17
60	Tunable electronic, electrical and optical properties of graphene oxide sheets by ion irradiation. Nanotechnology, 2018, 29, 185701.	2.6	17
61	Study of phase formulation in CrN thin films and its response to a minuscule oxygen flow in reactive sputtering process. Thin Solid Films, 2019, 670, 113-121.	1.8	17
62	Structural, optical and electronic properties of a Mg incorporated GaN nanowall network. RSC Advances, 2017, 7, 25998-26005.	3.6	16
63	Structural and magnetic properties of stoichiometric <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Co</mml:mi><mml:math>epitaxial thin films. Physical Review B, 2019. 99</mml:math></mml:msub></mml:mrow></mml:math>	:mn _{含.} 4 <td>nl:mn></td>	nl:mn>
64	Role of additives (X=Ti, Zr) in phase formation and thermal stability of Fe–X–N thin films. Thin Solid Films, 2013, 536, 39-49.	1.8	15
65	Influence of O 2 pressure on structural, morphological and optical properties of TiO 2 -SiO 2 composite thin films prepared by pulsed laser deposition. Thin Solid Films, 2017, 629, 79-89.	1.8	15
66	Structural and magnetic properties of Co-N thin films deposited using magnetron sputtering at 523ÂK. Journal of Alloys and Compounds, 2017, 694, 1209-1213.	5.5	15
67	Effect of heavy metal interface on the magnetic behaviour and thermal stability of CoFeB film. Journal of Magnetism and Magnetic Materials, 2018, 466, 311-316.	2.3	15
68	Phase growth analysis of sputtered TiO ₂ thin films at low oxygen partial pressures using XANES and XRR. Materials Research Express, 2019, 6, 116449.	1.6	15
69	Spreading the information in complex networks: Identifying a set of top-N influential nodes using network structure. Decision Support Systems, 2021, 149, 113608.	5.9	15
70	Investigation of DIBS-Deposited CdZnO/ZnO-Based Multiple Quantum Well for Large-Area Photovoltaic Application. IEEE Transactions on Electron Devices, 2020, 67, 5587-5592.	3.0	15
71	Pure Nuclear Reflection fromnaturalFeN0.7/57FeN0.7Multilayer. Journal of the Physical Society of Japan, 2004, 73, 423-429.	1.6	15
72	Iron self-diffusion in nanocrystalline FeZr thin films. Journal of Non-Crystalline Solids, 2004, 343, 39-47.	3.1	14

#	Article	IF	CITATIONS
73	Investigation of interface magnetic moment of Feâ [*] -Ge multilayer: A neutron reflectivity study. Journal of Applied Physics, 2007, 101, 033913.	2.5	14
74	Ordering and self-diffusion in FePt alloy film. New Journal of Physics, 2008, 10, 053031.	2.9	14
75	Compositional effect of antimony on structural, optical, and photoluminescence properties of chemically deposited (Cd1â°'xSbx)S thin films. Superlattices and Microstructures, 2013, 59, 29-37.	3.1	14
76	Interface induced magnetic properties of Gd/Co heterostructures. Physical Chemistry Chemical Physics, 2018, 20, 21580-21589.	2.8	14
77	A novel apparatus for the investigation of material properties for the storage of ultracold neutrons. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 550, 637-646.	1.6	13
78	Surfactant mediated growth of Ti/Ni multilayers. Applied Physics Letters, 2011, 98, .	3.3	13
79	Effect of precursor concentration on the properties and tuning of conductivity between p-type and n-type Cu1â°XCdXS2 thin films deposited by a single step solution process as a novel material for photovoltaic applications. RSC Advances, 2015, 5, 23015-23021.	3.6	13
80	Effect of oxygen partial pressure on the structural and optical properties of ion beam sputtered TiO2 thin films. Thin Solid Films, 2016, 619, 86-90.	1.8	13
81	Local probing of the enhanced field electron emission of vertically aligned nitrogen-doped diamond nanorods and their plasma illumination properties. Diamond and Related Materials, 2018, 83, 118-125.	3.9	13
82	Magnetic depth profiling of FM/AF/FM trilayers by PNR. Physica B: Condensed Matter, 2005, 356, 46-50.	2.7	12
83	Diffusion behaviour of Nb in yttria-stabilized zirconia single crystals: A SIMS, AFM and X-ray reflectometry investigations. Applied Surface Science, 2006, 253, 1071-1080.	6.1	12
84	Surfactant controlled interfacial alloying in thermally evaporated Cu/Co multilayers. Journal of Alloys and Compounds, 2012, 522, 9-13.	5 . 5	12
85	Density and microstructure of a-C thin films. Diamond and Related Materials, 2018, 84, 71-76.	3.9	12
86	Antisymmetric magnetoresistance and helical magnetic structure in a compensated Gd/Co multilayer. Physical Review B, 2019, 100, .	3.2	12
87	XAS studies of brain-sponge CNClZnO nanostructures using polyaniline as dual source for solar light photocatalysis. Ceramics International, 2019, 45, 1314-1321.	4.8	12
88	Deposition of CuCdS2 thin film by single step solution process at low temperature as a novel absorber for photovoltaic applications. Superlattices and Microstructures, 2014, 76, 125-134.	3.1	11
89	Synergistic Effect of Singly Charged Oxygen Vacancies and Ligand Field for Regulating Transport Properties of Resistive Switching Memories. Journal of Physical Chemistry C, 2019, 123, 26812-26822.	3.1	11
90	Insight into the photophysics of strong dual emission (blue & green) producing graphene quantum dot clusters and their application towards selective and sensitive detection of trace level Fe ³⁺ and Cr ⁶⁺ ions. RSC Advances, 2020, 10, 26613-26630.	3.6	11

#	Article	IF	Citations
91	Silicide layer formation in evaporated and sputtered Fe/Si multilayers: X-ray and neutron reflectivity study. Applied Surface Science, 2013, 277, 182-185.	6.1	10
92	Growth and characterization of Cu2ZnGeSe4 thin films by selenization of multiple stacks (Cu/Se/ZnSe/Se/Ge/Se) in high vacuum. Vacuum, 2016, 131, 264-270.	3.5	10
93	Structure and magnetization of <mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow> thin film. lournal of Magnetism and Magnetic Materials. 2018. 448. 274-277.</mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	w ^{3:3} mml:r	nn>4
94	Structural and magnetic properties of CoNi surface alloys. Physica B: Condensed Matter, 2019, 572, 105-108.	2.7	10
95	Study of reactively sputtered nickel nitride thin films. Journal of Alloys and Compounds, 2021, 851, 156299.	5.5	10
96	Effect of Ag layer thickness on optical and electrical properties of ion-beam-sputtered TiO2/Ag/TiO2 multilayer thin film. Journal of Materials Science: Materials in Electronics, 2022, 33, 6942-6953.	2.2	10
97	Preparation of Fe/Pt Films with Perpendicular Magnetic Anisotropy. Hyperfine Interactions, 2005, 160, 157-163.	0.5	9
98	Structural and Magnetic Study of an Electrodeposited Niâ^•Cu Thin Film by Neutron Reflectometry. Electrochemical and Solid-State Letters, 2006, 9, J5.	2.2	9
99	Diamond-like carbon coatings for Ultracold Neutron applications. Diamond and Related Materials, 2006, 15, 928-931.	3.9	9
100	Magnetization in permalloy thin films. Pramana - Journal of Physics, 2008, 71, 1123-1127.	1.8	9
101	Dimensional crossover of electron weak localization in ZnO/TiOx stacked layers grown by atomic layer deposition. Applied Physics Letters, 2016, 108, .	3.3	9
102	Investigation of local structural and magnetic properties of discontinuous to continuous layer of Co at Co/MgO interface in MgO/Co/MgO trilayer structure. Journal of Alloys and Compounds, 2017, 700, 267-271.	5.5	9
103	Effect of selenium incorporation at precursor stage on growth and properties of Cu2ZnSnSe4 thin films. Vacuum, 2017, 144, 43-52.	3.5	9
104	Direct synthesis of electrowettable nanostructured hybrid diamond. Journal of Materials Chemistry A, 2019, 7, 19026-19036.	10.3	9
105	Synthesis, structure and magnetization of <mml:math altimg="si17.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow< td=""><td>ow><mml:< td=""><td>9 mn>4</td></mml:<></td></mml:mrow<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	ow> <mml:< td=""><td>9 mn>4</td></mml:<>	9 mn>4
106	Interface sharpening in miscible and isotopic multilayers: Role of short-circuit diffusion. Physical Review B, 2019, 99, .	3.2	9
107	Effect of Interfacial Interdiffusion on magnetism in epitaxial <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Fe</mml:mi><mml:mi>mathvariant="normal">N</mml:mi></mml:msub></mml:mrow></mml:math> films on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>LaAlO</mml:mi><mml:mn>3<td>2.4</td><td>9</td></mml:mn></mml:msub></mml:math>	2.4	9
108	Structural characterization of epitaxial Fe/Cr multilayers using anomalous X-ray and neutron reflectivity. Journal of Magnetism and Magnetic Materials, 2004, 272-276, 1219-1220.	2.3	8

#	Article	IF	Citations
109	Study of interfacial properties and its effect on magnetization behaviour of Fe/Ni multilayer structure. Applied Surface Science, 2004, 238, 254-261.	6.1	8
110	Correlation between iron self-diffusion and thermal stability in doped iron nitride thin films. Journal of Applied Physics, 2014, 116, 222206.	2.5	8
111	Identification of a kinetic length scale which dictates alloy phase composition in Ni-Al interfaces on annealing at low temperatures. Journal of Applied Physics, 2014, 116, .	2.5	8
112	<i>In situ</i> small-angle x-ray and nuclear resonant scattering study of the evolution of structural and magnetic properties of an Fe thin film on MgO (001). Physical Review B, 2015, 92, .	3.2	8
113	Effect of thermal annealing on the phase evolution of silver tungstate in Ag/WO 3 films. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 145, 239-244.	3.9	8
114	Effects of oxygen partial pressure and annealing on dispersive optical nonlinearity in NiO thin films. Journal of Applied Physics, 2017, 122, .	2.5	8
115	Electronic structure of Pr ₂ MnNiO ₆ from x-ray photoemission, absorption and density functional theory. Journal of Physics Condensed Matter, 2018, 30, 435603.	1.8	8
116	Oxygen mediated phase transformation in room temperature grown TiO2 thin films with enhanced photocatalytic activity. Applied Physics Letters, 2018, 113, .	3.3	8
117	Magnetically tuned absorptive optical nonlinearity in NiO thin films. Optical Materials, 2018, 84, 893-898.	3.6	8
118	Influence of annealing on spin pumping in sputtered deposited Co/Pt bilayer thin films. Physica B: Condensed Matter, 2019, 570, 254-258.	2.7	8
119	Depth-resolved compositional analysis of W/B ₄ C multilayers using resonant soft X-ray reflectivity. Journal of Synchrotron Radiation, 2019, 26, 793-800.	2.4	8
120	Annealing induced modifications in physicochemical and optoelectronic properties of CdS/CulnGaSe2 thin film. Solar Energy, 2019, 177, 1-7.	6.1	8
121	Magnetization of Fe4N thin films: Suppression of interfacial intermixing using buffer layers. Journal of Magnetism and Magnetic Materials, 2020, 507, 166806.	2.3	8
122	Structural and surface morphological studies of long chain fatty acid thin films deposited by Langmuir–Blodgett technique. Physica B: Condensed Matter, 2012, 407, 4777-4782.	2.7	7
123	Depth dependent structure and magnetic properties and their correlation with magnetotransport in Fe/Au multilayers. Thin Solid Films, 2014, 550, 326-333.	1.8	7
124	Stoichiometry dependent inter diffusion and structural evolution in Alâ€"Ni multilayer. Journal of Alloys and Compounds, 2015, 631, 46-51.	5.5	7
125	Effect of Al doping on phase formation and thermal stability of iron nitride thin films. Journal of Alloys and Compounds, 2015, 650, 647-653.	5. 5	7
126	Nanoscale self-recovery of resistive switching in Ar ⁺ irradiated TiO _{2â^²<i>x</i>} films. Journal Physics D: Applied Physics, 2017, 50, 475304.	2.8	7

#	Article	IF	Citations
127	Low temperature crystallization of Cu2ZnSnSe4 thin films using binary selenide precursors. Journal of Materials Science: Materials in Electronics, 2017, 28, 18244-18253.	2.2	7
128	Evolution with thermal annealing of magnetic anisotropy in FeCoB thin film interfaced with Mo layers. Journal of Magnetism and Magnetic Materials, 2018, 448, 100-106.	2.3	7
129	In-situ growth of iron mononitride thin films studied using x-ray absorption spectroscopy and nuclear resonant scattering. Hyperfine Interactions, 2019, 240, 1.	0.5	7
130	Structural and magnetic properties of FeN thin films grown on TiN. Physica B: Condensed Matter, 2019, 572, 94-97.	2.7	7
131	Electronic structure by X-ray absorption spectroscopy and observation of field induced unusually slow spin relaxation from magnetic properties in pyrochlore Eu2â^xFexTi2O7. Journal of Magnetism and Magnetic Materials, 2019, 476, 7-17.	2.3	7
132	Clustering of oxygen point defects in transition metal nitrides. Journal of Applied Physics, 2021, 129, .	2.5	7
133	Surfactant controlled interface roughness and spin-dependent scattering in Cu/Co multilayers. Applied Physics A: Materials Science and Processing, 2013, 111, 495-499.	2.3	6
134	Positional Controlled Manipulation of the Carbon Nanotube Surface by Selective Screening. Journal of Physical Chemistry C, 2015, 119, 716-723.	3.1	6
135	Study of the structural phase transformation, and optical behavior of the as synthesized ZnO–SnO2–TiO2nanocomposite. Phase Transitions, 2015, 88, 1122-1136.	1.3	6
136	Enhanced radial growth of Mg doped GaN nanorods: A combined experimental and <i>first-principles</i> study. Journal of Applied Physics, 2018, 123, .	2.5	6
137	Influence of Selenization Time on Microstructural, Optical, and Electrical Properties of Cu2ZnGeSe4 Films. Journal of Electronic Materials, 2018, 47, 800-810.	2.2	6
138	Revealing carbon mediated luminescence centers with enhanced lifetime in porous alumina. Journal of Applied Physics, 2019, 126, 164904.	2.5	6
139	Annealing driven positive and negative exchange bias in Fe–Cu–Pt heterostructures at room temperature. Journal of Alloys and Compounds, 2020, 815, 152640.	5.5	6
140	X-ray absorption spectroscopy study of cobalt mononitride thin films. SN Applied Sciences, 2020, 2, 1.	2.9	6
141	Study of Interfaces in Hf/Fe System Using Magnetoâ€Optical Kerr Effect and Soft Xâ€Ray Absorption Spectroscopy. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000177.	2.4	6
142	Structural, optical and electronic properties of Ni _{1â^'x} Co _x O in the complete composition range. RSC Advances, 2020, 10, 43497-43507.	3.6	6
143	Synthesis and structural investigation of stoichiometric iron mononitride thin films. Journal of Physics and Chemistry of Solids, 2020, 147, 109653.	4.0	6
144	Fully dense, highly conductive nanocrystalline TiN diffusion barrier on steel via reactive high power impulse magnetron sputtering. Thin Solid Films, 2021, 722, 138578.	1.8	6

#	Article	IF	CITATIONS
145	Study of nano-scale diffusion in thin films and multilayers. Hyperfine Interactions, 2008, 182, 23-30.	0.5	5
146	Surfactant induced symmetric and thermally stable interfaces in Cu/Co multilayers. Journal of Physics Condensed Matter, 2011, 23, 485003.	1.8	5
147	Study of strain propagation in laser irradiated silicon crystal by time-resolved diffraction of K-α x-ray probe of different photon energies. Journal of Applied Physics, 2013, 114, 023302.	2.5	5
148	Study of surfactant mediated growth of Ni/V superlattices. Journal of Applied Physics, 2013, 114, 024307.	2.5	5
149	Effect of film thickness on the magneto-structural properties of ion beam sputtered transition metal–metalloid FeCoNbB/Si (100) alloy thin films. Materials Research Express, 2016, 3, 086102.	1.6	5
150	Surface and grain boundary interdiffusion in nanometer-scale LSMO/BFO bilayer. Journal of Magnetism and Magnetic Materials, 2016, 405, 72-77.	2.3	5
151	Growth Mechanism of Pine-leaf-like Nanostructure from the Backbone of SrCO ₃ Nanorods using LaMer's Surface Diffusion: Impact of Higher Surface Energy (γ = 38.9) Tj ETQq1 1 0.784314 Calculations. Crystal Growth and Design, 2017, 17, 6394-6406.	rgBT/Ove	erlock 10 Tf 5
152	Magnetic properties of ordered polycrystalline FeRh thin films. RSC Advances, 2017, 7, 44097-44103.	3.6	5
153	Local Structure Investigation of Mn―and Co–Doped TiO ₂ Thin Films by Xâ€Ray Absorption Spectroscopy. ChemistrySelect, 2017, 2, 11012-11024.	1.5	5
154	Room temperature superparamagnetism in ternary (Fe50Pt50)0.42Cu0.58 phase at interfaces on annealing of Fe50Pt50/Cu multilayer. Journal of Magnetism and Magnetic Materials, 2018, 462, 58-69.	2.3	5
155	Study of interface induced anisotropic exchange coupling in amorphous FeCoB/MgO bilayer. Journal of Alloys and Compounds, 2019, 789, 330-335.	5.5	5
156	DPRel: A Meta-Path Based Relevance Measure for Mining Heterogeneous Networks. Information Systems Frontiers, 2019, 21, 979-995.	6.4	5
157	Interfacial chemistry and electronic structure of epitaxial lattice-matched TiN/Al0.72Sc0.28N metal/semiconductor superlattices determined with soft x-ray scattering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	2.1	5
158	Effect of disorder on superconductivity of NbN thin films studied using x-ray absorption spectroscopy. Journal of Physics Condensed Matter, 2021, 33, 305401.	1.8	5
159	Synthesis and study of highly dense and smooth TiN thin films. Materials Chemistry and Physics, 2021, 267, 124648.	4.0	5
160	<i>In situ</i> N <i>K</i> -edge XANES study of iron, cobalt and nickel nitride thin films. Journal of Synchrotron Radiation, 2021, 28, 1504-1510.	2.4	5
161	Annealing Temperature Dependence of Various Properties of ZnO Nanoparticles Investigated with Soft XAS. Nano, $2021, 16, \ldots$	1.0	5
162	X-ray photoelectron spectroscopy investigation of Ta/CoFeB/TaOx heterostructures. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 272, 115367.	3.5	5

#	Article	IF	CITATIONS
163	Investigation of structural, magnetic and electronic properties of FeTa films for varying Ta concentration at different annealing temperatures. Journal of Magnetism and Magnetic Materials, 2021, 538, 168306.	2.3	5
164	Study of interface and its role in an unusual magnetization reversal in 57FeCoB/MgO bilayer. Hyperfine Interactions, 2021, 242, 1.	0.5	5
165	Detailed study of reactively sputtered ScN thin films at room temperature. Materialia, 2022, 22, 101375.	2.7	5
166	Self-diffusion in nanoscale structures measured by neutron reflectometry. Journal of Phase Equilibria and Diffusion, 2005, 26, 458-465.	1.4	4
167	Iron Self-Diffusion in Chemically Homogeneous Multilayers. Defect and Diffusion Forum, 2005, 237-240, 548-553.	0.4	4
168	Effect of Ag as a surfactant on the thermal stability in Cu/Co multilayers. Journal of Physics: Conference Series, 2010, 211, 012020.	0.4	4
169	Anomalous diffusion of Ga and As from semi-insulating GaAs substrate into MOCVD grown ZnO films as a function of annealing temperature and its effect on charge compensation. AIP Advances, 2014, 4, 057108.	1.3	4
170	Depth selective crystallization study of CoFeB film on MgO. Materials Research Express, 2017, 4, 106404.	1.6	4
171	Impact of stacking order on the microstructural properties of Cu2ZnGeSe4 thin film absorber layer. Superlattices and Microstructures, 2018, 117, 437-448.	3.1	4
172	Enhancement of L1 transformation in Fe/Pt multilayer by Cu addition. AIP Advances, 2018, 8, .	1.3	4
173	Structural and magnetic study of ion beam sputtered iron thin film on polyvinyl alcohol. AIP Conference Proceedings, 2019, , .	0.4	4
174	Size induced structural changes in maricite-NaFePO ₄ : an in-depth study by experiment and simulations. Physical Chemistry Chemical Physics, 2019, 21, 25206-25214.	2.8	4
175	<i>In situ</i> soft x-ray absorption spectroscopic study of polycrystalline Fe/MgO interfaces. Journal of Physics Condensed Matter, 2019, 31, 105001.	1.8	4
176	Structure, Thermal Stability, and Magnetism of Ni ₄ N Thin Films. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000294.	2.4	4
177	Network projection-based edge classification framework for signed networks. Decision Support Systems, 2020, 135, 113321.	5.9	4
178	Impact of Antisite Defect Complex on Optical and Electrical Properties of Ag 2 ZnSnSe 4 Thin Films. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900752.	1.8	4
179	Size dependence of interfacial intermixing in Fe/Si multilayer. Vacuum, 2020, 180, 109546.	3.5	4
180	Anomalous Behavior of Magnetic Anisotropy of Amorphous Co40Fe43B17 Thin Film Sandwiched Between Mo Layers. IEEE Transactions on Magnetics, 2021, 57, 1-5.	2.1	4

#	Article	IF	Citations
181	Evaluating the role of composition and local structure on alkali outâ€diffusion in glasses for thinâ€film solar cells. Journal of the American Ceramic Society, 2021, 104, 851-859.	3.8	4
182	Thickness dependent magnetic properties of ferromagnetic films (Fe, Co) interfaced with Ta. Thin Solid Films, 2021, 719, 138490.	1.8	4
183	In-situ RHEED analysis of reactively sputtered epitaxial FeN thin films. Journal of Crystal Growth, 2021, 560-561, 126049.	1.5	4
184	Room temperature weakly ferromagnetic energy band opened graphene quantum dot coupled solid sheets – A possible carbon based dilute magnetic semiconductor. Applied Surface Science, 2021, 548, 149195.	6.1	4
185	Interface-driven magnetic anisotropy of epitaxial <mml:math altimg="si1.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mtext>Fe</mml:mtext><mml:mn>4</mml:mn></mml:msub><r mathvariant="normal">N</r></mml:mrow></mml:math> Âthin films. Applied Surface Science	n a æmi	4
186	Structure and thermal stability of amorphous Co23Fe60B17 film on Si substrate. Applied Surface Science Advances, 2021, 5, 100113.	6.8	4
187	Role of interlayer thickness on interdiffusion in Ti/TiN multilayers. Applied Surface Science, 2021, 564, 150430.	6.1	4
188	Single-step synthesis of core-shell diamond-graphite hybrid nano-needles as efficient supercapacitor electrode. Electrochimica Acta, 2021, 397, 139267.	5.2	4
189	Synthesis, Stability and Self-Diffusion in Iron Nitride Thin Films: A Review. Materials Horizons, 2020, , 131-179.	0.6	4
190	Synthesis and characterization of AlN thin films deposited using DC and RF magnetron sputtering. AlP Conference Proceedings, 2020, , .	0.4	4
191	Investigating the effect of thickness on the structural and magnetic properties of carbon thin film. Carbon, 2022, 191, 205-214.	10.3	4
192	Crossover in growth exponent upon nanocrystallization of amorphous thin films. Journal of Applied Physics, 2005, 98, 064305.	2.5	3
193	Structure and magnetic properties of Fe/Ge multilayer by neutron reflectometry. Physica B: Condensed Matter, 2006, 385-386, 653-655.	2.7	3
194	Self-Diffusion in Covalent Amorphous Solids – A Comparative Study Using Neutron Reflectometry and SIMS. Defect and Diffusion Forum, 2007, 263, 51-56.	0.4	3
195	Effect of Growth Temperature on Properties of CdZnO Thin Films. Environmental Science and Engineering, 2014, , 865-867.	0.2	3
196	Synthesis and characterization of pulsed laser deposited SnO ₂ Fe ₂ O ₃ composite thin films for TCO application. EPJ Applied Physics, 2014, 67, 10302.	0.7	3
197	Anatase phase evolution and its stabilization in ion beam sputtered TiO2 thin films. Thin Solid Films, 2018, 666, 113-120.	1.8	3
198	Growth and characterization of Ge-substituted Cu2ZnSnSe4 thin films. Materials Science in Semiconductor Processing, 2018, 87, 77-85.	4.0	3

#	Article	IF	CITATIONS
199	Soft Xâ€ray characterization of ion beam sputtered magnesium oxide (MgO) thin film. Surface and Interface Analysis, 2018, 50, 1145-1148.	1.8	3
200	Dynamics of reactive sputtering affecting phase formation of Co–N thin films. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	3
201	Investigation of valence electron excitation and plasmonic enhancement in sputter grown NMZO thin films: For energy harvesting applications. Optical Materials, 2019, 88, 372-377.	3.6	3
202	Electron energy loss and X-ray absorption behaviour of high density nonmagnetic cobalt. Thin Solid Films, 2019, 675, 177-181.	1.8	3
203	Field dependent helical magnetic structure in a compensated Gd/Co multilayer. Journal of Magnetism and Magnetic Materials, 2020, 516, 167331.	2.3	3
204	Formation of an intermetallic GdCo2 alloy on controlled annealing of a Gd/Co multilayer. Materials Letters, 2021, 283, 128879.	2.6	3
205	Structural, electronic, and magnetic properties of Co4N thin films deposited using HiPIMS. Journal of Alloys and Compounds, 2021, 863, 158052.	5.5	3
206	Synthesis of fcc-Co from isostructural Co4N. Journal of Applied Physics, 2021, 130, .	2.5	3
207	Micro-structural and bonding structure analysis of TiAlN thin films deposited with varying N2 flow rate via ion beam sputtering technique. Materials Science-Poland, 2020, 38, 122-131.	1.0	3
208	Interface morphology driven exchange interaction and magnetization reversal in a Gd/Co multilayer. Physical Chemistry Chemical Physics, 2022, 24, 6580-6589.	2.8	3
209	Structural and magnetic properties of ion-beam sputtered FeZr thin films. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 3211-3215.	0.8	2
210	Smooth interfaces of multilayer monochromators. Physica B: Condensed Matter, 2005, 357, 218-221.	2.7	2
211	Unpolarized and polarized neutron reflectometry for magnetic structure of nickel–copper multilayer film. Solid State Communications, 2005, 136, 400-403.	1.9	2
212	Magnetic properties of thin films of samarium-cobalt alloy prepared by magnetron sputtering. Journal of Physics: Conference Series, 2016, 755, 012028.	0.4	2
213	Study of cobalt mononitride thin films prepared using DC and high power impulse magnetron sputtering. AIP Conference Proceedings, 2016 , , .	0.4	2
214	Annealing induced structural changes in amorphous Co23Fe60B17 film on Mo buffer layer. AIP Conference Proceedings, 2016, , .	0.4	2
215	Study of polymorphism of ZnPc LB thin film on annealing. AIP Conference Proceedings, 2016, , .	0.4	2
216	Magnetic instability and f $\hat{a}\in$ d hybridization in CeFe 2 on substituting Cr, Ag, and Au for Fe. Journal of Magnetism and Magnetic Materials, 2017, 433, 162-168.	2.3	2

#	Article	IF	CITATIONS
217	Impact of selenization pressure on the micro-structural properties of Cu2ZnSnSe4 thin films. Superlattices and Microstructures, 2017, 110, 252-264.	3.1	2
218	Early stages of TiN thin film growth probed using in-situ soft X-ray absorption spectroscopy. AIP Conference Proceedings, 2017, , .	0.4	2
219	Study of exchange bias effect in a patterned Fe/Pt multilayer with the thermal annealing. Vacuum, 2018, 151, 61-65.	3 . 5	2
220	Finding pathways to prepare Fe4N thin films at low substrate temperature. AIP Conference Proceedings, $2018, \ldots$	0.4	2
221	Role of growth parameters on structural and magnetic properties of Fe4N thin films grown by reactive magnetron sputtering. Physica B: Condensed Matter, 2019, 572, 36-41.	2.7	2
222	Negative capacitance effect of Cu–TiC thin film deposited by DC magnetron plasma. Bulletin of Materials Science, 2020, 43, 1.	1.7	2
223	Helical magnetic structure and exchange bias across the compensation temperature of Gd/Comultilayers. Journal of Applied Physics, 2020, 128, 103901.	2.5	2
224	Evolution of structural and magnetic properties of FePtCu alloy films on annealing of FePt/Cu multilayers. Physical Chemistry Chemical Physics, 2020, 22, 16107-16116.	2.8	2
225	Study of magnetic zigzag domain walls and magnetization reversal process in polycrystalline cobalt thin films: Effect of thickness and crystallographic texturing. Thin Solid Films, 2021, 719, 138492.	1.8	2
226	Self-diffusion processes in stoichiometric iron mononitride. Journal of Applied Physics, 2021, 129, .	2.5	2
227	Studying the onset of galvanic steel corrosion in situ using thin films: film preparation, characterization and application to pitting. Journal of Physics Condensed Matter, 2021, 33, 125001.	1.8	2
228	Structural and magnetic properties of co-sputtered <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Fe</mml:mi><mml:m athvariant="normal">C<mml:mrow><mml:mrow></mml:mrow></mml:mrow></mml:m></mml:msub></mml:mrow><td>nrow}<mm ow'><td>nl:mn>0.8l:math></td></mm </td></mml:math>	nrow} <mm ow'><td>nl:mn>0.8l:math></td></mm 	nl:mn>0.8l:math>
229	Study of scandium nitride thin films deposited using ion beam sputtering. AIP Conference Proceedings, 2020, , .	0.4	2
230	Giant dispersive and absorptive optical nonlinearities in TiO ₂ thin films. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 279.	2.1	2
231	Effect of substrate and Fe/Rh stoichiometry on first order antiferromagnetic–ferromagnetic transition in FeRh thin films. Journal of Magnetism and Magnetic Materials, 2022, 551, 169095.	2.3	2
232	Structural and magnetic asymmetry at the interfaces of MgO/FeCoB/MgO trilayer: Precise study under x-ray standing wave conditions. Journal of Applied Physics, 2022, 131, 235301.	2.5	2
233	Fe and N diffusion in nitrogen-rich FeN measured using neutron reflectometry. Pramana - Journal of Physics, 2008, 71, 1085-1089.	1.8	1
234	A direct evidence of floating-off mechanism of Ag surfactant in Cu/Co multilayers probed by secondary ion mass spectrometry. AIP Conference Proceedings, 2012, , .	0.4	1

#	Article	IF	CITATIONS
235	Study of iron mononitride thin films. , 2014, , .		1
236	Prediction of Binary Labels for Edges in Signed Networks: A Random-Walk Based Approach. , 2017, , .		1
237	Optimization of co-sputtered FePt films using x-ray scattering techniques. AIP Conference Proceedings, 2018, , .	0.4	1
238	A novel green approach for reduction of free standing graphene oxide: electrical and electronic structural investigations. Nanotechnology, 2018, 29, 345204.	2.6	1
239	Deposition of Fe/Nb multilayers and Fe/Nb/Fe trilayers using HIPIMS: XRR measurements for interface diffusion study. AIP Conference Proceedings, 2019, , .	0.4	1
240	Study of cobalt mononitride thin films deposited using different sized magnetron sources and effect of carbon doping. AIP Conference Proceedings, 2019 , , .	0.4	1
241	Preparation and characterization of Fe4N thin film deposited by high power impulse magnetron sputtering. AIP Conference Proceedings, 2019 , , .	0.4	1
242	Thickness dependent structural and magnetic properties of Au/Co/Si (100) ultra-thin wedge film. AIP Conference Proceedings, 2019, , .	0.4	1
243	Chemical analysis and non-linear optical properties of TiO2 thin films. AIP Conference Proceedings, 2019, , .	0.4	1
244	Temperature induced interface roughness and spin reorientation transition in Co/Au multilayers thin films. Materials Research Express, 2019, 6, 126445.	1.6	1
245	Nonlinear refraction in NiO thin films. AIP Conference Proceedings, 2020, , .	0.4	1
246	Effect of Ag underlayer on structural and optical properties of PVA/Ag/Co film. AIP Conference Proceedings, 2020, , .	0.4	1
247	Magnetic anisotropy and magnetization reversal in cobalt-iron thin film. Spectroscopy Letters, 2021, 54, 180-187.	1.0	1
248	Chemical disorder induced positive magnetoimpedance in La _{0.7} Pb _{0.3} Mn _{0.35} Fe _{0.65} O _{3â^¹Î´} and La _{0.7} Pb _{0.3} Mn _{0.3} Fe _{0.7} O _{3â^¹Î´} manganites. EPJ Applied Physics, 2021, 93, 30601.	0.7	1
249	Impact of pre-annealing time on the growth and properties of Ag2ZnSnSe4 thin films. Journal of Physics and Chemistry of Solids, 2021, 154, 110067.	4.0	1
250	Study of carbon doped cobalt mononitride thin films. Applied Surface Science, 2021, 564, 150443.	6.1	1
251	Qualitative Analysis of the Valence and Conduction Band Offset Parameters in FeNiO/CuNiO Bilayer Film Using Xâ∈Ray Photoelectron Spectroscopy. Physica Status Solidi (B): Basic Research, 2022, 259, 2100132.	1.5	1
252	Electronic structure modification in Fe-substituted \hat{l}^2 -Ga ₂ O ₃ from resonant photoemission and soft x-ray absorption spectroscopies. Journal Physics D: Applied Physics, 2022, 55, 185304.	2.8	1

#	Article	IF	CITATIONS
253	Stabilizing effects of Ag doping on structure and thermal stability of FeN thin films. Journal of Physics Condensed Matter, 2022, 34, 115702.	1.8	1
254	XANES and XRR study on phase evolution of TiO2 films developed using HiPIMS. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 283, 115827.	3.5	1
255	Self-Diffusion in Chemically Homogeneous Multilayers Using Neutron and Nuclear Resonance Reflectivity. Materials Research Society Symposia Proceedings, 2004, 840, Q1.7.1.	0.1	O
256	Structural and magnetic properties of Fe/Ni multilayers. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 3651-3655.	0.8	0
257	Probing the Effects of SHI and Doping-Induced Defects in Nanocrystalline Spinel Ferrites. Defect and Diffusion Forum, 2005, 242-244, 255-276.	0.4	0
258	Self-Diffusion of Iron in Nano-Crystalline Iron Nitride. Materials Science Forum, 2005, 480-481, 557-564.	0.3	0
259	Preparation and Characterization of Nanocrystalline Soft Magnetic FeXN Thin Films. , $2011, \ldots$		0
260	Effect of Ag Surfactant on Cuâ^•Co Multilayers Deposited by RF-Ion Beam Sputtering., 2011,,.		0
261	Self Diffusion of Fe in CoFeB Thin Film. , 2011, , .		0
262	Surfactant Mediated Growth of Tâ^•Ni Multilayers. , 2011, , .		0
263	Interdiffusion in Wâ^•Si Multilayers with Boron Carbide Interlayers. , 2011, , .		0
264	Characterization of Ni/Al multilayer on Si substrate by diffraction and reflectometry techniques. , 2012, , .		0
265	Strain and mosaic deformation in laser irradiated silicon. , 2012, , .		0
266	Optimization of Ti addition in Fe for Fe-Ti-N thin films. , 2012, , .		0
267	Reactive nitrogen sputtering of Fe, Al and Fe(Al). , 2012, , .		0
268	Reactive nitrogen sputtering of iron using ion beam and magnetron sources. , 2012, , .		0
269	Effect of oxygen partial pressure on the structural and optical properties of ion beam sputtered TiO ₂ thin films. Journal of Physics: Conference Series, 2016, 755, 012053.	0.4	0
270	Study of interlayer coupling between FePt and FeCoB thin films through MgO spacer layer. AIP Conference Proceedings, 2017, , .	0.4	0

#	Article	IF	CITATIONS
271	Structural and electrical characterization of ion beam sputter deposited Mo/Cu films. AIP Conference Proceedings, 2017, , .	0.4	O
272	Effect of annealing on the optical properties of the ion beam sputtered NiO thin film. AIP Conference Proceedings, 2017, , .	0.4	0
273	Investigation of band alignment in Co doped ZnO/ZnO heterostructure. AIP Conference Proceedings, 2017, , .	0.4	0
274	Role of oxygen impurities in synthesis of iron mononitride thin films. AIP Conference Proceedings, 2018, , .	0.4	0
275	Local structure investigation on Mn and Co doped TiO2 thin films by x-ray absorption spectroscopy. AIP Conference Proceedings, 2018, , .	0.4	0
276	Manipulation of Gilbert Damping Parameter by Annealing Sputtered Deposited Co/Pt Bilayer Thin Films , 2018, , .		0
277	Influence of oxygen on growth of carbon thin films. AIP Conference Proceedings, 2018, , .	0.4	0
278	Nonlinear optical responses of magnetron sputtered TiO2 thin film. AIP Conference Proceedings, 2019,	0.4	0
279	Interface dependent diffusivity in Gd/Co multilayers. AIP Conference Proceedings, 2019, , .	0.4	0
280	Magneto-optical Kerr effect and nuclear resonant scattering study of uni-directional anisotropy in hard-soft magnetic bilayers. Journal of Applied Physics, 2019, 126, 043905.	2.5	0
281	Ambient temperature growth and characterization of stoichiometric NbN thin films. AIP Conference Proceedings, 2019, , .	0.4	0
282	Effect of process parameters on phase formation of cobalt mononitride thin films. AIP Conference Proceedings, 2020, , .	0.4	0
283	Synthesis and characterization of Co0.4 Fe0.6 thin film alloy. Materials Today: Proceedings, 2021, 35, 82-85.	1.8	0
284	Growth of AZTSe thin films by rapid thermal processing and numerical simulation of p-CZTSe/n-AZTSe thin film heterojunction. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	0
285	Structural and magnetic properties of CoTi thin films deposited by magnetron sputtering method. Phase Transitions, 2021, 94, 445-453.	1.3	0
286	Study of nano-scale diffusion in thin films and multilayers. , 2008, , 23-30.		0
287	CIGS thin film Deposition by Dual Ion Beam Sputtering (DIBS) system for Solar cell Applications. Environmental Science and Engineering, 2014, , 399-401.	0.2	0
288	Annealing driven interface diffusivity in FePt/Cu multilayer. AIP Conference Proceedings, 2020, , .	0.4	0

Mukul Gupta

#	Article	IF	CITATION
289	Synthesis of Nb2N by rapid thermal annealing of interstitial Nb(N) thin film. AIP Conference Proceedings, 2020, , .	0.4	0
290	Influence of AlN buffer layer on molecular beam epitaxy growth of wurtzite Al1â^2xScxN thin films. Bulletin of Materials Science, 2020, 43, 1.	1.7	0
291	Study of NbN thin films grown using high power impulse magnetron sputtering. Physica Status Solidi - Rapid Research Letters, 0, , 2100514.	2.4	0
292	Thickness dependent structural and magnetic properties investigation of Co film interfaced with Hf. Materials Today: Proceedings, 2022, , .	1.8	0
293	Self-Diffusion in Nanoscale Structures Measured by Neutron Reflectometry. Journal of Phase Equilibria and Diffusion, 2005, 26, 458-465.	1.4	0
294	Study of Fe-C phase formulations through Fe self-diffusion during thin film growth. Applied Surface Science, 2022, , 153611.	6.1	0
295	Thermal stability of the magnetic moment in amorphous carbon thin film - An experimental and ab-initio study. Diamond and Related Materials, 2022, 127, 109200.	3.9	0