List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6999741/publications.pdf Version: 2024-02-01

		18436	22764
203	14,054	62	112
papers	citations	h-index	g-index
211	211	211	11021
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Local Lithium-Ion Transport of a Ternary Sulfolane-Lithium Bis(trifluoromethanesulfonyl)amide-Carbonate Electrolyte: Experimental and First-Principles Molecular Dynamics Analysis toward Quasi-Solid-State Lithium-Ion Battery. Journal of the Electrochemical Society, 2022, 169, 020534.	1.3	3
2	Importance of Mass Transport in High Energy Density Lithiumâ€Sulfur Batteries Under Lean Electrolyte Conditions. Batteries and Supercaps, 2022, 5, .	2.4	6
3	Electrochemical Pretreatment of Solidâ€Electrolyte Interphase Formation for Enhanced Li ₄ Ti ₅ O ₁₂ Anode Performance in a Molten Liâ^'Ca Binary Salt Hydrate Electrolyte. ChemElectroChem, 2022, 9, .	1.7	3
4	Li-Ion Transport and Solvation of a Li Salt of Weakly Coordinating Polyanions in Ethylene Carbonate/Dimethyl Carbonate Mixtures. ACS Applied Materials & Interfaces, 2022, 14, 18324-18334.	4.0	8
5	Li ⁺ transference number and dynamic ion correlations in glyme-Li salt solvate ionic liquids diluted with molecular solvents. Physical Chemistry Chemical Physics, 2022, 24, 14269-14276.	1.3	10
6	Eutectic Electrolytes Composed of LiN(SO ₂ F) ₂ and Sulfones for Li-lon Batteries. Journal of Physical Chemistry C, 2022, 126, 10024-10034.	1.5	18
7	Study on Fundamental Properties of Solvate Electrolytes and Their Application in Batteries. Electrochemistry, 2022, , .	0.6	2
8	Solvate electrolytes for Li and Na batteries: structures, transport properties, and electrochemistry. Physical Chemistry Chemical Physics, 2021, 23, 21419-21436.	1.3	32
9	Molecularly Tunable Polyanions for Single-Ion Conductors and Poly(solvate ionic liquids). Chemistry of Materials, 2021, 33, 524-534.	3.2	53
10	S8 Cathode. , 2021, , 347-355.		0
11	Anion effects on Li ion transference number and dynamic ion correlations in glyme–Li salt equimolar mixtures. Physical Chemistry Chemical Physics, 2021, 23, 2622-2629.	1.3	30
12	Understanding the Reductive Decomposition of Highly Concentrated Li Salt/Sulfolane Electrolytes during Li Deposition and Dissolution. ACS Applied Energy Materials, 2021, 4, 1851-1859.	2.5	24
13	Structural Effects of Solvents on Li-Ion-Hopping Conduction in Highly Concentrated LiBF ₄ /Sulfone Solutions. Journal of Physical Chemistry B, 2021, 125, 6600-6608.	1.2	28
14	Transport Properties of Flexible Composite Electrolytes Composed of Li _{1.5} Al _{0.5} Ti _{1.5} (PO ₄) ₃ and a Poly(vinylidene fluoride- <i>co</i> -hexafluoropropylene) Gel Containing a Highly Concentrated Li[N(SO ₂ CF ₃) ₂]/Sulfolane Electrolyte. ACS Omega, 2021, 6,	1.6	7
15	Rate Performance of LiCoO ₂ Half-cells Using Highly Concentrated Lithium Bis(fluorosulfonyl)amide Electrolytes and Their Relevance to Transport Properties. Electrochemistry, 2021, 89, 389-394.	0.6	8
16	Local Structure of Li ⁺ in Superconcentrated Aqueous LiTFSA Solutions. Journal of Physical Chemistry B, 2021, 125, 7477-7484.	1.2	9
17	Design of Polymer Network and Li ⁺ Solvation Enables Thermally and Oxidatively Stable, Mechanically Reliable, and Highly Conductive Polymer Gel Electrolyte for Lithium Batteries. Journal of the Electrochemical Society, 2021, 168, 090538.	1.3	6
	Effects of Lithium Salt Concentration in Ionic Liquid Electrolytes on Battery Derformance of		

Effects of Lithium Salt Concentration in Ionic Liquid Electrolytes on Battery Performance of LiNi<sub>0.5</sub>Mn<sub>0.3</sub>Co<sub>0.2</sub>O<sub>2</sub>Craphitæ Cells. Electrochemistry, 2021, 89, 455-460.

#	Article	IF	CITATIONS
19	Highly Concentrated NaN(SO ₂ F) ₂ /3-Methylsulfolane Electrolyte Solution Showing High Na-Ion Transference Number under Anion-Blocking Conditions. Electrochemistry, 2021, 89, 590-596.	0.6	3
20	Electrochemical Properties of Poly(vinylidene fluoride- <i>co</i> -hexafluoropropylene) Gel Electrolytes with High-Concentration Li Salt/Sulfolane for Lithium Batteries. Electrochemistry, 2021, 89, 567-572.	0.6	5
21	Thermodynamic aspect of sulfur, polysulfide anion and lithium polysulfide: plausible reaction path during discharge of lithium–sulfur battery. Physical Chemistry Chemical Physics, 2021, 23, 6832-6840.	1.3	11
22	Towards practical cells: combined use of titanium black as a cathode additive and sparingly solvating electrolyte for high-energy-density lithium–sulfur batteries. Sustainable Energy and Fuels, 2021, 5, 1821-1831.	2.5	15
23	Effects of Li ion-solvent interaction on ionic transport and electrochemical properties in highly concentrated cyclic carbonate electrolytes. Journal of Non-Crystalline Solids: X, 2021, 11-12, 100071.	0.5	5
24	Rheological and Ionic Transport Properties of Nanocomposite Electrolytes Based on Protic Ionic Liquids and Silica Nanoparticles. Langmuir, 2020, 36, 148-158.	1.6	10
25	Graphite–Lithium Sulfide Battery with a Single-Phase Sparingly Solvating Electrolyte. ACS Energy Letters, 2020, 5, 1-7.	8.8	41
26	Molten Li Salt Solvate-Silica Nanoparticle Composite Electrolytes with Tailored Rheological Properties. Electrochemistry, 2020, 88, 174-177.	0.6	1
27	Effects of fluoroethylene carbonate addition to Li-glyme solvate ionic liquids on their ionic transport properties and Si composite electrode performance. Electrochimica Acta, 2020, 353, 136559.	2.6	6
28	Highly concentrated LiN(SO2CF3)2/dinitrile electrolytes: Liquid structures, transport properties, and electrochemistry. Journal of Chemical Physics, 2020, 152, 104502.	1.2	20
29	Effects of Polysulfide Solubility and Li Ion Transport on Performance of Li–S Batteries Using Sparingly Solvating Electrolytes. Journal of the Electrochemical Society, 2020, 167, 070531.	1.3	52
30	Effects of Anion on Liquid Structures of Ionic Liquids at Graphene Electrode Interface Analyzed by Molecular Dynamics Simulations. Batteries and Supercaps, 2020, 3, 658-667.	2.4	4
31	Solvent effects on Li ion transference number and dynamic ion correlations in glyme- and sulfolane-based molten Li salt solvates. Physical Chemistry Chemical Physics, 2020, 22, 15214-15221.	1.3	53
32	Structures and Electrochemistry of ^ĵ 3-Butyrolactone Solvates of Na Salts. Journal of Physical Chemistry C, 2020, 124, 15800-15811.	1.5	17
33	High Transference Number of Na Ion in Liquid-State Sulfolane Solvates of Sodium Bis(fluorosulfonyl)amide. Journal of Physical Chemistry C, 2020, 124, 4459-4469.	1.5	23
34	Speciation Analysis and Thermodynamic Criteria of Solvated Ionic Liquids: Ionic Liquids or Superconcentrated Solutions?. Journal of Physical Chemistry Letters, 2020, 11, 4517-4523.	2.1	16
35	Thermodynamic Effect of Anion Activity on Electrochemical Reactions Involving Li ⁺ lons in Roomâ€Temperature Ionic Liquids. ChemElectroChem, 2019, 6, 4444-4449.	1.7	12
36	Glyme–Li salt equimolar molten solvates with iodide/triiodide redox anions. RSC Advances, 2019, 9, 22668-22675.	1.7	5

#	Article	IF	CITATIONS
37	Excellent dispersibility of single-walled carbon nanotubes in highly concentrated electrolytes and application to gel electrode for Li-S batteries. Electrochemistry Communications, 2019, 109, 106598.	2.3	12
38	Sulfolane-Based Highly Concentrated Electrolytes of Lithium Bis(trifluoromethanesulfonyl)amide: Ionic Transport, Li-Ion Coordination, and Li–S Battery Performance. Journal of Physical Chemistry C, 2019, 123, 14229-14238.	1.5	138
39	Effects of Sulfur Loading, Cathode Porosity, and Electrolyte Amount on Li-S Battery Performance with Solvate Ionic Liquid Electrolyte. Electrochemistry, 2019, 87, 254-259.	0.6	11
40	Li-ion hopping conduction in highly concentrated lithium bis(fluorosulfonyl)amide/dinitrile liquid electrolytes. Physical Chemistry Chemical Physics, 2019, 21, 9759-9768.	1.3	77
41	Ionic transport in highly concentrated lithium bis(fluorosulfonyl)amide electrolytes with keto ester solvents: structural implications for ion hopping conduction in liquid electrolytes. Physical Chemistry Chemical Physics, 2019, 21, 5097-5105.	1.3	35
42	Dynamic Chelate Effect on the Li ⁺ -lon Conduction in Solvate Ionic Liquids. Journal of Physical Chemistry C, 2019, 123, 30228-30233.	1.5	10
43	Solvate Ionic Liquids for Li, Na, K, and Mg Batteries. Chemical Record, 2019, 19, 708-722.	2.9	42
44	Liquid Structures and Transport Properties of Lithium Bis(fluorosulfonyl)amide/Glyme Solvate Ionic Liquids for Lithium Batteries. Australian Journal of Chemistry, 2019, 72, 70.	0.5	21
45	Protic ionic liquids with primary alkylamine-derived cations: the dominance of hydrogen bonding on observed physicochemical properties. RSC Advances, 2018, 8, 9790-9794.	1.7	23
46	Magnesium bis(trifluoromethanesulfonyl)amide complexes with triglyme and asymmetric homologues: phase behavior, coordination structures and melting point reduction. Physical Chemistry Chemical Physics, 2018, 20, 7998-8007.	1.3	19
47	Electrolyte Composition in Li/O ₂ Batteries with Lil Redox Mediators: Solvation Effects on Redox Potentials and Implications for Redox Shuttling. Journal of Physical Chemistry C, 2018, 122, 1522-1534.	1.5	51
48	Polymer Electrolytes Containing Solvate Ionic Liquids: A New Approach To Achieve High Ionic Conductivity, Thermal Stability, and a Wide Potential Window. Chemistry of Materials, 2018, 30, 252-261.	3.2	60
49	Simple combination of a protic salt and an iron halide: precursor for a Fe,ÂN and S co-doped catalyst for the oxygen reduction reaction in alkaline and acidic media. Journal of Materials Chemistry A, 2018, 6, 1138-1149.	5.2	33
50	Direct Evidence for Li Ion Hopping Conduction in Highly Concentrated Sulfolane-Based Liquid Electrolytes. Journal of Physical Chemistry B, 2018, 122, 10736-10745.	1.2	165
51	From Ionic Liquids to Solvate Ionic Liquids: Challenges and Opportunities for Next Generation Battery Electrolytes. Bulletin of the Chemical Society of Japan, 2018, 91, 1660-1682.	2.0	85
52	Tuning NaO ₂ Cube Sizes by Controlling Na ⁺ and Solvent Activity in Na–O ₂ Batteries. Journal of Physical Chemistry C, 2018, 122, 18316-18328.	1.5	29
53	Glyme–Sodium Bis(fluorosulfonyl)amide Complex Electrolytes for Sodium Ion Batteries. Journal of Physical Chemistry C, 2018, 122, 16589-16599	1.5	34
54	Enhanced Electrochemical Stability of Molten Li Salt Hydrate Electrolytes by the Addition of Divalent Cations. Journal of Physical Chemistry C, 2018, 122, 20167-20175.	1.5	23

#	Article	IF	CITATIONS
55	Application of Ionic Liquids to Energy Storage and Conversion Materials and Devices. Chemical Reviews, 2017, 117, 7190-7239.	23.0	1,214
56	Stability of Glyme Solvate Ionic Liquid as an Electrolyte for Rechargeable Liâ^'O ₂ Batteries. ACS Applied Materials & Interfaces, 2017, 9, 6014-6021.	4.0	52
57	Effect of Anion in Glyme-based Electrolyte for Li-O ₂ Batteries: Stability/Solubility of Discharge Intermediate. Chemistry Letters, 2017, 46, 573-576.	0.7	14
58	Oxygen Reduction Reaction in Highly Concentrated Electrolyte Solutions of Lithium Bis(trifluoromethanesulfonyl)amide/Dimethyl Sulfoxide. Journal of Physical Chemistry C, 2017, 121, 9162-9172.	1.5	70
59	Three-Dimensionally Hierarchical Ni/Ni ₃ S ₂ /S Cathode for Lithium–Sulfur Battery. ACS Applied Materials & Interfaces, 2017, 9, 38477-38485.	4.0	60
60	Effect of the cation on the stability of cation–glyme complexes and their interactions with the [TFSA] ^{â^'} anion. Physical Chemistry Chemical Physics, 2017, 19, 18262-18272.	1.3	49
61	Suppression of Water Absorption by Molecular Design of Ionic Liquid Electrolyte for Li–Air Battery. Advanced Energy Materials, 2017, 7, 1601753.	10.2	27
62	A Design Approach to Lithium-Ion Battery Electrolyte Based on Diluted Solvate Ionic Liquids. Journal of the Electrochemical Society, 2017, 164, A6088-A6094.	1.3	45
63	Li ⁺ Local Structure in Li–Tetraglyme Solvate Ionic Liquid Revealed by Neutron Total Scattering Experiments with the ^{6/7} Li Isotopic Substitution Technique. Journal of Physical Chemistry Letters, 2016, 7, 2832-2837.	2.1	44
64	Optimization of Pore Structure of Cathodic Carbon Supports for Solvate Ionic Liquid Electrolytes Based Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2016, 8, 27803-27813.	4.0	24
65	Dissociation and Diffusion of Glyme-Sodium Bis(trifluoromethanesulfonyl)amide Complexes in Hydrofluoroether-Based Electrolytes for Sodium Batteries. Journal of Physical Chemistry C, 2016, 120, 23339-23350.	1.5	30
66	Si/Li ₂ S Battery with Solvate Ionic Liquid Electrolyte. Electrochemistry, 2016, 84, 887-890.	0.6	27
67	Promising Cell Configuration for Next-Generation Energy Storage: Li ₂ S/Graphite Battery Enabled by a Solvate Ionic Liquid Electrolyte. ACS Applied Materials & Interfaces, 2016, 8, 16053-16062.	4.0	67
68	Thermal and Electrochemical Stability of Tetraglyme–Magnesium Bis(trifluoromethanesulfonyl)amide Complex: Electric Field Effect of Divalent Cation on Solvate Stability. Journal of Physical Chemistry C, 2016, 120, 1353-1365.	1.5	88
69	Effects of non-equimolar lithium salt glyme solvate ionic liquid on the control of interfacial degradation in lithium secondary batteries. RSC Advances, 2016, 6, 33043-33047.	1.7	18
70	Li ⁺ Local Structure in Hydrofluoroether Diluted Li-Glyme Solvate Ionic Liquid. Journal of Physical Chemistry B, 2016, 120, 3378-3387.	1.2	81
71	Effects of compatibility of polymer binders with solvate ionic liquid electrolytes on discharge and charge reactions of lithium-sulfur batteries. Journal of Power Sources, 2016, 307, 746-752.	4.0	52
72	Li ⁺ Solvation and Ionic Transport in Lithium Solvate Ionic Liquids Diluted by Molecular Solvents. Journal of Physical Chemistry C, 2016, 120, 15792-15802.	1.5	114

#	Article	IF	CITATIONS
73	Lithium-tin Alloy/Sulfur Battery with a Solvate Ionic Liquid Electrolyte. Electrochemistry, 2015, 83, 914-917.	0.6	17
74	Li ⁺ solvation in glyme–Li salt solvate ionic liquids. Physical Chemistry Chemical Physics, 2015, 17, 8248-8257.	1.3	222
75	Porous ionic liquids: synthesis and application. Chemical Science, 2015, 6, 3684-3691.	3.7	143
76	Hydrogen-bonding supramolecular protic salt as an "all-in-one―precursor for nitrogen-doped mesoporous carbons for CO2 adsorption. Nano Energy, 2015, 13, 376-386.	8.2	64
77	Solvent Activity in Electrolyte Solutions Controls Electrochemical Reactions in Li-Ion and Li-Sulfur Batteries. Journal of Physical Chemistry C, 2015, 119, 3957-3970.	1.5	135
78	Effect of Ionic Size on Solvate Stability of Glyme-Based Solvate Ionic Liquids. Journal of Physical Chemistry B, 2015, 119, 1523-1534.	1.2	92
79	Pentaglyme–K salt binary mixtures: phase behavior, solvate structures, and physicochemical properties. Physical Chemistry Chemical Physics, 2015, 17, 2838-2849.	1.3	27
80	Li+ Ion Transport in Polymer Electrolytes Based on a Glyme-Li Salt Solvate Ionic Liquid. Electrochimica Acta, 2015, 175, 5-12.	2.6	70
81	One-pot pyrolysis of lithium sulfate and graphene nanoplatelet aggregates: in situ formed Li ₂ S/graphene composite for lithium–sulfur batteries. Nanoscale, 2015, 7, 14385-14392.	2.8	73
82	One-step, template-free synthesis of highly porous nitrogen/sulfur-codoped carbons from a single protic salt and their application to CO ₂ capture. Journal of Materials Chemistry A, 2015, 3, 17849-17857.	5.2	36
83	Recent Advances in Electrolytes for Lithium–Sulfur Batteries. Advanced Energy Materials, 2015, 5, 1500117.	10.2	508
84	Proticâ€Saltâ€Derived Nitrogen/Sulfurâ€Codoped Mesoporous Carbon for the Oxygen Reduction Reaction and Supercapacitors. ChemSusChem, 2015, 8, 1608-1617.	3.6	74
85	Nitrogenâ€Ðoped Inverse Opal Carbons Derived from an Ionic Liquid Precursor for the Oxygen Reduction Reaction. ChemElectroChem, 2015, 2, 1080-1085.	1.7	33
86	Upper Limit of Nitrogen Content in Carbon Materials. Angewandte Chemie - International Edition, 2015, 54, 1302-1306.	7.2	168
87	Structures of [Li(glyme)] ⁺ complexes and their interactions with anions in equimolar mixtures of glymes and Li[TFSA]: analysis by molecular dynamics simulations. Physical Chemistry Chemical Physics, 2015, 17, 126-129.	1.3	87
88	Carbon materialization of ionic liquids: from solvents to materials. Materials Horizons, 2015, 2, 168-197.	6.4	165
89	Binary Protic Ionic Liquid Mixtures as a Proton Conductor: High Fuel Cell Reaction Activity and Facile Proton Transport. Journal of Physical Chemistry C, 2014, 118, 27631-27639.	1.5	73
90	Criteria for solvate ionic liquids. Physical Chemistry Chemical Physics, 2014, 16, 8761.	1.3	240

#	Article	IF	CITATIONS
91	Physicochemical properties of pentaglyme–sodium bis(trifluoromethanesulfonyl)amide solvate ionic liquid. Physical Chemistry Chemical Physics, 2014, 16, 11737-11746.	1.3	60
92	Chelate Effects in Glyme/Lithium Bis(trifluoromethanesulfonyl)amide Solvate Ionic Liquids, Part 2: Importance of Solvate-Structure Stability for Electrolytes of Lithium Batteries. Journal of Physical Chemistry C, 2014, 118, 17362-17373.	1.5	137
93	Mechanism of Li Ion Desolvation at the Interface of Graphite Electrode and Glyme–Li Salt Solvate Ionic Liquids. Journal of Physical Chemistry C, 2014, 118, 20246-20256.	1.5	155
94	Direct Synthesis of Nitrogen-Doped Carbon Materials from Protic Ionic Liquids and Protic Salts: Structural and Physicochemical Correlations between Precursor and Carbon. Chemistry of Materials, 2014, 26, 2915-2926.	3.2	156
95	Chelate Effects in Glyme/Lithium Bis(trifluoromethanesulfonyl)amide Solvate Ionic Liquids. I. Stability of Solvate Cations and Correlation with Electrolyte Properties. Journal of Physical Chemistry B, 2014, 118, 5144-5153.	1.2	194
96	Protic Ionic Liquids and Salts as Versatile Carbon Precursors. Journal of the American Chemical Society, 2014, 136, 1690-1693.	6.6	216
97	Phase Diagrams and Solvate Structures of Binary Mixtures of Glymes and Na Salts. Journal of Physical Chemistry B, 2013, 117, 15072-15085.	1.2	63
98	Ionic Liquid Electrolytes for Lithium–Sulfur Batteries. Journal of Physical Chemistry C, 2013, 117, 20531-20541.	1.5	259
99	Anionic Effects on Solvate Ionic Liquid Electrolytes in Rechargeable Lithium–Sulfur Batteries. Journal of Physical Chemistry C, 2013, 117, 20509-20516.	1.5	166
100	Electrochemical properties of protic ionic liquids: correlation between open circuit potential for H2/O2 cells under non-humidified conditions and Ĩ"pKa. RSC Advances, 2013, 3, 4141.	1.7	45
101	Charge/discharge performances of glyme–lithium salt equimolar complex electrolyte for lithium secondary batteries. Journal of Power Sources, 2013, 243, 323-327.	4.0	21
102	EQCM Measurement of Deposition and Dissolution of Lithium in Glyme-Li Salt Molten Complex. Journal of the Electrochemical Society, 2013, 160, A1529-A1533.	1.3	38
103	Solvent Effect of Room Temperature Ionic Liquids on Electrochemical Reactions in Lithium–Sulfur Batteries. Journal of Physical Chemistry C, 2013, 117, 4431-4440.	1.5	182
104	Unusual Li ⁺ Ion Solvation Structure in Bis(fluorosulfonyl)amide Based Ionic Liquid. Journal of Physical Chemistry C, 2013, 117, 19314-19324.	1.5	133
105	Solvate Ionic Liquid Electrolyte for Li–S Batteries. Journal of the Electrochemical Society, 2013, 160, A1304-A1310.	1.3	421
106	(Keynote) Protic Ionic Liquids Based on a Super-Strong Acid: Bulk and Electrochemical Properties. ECS Transactions, 2013, 50, 285-291.	0.3	15
107	Solvate Ionic Liquid, [Li(triglyme)1][NTf2], as Electrolyte for Rechargeable Li–Air Battery: Discharge Depth and Reversibility. Chemistry Letters, 2013, 42, 1053-1055.	0.7	29
108	Intermolecular Interactions in Li ⁺ â€glyme and Li ⁺ â€glyme–TFSA ^{â^'} Complexes: Relationship with Physicochemical Properties of [Li(glyme)][TFSA] Ionic Liquids. ChemPhysChem, 2013, 14, 1993-2001.	1.0	79

#	Article	IF	CITATIONS
109	Effects of Carbon Electrode Materials on Performance of Ionic Polymer Actuators Having Electric Double-Layer Capacitor Structure. Electrochemistry, 2013, 81, 849-852.	0.6	15
110	Room-Temperature Ionic Liquid Electrolytes for Alkali Metal-Sulfur Batteries. Hyomen Kagaku, 2013, 34, 309-314.	0.0	1
111	Correlation between Battery Performance and Lithium Ion Diffusion in Glyme–Lithium Bis(trifluoromethanesulfonyl)amide Equimolar Complexes. Journal of the Electrochemical Society, 2012, 159, A1005-A1012.	1.3	77
112	Protic Ionic Liquids Based on a Super-Strong Base: Correlation between Physicochemical Properties and ΔpKa. Materials Research Society Symposia Proceedings, 2012, 1473, 1.	0.1	3
113	Solvate Ionic Liquids and Their Application to Lithium Batteries: Glyme-Lithium Bis(fluorosulfonyl)amide Equimolar Complexes. Materials Research Society Symposia Proceedings, 2012, 1473, 20.	0.1	2
114	Glyme–Lithium Salt Equimolar Molten Mixtures: Concentrated Solutions or Solvate Ionic Liquids?. Journal of Physical Chemistry B, 2012, 116, 11323-11331.	1.2	348
115	Surface layer formation of LiCoO2 thin film electrodes in non-aqueous electrolyte containing lithium bis(oxalate)borate. Journal of Power Sources, 2012, 210, 60-66.	4.0	30
116	Lithiation and Delithiation of Silicon Oxycarbide Single Particles with a Unique Microstructure. ACS Applied Materials & amp; Interfaces, 2011, 3, 2318-2322.	4.0	36
117	Reversibility of electrochemical reactions of sulfur supported on inverse opal carbon in glyme–Li salt molten complex electrolytes. Chemical Communications, 2011, 47, 8157.	2.2	205
118	Oxidative-Stability Enhancement and Charge Transport Mechanism in Glyme–Lithium Salt Equimolar Complexes. Journal of the American Chemical Society, 2011, 133, 13121-13129.	6.6	663
119	Change from Glyme Solutions to Quasi-ionic Liquids for Binary Mixtures Consisting of Lithium Bis(trifluoromethanesulfonyl)amide and Glymes. Journal of Physical Chemistry C, 2011, 115, 18384-18394.	1.5	174
120	Electric Double‣ayer Capacitance of Inverse Opal Carbon Prepared Through Carbonization of Poly(Furfuryl Alcohol) in Contact with Polymer Gel Electrolyte Containing Ionic Liquid. Polymers for Advanced Technologies, 2011, 22, 1254-1260.	1.6	29
121	Polyaniline as a Functional Binder for LiFePO4 Cathodes in Lithium Batteries. Chemistry Letters, 2011, 40, 828-830.	0.7	17
122	Limiting current density in bis(trifluoromethylsulfonyl)amide-based ionic liquid for lithium batteries. Journal of Power Sources, 2011, 196, 2264-2268.	4.0	50
123	Favorable combination of positive and negative electrode materials with glyme–Li salt complex electrolytes in lithium ion batteries. Journal of Power Sources, 2011, 196, 3874-3880.	4.0	30
124	LiMnPO4 Nanoparticles Prepared through the Reaction between Li3PO4 and Molten Aqua-complex of MnSO4. Journal of the Electrochemical Society, 2011, 158, A1275.	1.3	26
125	Limiting Current Density in Ionic Liquid Electrolyte for Lithium Batteries. Electrochemistry, 2010, 78, 349-352.	0.6	14
126	Physicochemical Properties of Glyme–Li Salt Complexes as a New Family of Room-temperature Ionic Liquids. Chemistry Letters, 2010, 39, 753-755.	0.7	260

#	Article	IF	CITATIONS
127	High-Rate Lithium Deintercalation from Lithiated Graphite Single-Particle Electrode. Journal of Physical Chemistry C, 2010, 114, 8646-8650.	1.5	80
128	New glyme–cyclic imide lithium salt complexes as thermally stable electrolytes for lithium batteries. Journal of Power Sources, 2010, 195, 6095-6100.	4.0	144
129	Surface Layer Formation and Stripping Process on LiMn[sub 2]O[sub 4] and LiNi[sub 1â^•2]Mn[sub 3â^•2]O[sub 4] Thin Film Electrodes. Journal of the Electrochemical Society, 2010, 157, A121.	1.3	58
130	Star-Shaped Polymer Electrolyte with Microphase Separation Structure for All-Solid-State Lithium Batteries. Journal of the Electrochemical Society, 2009, 156, A577.	1.3	68
131	NANOCOMPOSITE ELECTRODES CONSISTING OF 3DOM CARBON WITH BIMODAL POROUS STRUCTURE AND CONDUCTING POLYMERS FOR ELECTROCHEMICAL CAPACITORS. Functional Materials Letters, 2009, 02, 19-22.	0.7	2
132	High rate discharge capability of single particle electrode of LiCoO2. Journal of Power Sources, 2009, 189, 783-785.	4.0	97
133	Three-dimensionally ordered macroporous Ni–Sn anode for lithium batteries. Journal of Power Sources, 2009, 189, 726-729.	4.0	72
134	Fabrication of all solid-state lithium-ion batteries with three-dimensionally ordered composite electrode consisting of Li0.35La0.55TiO3 and LiMn2O4. Journal of Power Sources, 2009, 189, 485-489.	4.0	73
135	Incorporation of polyaniline into macropores of three-dimensionally ordered macroporous carbon electrode for electrochemical capacitors. Journal of Power Sources, 2009, 190, 596-600.	4.0	52
136	Electrochemical Characteristics of Porous Electrode Consisting of Spherical LiMn2O4 Particles. Electrochemistry, 2009, 77, 309-314.	0.6	1
137	Composite electrode composed of bimodal porous carbon and polypyrrole for electrochemical capacitors. Journal of Power Sources, 2008, 185, 1589-1593.	4.0	41
138	Hydrothermal synthesis of LiFePO4 as a cathode material for lithium batteries. Journal of Materials Science, 2008, 43, 2138-2142.	1.7	57
139	Three-dimensionally ordered composite electrode between LiMn2O4 and Li1.5Al0.5Ti1.5(PO4)3. lonics, 2008, 14, 173-177.	1.2	36
140	Dynamic behavior of surface film on LiCoO2 thin film electrode. Journal of Power Sources, 2008, 177, 184-193.	4.0	72
141	Hydrothermal Synthesis of Carbon-Coated LiFePO[sub 4] and Its Application to Lithium Polymer Battery. Journal of the Electrochemical Society, 2008, 155, A909.	1.3	40
142	Preparation of three dimensionally ordered macroporous carbon with mesoporous walls for electric double-layer capacitors. Journal of Materials Chemistry, 2008, 18, 1674.	6.7	154
143	é›»æ°—åŒ–å¦ææ–™ã«å⁻¾ãıMã,‹æ°´ç†±å፥æˆæ³•ã®å•能性ãיæœŸå¾ Electrochemistry, 2008, 76, 691-695	5.0.6	0
144	Preparation of Three Dimensionally Ordered Macroporous LiCoO ₂ Cathode for Lithium Batteries. Key Engineering Materials, 2007, 350, 195-198.	0.4	1

#	Article	IF	CITATIONS
145	Bimodal Porous Carbon as a Negative Electrode Material for Lithium-Ion Capacitors. Electrochemistry, 2007, 75, 635-640.	0.6	27
146	Particle morphology, crystal orientation, and electrochemical reactivity of LiFePO4 synthesized by the hydrothermal method at 443 K. Journal of Materials Chemistry, 2007, 17, 4803.	6.7	230
147	All-solid-state micro lithium-ion batteries fabricated by using dry polymer electrolyte with micro-phase separation structure. Electrochemistry Communications, 2007, 9, 2013-2017.	2.3	58
148	Sol–gel fabrication of lithium-ion microarray battery. Electrochemistry Communications, 2007, 9, 857-862.	2.3	48
149	Preparation and characterization of three dimensionally ordered macroporous Li4Ti5O12 anode for lithium batteries. Electrochimica Acta, 2007, 53, 79-82.	2.6	88
150	Electrochemical properties of LiFePO4 prepared via hydrothermal route. Journal of Power Sources, 2007, 165, 656-659.	4.0	104
151	Preparation of LiMn2O4 thin-film electrode on Li1+xAlxTi2â~`x(PO4)3 NASICON-type solid electrolyte. Journal of Power Sources, 2007, 174, 1100-1103.	4.0	37
152	Structure and electron density analysis of electrochemically and chemically delithiated LiCoO2 single crystals. Journal of Solid State Chemistry, 2007, 180, 313-321.	1.4	90
153	Three-dimensionally ordered macroporous carbons having walls composed of hollow mesosized spheres. Chemical Communications, 2006, , 4099.	2.2	29
154	Preparation of Three-dimensionally Ordered Macroporous Li1.5Al0.5Ti1.5(PO4)3 by Colloidal Crystal Templating Method. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2006, 53, 856-859.	0.1	3
155	Electrochemical Reactivity of LiFePO4Prepared by Hydrothermal Method. Chemistry Letters, 2006, 35, 338-339.	0.7	60
156	Li+ ion diffusion in LiMn2O4 thin film prepared by PVP sol–gel method. Journal of Power Sources, 2006, 157, 471-476.	4.0	49
157	Preparation of Li4Ti5O12 spherical particles for rechargeable lithium batteries. Journal of the European Ceramic Society, 2006, 26, 577-581.	2.8	33
158	Enhancement on Proton Conductivity of Three-Dimensionally Ordered Macroporous Silica Membrane by Surface Sulfonation. Key Engineering Materials, 2006, 301, 143-146.	0.4	2
159	Preparation of Lithium Ion Conductive Li _{4.2} Al _{0.2} Si _{0.8} O ₄ Thin Films Using Sol-Gel Process. Key Engineering Materials, 2006, 301, 91-94.	0.4	0
160	Preparation of Three Dimensionally Ordered Macroporous Li ₄ Ti ₅ O ₁₂ Electrode. Key Engineering Materials, 2006, 320, 263-266.	0.4	1
161	HYDROTHERMAL SYNTHESIS OF LiFePO ₄ FOR RECHARGEABLE LITHIUM BATTERIES. Phosphorus Research Bulletin, 2005, 19, 152-157.	0.1	1
162	Micro-patterning of LiMn2O4Electrode Using Sol–Gel Process for Lithium Micro-batteries. Chemistry Letters, 2005, 34, 984-985.	0.7	4

#	Article	IF	CITATIONS
163	In situ FT-IR measurement for electrochemical oxidation of electrolyte with ethylene carbonate and diethyl carbonate on cathode active material used in rechargeable lithium batteries. Journal of Power Sources, 2005, 146, 360-364.	4.0	50
164	Formation of impurities on phospho-olivine LiFePO4 during hydrothermal synthesis. Journal of Power Sources, 2005, 146, 555-558.	4.0	104
165	Three dimensionally ordered composite solid materials for all solid-state rechargeable lithium batteries. Journal of Power Sources, 2005, 146, 86-89.	4.0	55
166	Preparation of micro-dot electrodes of LiCoO2 and Li4Ti5O12 for lithium micro-batteries. Electrochimica Acta, 2005, 51, 966-971.	2.6	16
167	Preparation of three dimensionally ordered macroporous Li0.35La0.55TiO3 by colloidal crystal templating process. Solid State Ionics, 2005, 176, 2345-2348.	1.3	39
168	PREPARATION OF TiO ₂ THIN-FILM ELECTRODE ON Li _{1+x} Al _x Ti _{2-x} (PO ₄) ₃ SOLID ELECTROLYTE. Phosphorus Research Bulletin, 2005, 19, 130-135.	0.1	1
169	Comparison of Electrochemical Behavior of LiCoO[sub 2] Thin Films Prepared by Sol-Gel and Sputtering Processes. Journal of the Electrochemical Society, 2005, 152, A2229.	1.3	37
170	Synthesis of Spinel LiMn[sub 2]O[sub 4] by a Hydrothermal Process in Supercritical Water with Heat-Treatment. Journal of the Electrochemical Society, 2005, 152, A391.	1.3	56
171	Investigation on Electrochemical Interface between Li[sub 4]Ti[sub 5]O[sub 12] and Li[sub 1+x]Al[sub x]Ti[sub 2â^'x](PO[sub 4])[sub 3] NASICON-Type Solid Electrolyte. Journal of the Electrochemical Society, 2005, 152, A2138.	1.3	43
172	Synthesis of Li[sup +] Ion Conductive PEO-PSt Block Copolymer Electrolyte with Microphase Separation Structure. Electrochemical and Solid-State Letters, 2005, 8, A385.	2.2	134
173	Identification of Surface Impurities on LiFePO[sub 4] Particles Prepared by a Hydrothermal Process. Journal of the Electrochemical Society, 2005, 152, A2199.	1.3	69
174	Studies on Electrochemical Oxidation of Propylene Carbonate Electrolyte on LiMn ₂ O ₄ Thin Film Electrode. Electrochemistry, 2005, 73, 54-59.	0.6	4
175	In Situ Raman Spectroelectrochemistry of Oxygen Species on Gold Electrodes in High Temperature Molten Carbonate Melts. Journal of the Electrochemical Society, 2004, 151, A2042.	1.3	25
176	Raman spectro-electrochemistry of LiCoxMn2â^'xO4 thin film electrodes for 5 V lithium batteries. Electrochemistry Communications, 2004, 6, 384-388.	2.3	41
177	In Situ Raman Microscopy of a Single Graphite Microflake Electrode in a Li+-Containing Electrolyte. Journal of Physical Chemistry B, 2004, 108, 4789-4793.	1.2	25
178	Synthesis, Crystal Structure, and Magnetic Property of Delithiated LixMnO2 (x < 0.1) Single Crystals: A Novel Disordered Rocksalt-Type Manganese Dioxide ChemInform, 2003, 34, no.	0.1	0
179	In Situ Raman Spectroscopy of Single Microparticle Li+â^'Intercalation Electrodes. Journal of Physical Chemistry B, 2003, 107, 12549-12554.	1.2	49
180	Synthesis, Crystal Structure, and Magnetic Property of Delithiated LixMnO2 (x < 0.1) Single Crystals:  A Novel Disordered Rocksalt-Type Manganese Dioxide. Chemistry of Materials, 2003, 15, 2984-2990.	3.2	21

#	Article	IF	Citations
181	Kinetic Study of Li-Ion Extraction and Insertion at LiMn[sub 2]O[sub 4] Single Particle Electrodes Using Potential Step and Impedance Methods. Journal of the Electrochemical Society, 2003, 150, A425.	1.3	129
182	Structure and Electron Density Analysis of Lithium Manganese Oxides by Single-crystal X-ray Diffraction. Journal of the Physical Society of Japan, 2003, 72, 1483-1490.	0.7	16
183	āfªāfā,¦āfā,ā,ªāf³äºŒæ¬¡é›»æ±ā®ç¾çжãïç"ç©¶é−‹ç™ºå‹•å'. Hyomen Gijutsu/Journal of the Surface Finishing	Society of	Ja p an, 2003,
184	Fabrication of Thin Film Electrodes of LiM _x Mn _{2â^'x} O ₄ (M = Ni, Co) for 5 Volt Lithium Batteries. Electrochemistry, 2003, 71, 1061-1063.	0.6	5
185	<i>In Situ</i> Assessment of LiMn ₂ O ₄ Degradation During Prolonged Exposure in Carbonate-Based Electrolytes. Electrochemistry, 2003, 71, 1168-1171.	0.6	3
186	In situ Raman spectroscopic studies of LiNixMn2 â^' xO4thin film cathode materials for lithium ion secondary batteries. Journal of Materials Chemistry, 2002, 12, 3688-3693.	6.7	118
187	Rapid evaluation of charge/discharge properties for lithium manganese oxide particles at elevated temperatures. Journal of Solid State Electrochemistry, 2002, 6, 188-193.	1.2	4
188	Electrochemical investigation of LiNi0.5Mn1.5O4 thin film intercalation electrodes. Electrochimica Acta, 2002, 48, 79-84.	2.6	108
189	Kinetic Characterization of Single Particles of LiCoO[sub 2] by AC Impedance and Potential Step Methods. Journal of the Electrochemical Society, 2001, 148, A422.	1.3	243
190	Gas Phase Hydrogen Electrooxidation Using an Integrated Ultramicroelectrode. Chemistry Letters, 2001, 30, 508-509.	0.7	5
191	Recent investigations on thin films and single particles of transition metal oxides for lithium batteries. Journal of Power Sources, 2001, 97-98, 518-524.	4.0	31
192	Electrochemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode. Electrochimica Acta, 2001, 47, 885-890.	2.6	195
193	Electrochemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode Part II. Disordered carbon. Electrochimica Acta, 2001, 47, 933-938.	2.6	101
194	Electrochemical Studies of Li-Ion Extraction and Insertion of LiMn[sub 2]O[sub 4] Single Crystal. Electrochemical and Solid-State Letters, 2001, 4, A151.	2.2	36
195	Microvoltammetry of lithium nickel oxide single particle: deterioration of the redox behavior by water molecules. Electrochemistry Communications, 2000, 2, 717-719.	2.3	6
196	Microvoltammetry for cathode materials at elevated temperatures: electrochemical stability of single particles. Journal of Power Sources, 2000, 90, 109-115.	4.0	64
197	High-Speed voltammetry of Mn-doped LiCoO 2 using a microelectrode technique. Journal of Solid State Electrochemistry, 2000, 4, 205-209.	1.2	39
198	In Situ Observation of LiNiO[sub 2] Single-Particle Fracture during Li-Ion Extraction and Insertion. Electrochemical and Solid-State Letters, 1999, 3, 125.	2.2	100

KAORU DOKKO

#	Article	IF	CITATIONS
199	Electrochemical Studies of Spinel LiMn2O4Films Prepared by Electrostatic Spray Deposition. Bulletin of the Chemical Society of Japan, 1998, 71, 2011-2015.	2.0	51
200	High Resolution Cyclic Voltammograms of LiMn _{2-x} Ni _x O ₄ with a Microelectrode Technique. Electrochemistry, 1998, 66, 1188-1193.	0.3	13
201	Microvoltammetric Studies on Single Particle Voltammetry of LiNiO ₂ and LiCoO ₂ . In situ Observation of Particle Splitting during Li-ion Extraction/Insertion. Electrochemistry, 1997, 65, 954-962.	0.3	10
202	Electrochemical Pretreatment of Solid–Electrolyte Interphase Formation for Enhanced Li ₄ Ti ₅ O ₁₂ Anode Performance in a Molten Li–Ca Binary Salt Hydrate Electrolyte. ChemElectroChem, 0, , .	1.7	0
203	LiNi _{0.5} Mn _{1.5} O ₄ -Hybridized Gel Polymer Cathode and Gel Polymer Electrolyte Containing a Sulfolane-Based Highly Concentrated Electrolyte for the Fabrication of a 5 V Class of Flexible Lithium Batteries. ACS Omega, 0, , .	1.6	3