Peng You

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6999581/publications.pdf Version: 2024-02-01

DENC YOU

#	Article	IF	CITATIONS
1	Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity. Nature Communications, 2016, 7, 11105.	5.8	488
2	Efficient Semitransparent Perovskite Solar Cells with Graphene Electrodes. Advanced Materials, 2015, 27, 3632-3638.	11.1	456
3	Antioxidant Grain Passivation for Airâ€Stable Tinâ€Based Perovskite Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 806-810.	7.2	369
4	Ultrasensitive broadband phototransistors based on perovskite/organic-semiconductor vertical heterojunctions. Light: Science and Applications, 2017, 6, e17023-e17023.	7.7	272
5	Enhanced efficiency of polymer solar cells by adding a high-mobility conjugated polymer. Energy and Environmental Science, 2015, 8, 1463-1470.	15.6	216
6	Ultrathin and flexible perovskite solar cells with graphene transparent electrodes. Nano Energy, 2016, 28, 151-157.	8.2	200
7	Solutionâ€Phase Epitaxial Growth of Perovskite Films on 2D Material Flakes for Highâ€Performance Solar Cells. Advanced Materials, 2019, 31, e1807689.	11.1	185
8	Highly sensitive glucose sensors based on enzyme-modified whole-graphene solution-gated transistors. Scientific Reports, 2015, 5, 8311.	1.6	167
9	Neutral-Color Semitransparent Organic Solar Cells with All-Graphene Electrodes. ACS Nano, 2015, 9, 12026-12034.	7.3	132
10	Ultrafast laser-annealing of perovskite films for efficient perovskite solar cells. Energy and Environmental Science, 2020, 13, 1187-1196.	15.6	129
11	Au/Ag core–shell nanocuboids for high-efficiency organic solar cells with broadband plasmonic enhancement. Energy and Environmental Science, 2016, 9, 898-905.	15.6	127
12	Black Phosphorus Quantum Dots Used for Boosting Light Harvesting in Organic Photovoltaics. Angewandte Chemie - International Edition, 2017, 56, 13717-13721.	7.2	113
13	Enhanced performance of tin-based perovskite solar cells induced by an ammonium hypophosphite additive. Journal of Materials Chemistry A, 2019, 7, 26580-26585.	5.2	98
14	Performance Enhancement of Perovskite Solar Cells Induced by Lead Acetate as an Additive. Solar Rrl, 2018, 2, 1800066.	3.1	94
15	Two-dimensional materials in perovskite solar cells. Materials Today Energy, 2019, 11, 128-158.	2.5	93
16	Plasmonic and Superhydrophobic Self-Decontaminating N95 Respirators. ACS Nano, 2020, 14, 8846-8854.	7.3	90
17	Highly Stable Allâ€Inorganic Perovskite Solar Cells Processed at Low Temperature. Solar Rrl, 2018, 2, 1800075.	3.1	73
18	Enhanced Performance of Planar Perovskite Solar Cells Induced by Van Der Waals Epitaxial Growth of Mixed Perovskite Films on WS ₂ Flakes. Advanced Functional Materials, 2020, 30, 2002358.	7.8	73

Peng You

#	Article	IF	CITATIONS
19	2D materials for conducting holes from grain boundaries in perovskite solar cells. Light: Science and Applications, 2021, 10, 68.	7.7	59
20	Amplified Spontaneous Emission from Organic–Inorganic Hybrid Lead Iodide Perovskite Single Crystals under Direct Multiphoton Excitation. Advanced Optical Materials, 2016, 4, 1053-1059.	3.6	47
21	Schottky Barrierâ€Controlled Black Phosphorus/Perovskite Phototransistors with Ultrahigh Sensitivity and Fast Response. Small, 2019, 15, 1901004.	5.2	46
22	Bias Stress Stability Improvement in Solution-Processed Low-Voltage Organic Field-Effect Transistors Using Relaxor Ferroelectric Polymer Gate Dielectric. IEEE Electron Device Letters, 2017, 38, 748-751.	2.2	42
23	2D WSe ₂ Flakes for Synergistic Modulation of Grain Growth and Charge Transfer in Tinâ€Based Perovskite Solar Cells. Advanced Science, 2021, 8, e2004315.	5.6	41
24	Lasing Characteristics of CH ₃ NH ₃ PbCl ₃ Single rystal Microcavities under Multiphoton Excitation. Advanced Optical Materials, 2018, 6, 1700992.	3.6	22
25	Antioxidant Grain Passivation for Airâ€Stable Tinâ€Based Perovskite Solar Cells. Angewandte Chemie, 2019, 131, 816-820.	1.6	22
26	Insulating Polymers for Enhancing the Efficiency of Nonfullerene Organic Solar Cells. Solar Rrl, 2020, 4, 2000013.	3.1	17
27	The influence of chloride on interdiffusion method for perovskite solar cells. Materials Letters, 2016, 169, 236-240.	1.3	13
28	Black Phosphorus Quantum Dots Used for Boosting Light Harvesting in Organic Photovoltaics. Angewandte Chemie, 2017, 129, 13905-13909.	1.6	12
29	Efficiency enhancement of organic photovoltaics by introducing high-mobility curved small-molecule semiconductors as additives. Journal of Materials Chemistry A, 2019, 7, 12740-12750.	5.2	8
30	Synergistic effects of the zinc acetate additive on the performance enhancement of Sn-based perovskite solar cells. Materials Chemistry Frontiers, 2021, 5, 1995-2000.	3.2	5