
Xiuli Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6999329/publications.pdf Version: 2024-02-01

XIIII CHEN

#	Article	IF	CITATIONS
1	Enhanced thermal and frequency stability and decent fatigue endurance in lead-free NaNbO3-based ceramics with high energy storage density and efficiency. Journal of Materiomics, 2022, 8, 489-497.	5.7	16
2	Enhanced energy storage performance in Na(1-3x)BixNb0.85Ta0.15O3 relaxor ferroelectric ceramics. Ceramics International, 2022, 48, 776-783.	4.8	18
3	Enhanced energy storage performances of Bi(Ni1/2Sb2/3)O3 added NaNbO3 relaxor ferroelectric ceramics. Ceramics International, 2022, 48, 13862-13868.	4.8	25
4	Realizing enhanced energy storage and hardness performances in 0.90NaNbO3â^'0.10Bi(Zn0.5Sn0.5)O3 ceramics. Journal of Advanced Ceramics, 2022, 11, 729-741.	17.4	57
5	Energy storage properties in Bi(Mg1/2Sb2/3)O3-doped NaNbO3 lead-free ceramics. Ceramics International, 2022, 48, 7723-7729.	4.8	19
6	Sintering characteristics and microwave dielectric properties of ultralow-loss SrY2O4 ceramics. Ceramics International, 2022, 48, 21299-21304.	4.8	22
7	Adjusting the Energy-Storage Characteristics of 0.95NaNbO ₃ –0.05Bi(Mg _{0.5} Sn _{0.5})O ₃ Ceramics by Doping Linear Perovskite Materials. ACS Applied Materials & Interfaces, 2022, 14, 25609-25619.	8.0	28
8	Enhanced energy storage properties of Bi(Ni2/3Nb1/6Ta1/6)O3–NaNbO3 solid solution lead-free ceramics. Ceramics International, 2022, 48, 26466-26475.	4.8	12
9	Novel high εr MNdTiNbO7 (M = Ca, Sr) microwave dielectric ceramics: preparation, phase composition, microstructure, and dielectric performance. Journal of Materials Science: Materials in Electronics, 2022, 33, 17295-17305.	2.2	0
10	(1-x)[0.90NN-0.10Bi(Mg2/3Nb1/3)O3]-x(Bi0.5Na0.5)0.7Sr0.3TiO3 ceramics with core–shell structures: A pathway for simultaneously achieving high polarization and breakdown strength. Nano Energy, 2022, 101, 107577.	16.0	33
11	Simultaneously with large energy density and high efficiency achieved in NaNbO3-based relaxor ferroelectric ceramics. Journal of the European Ceramic Society, 2021, 41, 1891-1903.	5.7	78
12	NaTaO3 microwave dielectric ceramic a with high relative permittivity and as an excellent compensator for the temperature coefficient of resonant frequency. Ceramics International, 2021, 47, 121-129.	4.8	25
13	High energy storage density and power density achieved simultaneously in NaNbO3-based lead-free ceramics via antiferroelectricity enhancement. Journal of Materiomics, 2021, 7, 629-639.	5.7	88
14	Preparation, structure and microwave dielectric properties of novel La2MgGeO6 ceramics with hexagonal structure and adjustment of its Ï,, value. Ceramics International, 2021, 47, 7783-7789.	4.8	17
15	Effective strategy to realise excellent energy storage performances in lead-free barium titanate-based relaxor ferroelectric. Ceramics International, 2021, 47, 6077-6083.	4.8	31
16	High energy storage and ultrafast discharge in NaNbO3-based lead-free dielectric capacitors via a relaxor strategy. Ceramics International, 2021, 47, 3079-3088.	4.8	50
17	Excellent energy storage properties and stability of NaNbO ₃ –Bi(Mg _{0.5} Ta _{0.5})O ₃ ceramics by introducing (Bi _{0.5} Na _{0.5}) _{0.7} Sr _{0.3} TiO ₃ . Journal of Materials Chemistry A. 2021. 9. 4789-4799.	10.3	92
18	Bi(Mg _{0.5} Sn _{0.5})O ₃ -Doped NaNbO ₃ Lead-free Ceramics Achieve Excellent Energy-Storage and Charge/Discharge Performances. ACS Sustainable Chemistry and Engineering, 2021, 9, 4863-4871.	6.7	35

#	Article	IF	CITATIONS
19	Simultaneous enhancement of polarization and breakdown strength in lead-free BaTiO3-based ceramics. Chemical Engineering Journal, 2021, 409, 128231.	12.7	89
20	Simultaneously achieving ultrahigh energy storage density and energy efficiency in barium titanate based ceramics. Ceramics International, 2020, 46, 2764-2771.	4.8	90
21	Bismuth borate composite microwave ceramics synthesised by different ratios of H3BO3 for ULTCC technology. Journal of the European Ceramic Society, 2020, 40, 381-385.	5.7	41
22	Novel lead-free ceramic capacitors with high energy density and fast discharge performance. Ceramics International, 2020, 46, 3426-3432.	4.8	80
23	Thermal stability of (K0.45Na0.45Li0.04La0.02)NbO3–Sr(Ni1/3Nb2/3)O3 ceramics in a broad temperature range. Journal of Materials Science: Materials in Electronics, 2020, 31, 2122-2129.	2.2	4
24	Simultaneously achieved high energy-storage density and efficiency in BaTiO3–Bi(Ni2/3Ta1/3)O3 lead-free relaxor ferroelectrics. Journal of Materials Science: Materials in Electronics, 2020, 31, 22780-22788.	2.2	17
25	Achieving ultrahigh energy storage density in NaNbO3–Bi(Ni0.5Zr0.5)O3 solid solution by enhancing the breakdown electric field. Ceramics International, 2020, 46, 28407-28413.	4.8	46
26	Sintering Behavior and Microwave Dielectric Properties of Low-Permittivity SrMgSi2O6 Ceramic. Journal of Electronic Materials, 2020, 49, 5989-5993.	2.2	11
27	Structure and dielectric properties of novel series of 3CaO–RE2O3–2WO3 (RE = La, Nd and Sm) microwave ceramics and the adjustment of τf value. Journal of Materials Science: Materials in Electronics, 2020, 31, 14953-14960.	2.2	5
28	Ultrahigh Energy Storage Characteristics of Sodium Niobate-Based Ceramics by Introducing a Local Random Field. ACS Sustainable Chemistry and Engineering, 2020, 8, 14985-14995.	6.7	85
29	Novel series of MLa2WO7(M = Sr, Ba) microwave dielectric ceramic systems with monoclinic structures. Journal of Materials Science: Materials in Electronics, 2020, 31, 10819-10824.	2.2	9
30	Superior thermal and frequency stability and decent fatigue endurance of high energy storage properties in NaNbO3-based lead-free ceramics. Ceramics International, 2020, 46, 25731-25737.	4.8	52
31	Enhancing the microwave dielectric performance of SrSm2Al2O7 ceramic by Sr2+ nonstoichiometry and sintering aid addition. Journal of the European Ceramic Society, 2020, 40, 5494-5497.	5.7	7
32	Realizing ultrahigh recoverable energy density and superior charge–discharge performance in NaNbO ₃ -based lead-free ceramics <i>via</i> a local random field strategy. Journal of Materials Chemistry C, 2020, 8, 3784-3794.	5.5	150
33	Achieving ultrahigh energy storage density and energy efficiency simultaneously in barium titanate based ceramics. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	38
34	Phase structure, Raman spectroscopic, microstructure and dielectric properties of (K0.5Na0.5)NbO3–Bi(Li0.5Nb0.5)O3 lead-free ceramics. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	10
35	Simultaneously achieved high energy density and excellent thermal stability of lead-free barium titanate-based relaxor ferroelectric under low electric field. Journal of Materials Science: Materials in Electronics, 2019, 30, 15912-15922.	2.2	16
36	Phase evolution, microstructure, thermal stability of (K0.45Na0.45Li0.04La0.02)NbO3–Bi(Ni0.5Zr0.5)O3 ceramics. Journal of Materials Science: Materials in Electronics, 2019, 30, 16407-16414.	2.2	3

#	Article	IF	CITATIONS
37	Phase evolution, microstructure, electric properties of (Ba1-xBi0.67xNa0.33x)(Ti1-xBi0.33xSn0.67x)O3 ceramics. Journal of Advanced Ceramics, 2019, 8, 427-437.	17.4	44
38	Phase Evolution, Microstructure, Conductivity Behavior and Microwave Dielectric Properties of Li2O-2MgO-Al2O3-6MoO3 Ceramics. Journal of Electronic Materials, 2019, 48, 5672-5676.	2.2	2
39	Phase Structure, Raman Spectra, Microstructure, and Dielectric Properties of (K0.5) Tj ETQq1 1 0.784314 rgBT /	Overlock 2.2	10 Tf 50 662 14
40	A lithium aluminium borate composite microwave dielectric ceramic with low permittivity, near-zero shrinkage, and low sintering temperature. Journal of the European Ceramic Society, 2019, 39, 1122-1126.	5.7	43
41	Phase evolution, microstructure, thermal stability and conductivity behavior of (Ba1-Bi0.67K0.33)(Ti1-Bi0.33Sn0.67)O3 solid solutions ceramics. Journal of Alloys and Compounds, 2019, 777, 1066-1073.	5.5	16
42	Good thermal stability and low dielectric loss of (K0.47Na0.47Li0.06)NbO3–(Bi0.5Na0.5)(Li0.25Ta0.75)O3 ceramics in a wide temperature range. Journal of Materials Science: Materials in Electronics, 2019, 30, 695-700.	2.2	1
43	Temperature-Stable Dielectric Properties from â^' 56°C to 248°C in (1 â^' x)BaTiO3-xBi(Mg0.5Si Journal of Electronic Materials, 2019, 48, 296-303.	າ0.5)O3 S 2.2	ystem.
44	Super wide thermal stability and giant dielectric response of (Ba1â^'Bi0.5Sr0.5)(Ti1â^'Bi0.5Sn0.5)O3 ceramics. Materials Letters, 2018, 223, 112-115.	2.6	3
45	Crystal structure, microstructure and microwave dielectric properties of novel MgAl2Ti3O10 ceramic. Journal of Materials Science: Materials in Electronics, 2018, 29, 6232-6235.	2.2	4
46	Good electrical performances and impedance analysis of (1Ââ^Âx)KNN–xBMM lead-free ceramics. Journal of Materials Science: Materials in Electronics, 2018, 29, 4538-4546.	2.2	11
47	(Ba1â^'xBi x)(Ti1â^'xNi0.5xSn0.5x)O3 Solid Solution: Phase Evolution, Microstructure, Dielectric Properties, and Impedance Analysis. Journal of Electronic Materials, 2018, 47, 2576-2583.	2.2	13
48	(K0.5Na0.5)NbO3-Bi(Cu2/3Nb1/3)O3 Lead-free Ceramics: Phase Transition, Enhanced Dielectric and Piezoelectric Properties. Journal of Electronic Materials, 2018, 47, 794-799.	2.2	3
49	Excellent thermal-stability and low dielectric loss of BaTiO3-Bi(Sr2/3Nb1/3)O3 solid solution ceramics in a broad temperature range applied in X8R. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2018, 238-239, 130-135.	3.5	2
50	Excellent thermal stability and low dielectric loss of (Ba1 â^' xBi0.5xSr0.5x)(Ti1 â^' xBi0.5xZr0. solution ceramics in a broad temperature range applied in X8R. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	5x)O3 soli 2.3	id 5
51	Giant permittivity and good thermal stability of LiCuNb ₃ O ₉ -Bi(Mg0.5Zr0.5)O ₃ solid solutions. Journal of Advanced Dielectrics, 2018, 08, 1850012.	2.4	2
52	Adjustable microwave dielectric properties of ZnO–TiO2–ZrO2–Nb2O5 composite ceramics via controlling the raw ZrO2 content and sintering temperature. Journal of Materials Science: Materials in Electronics, 2018, 29, 12055-12060.	2.2	3
53	(Ba1â^'xBi0.33xSr0.67x)(Ti1â^'xBi0.67xV0.33x)O3 and (Ba1â^'xBi0.5xSr0.5x)(Ti1â^'xBi0.5xTi0.5x)O3 solid solutions: phase evolution, microstructure, dielectric properties and impedance analysis. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	2
54	Excellent temperature stability, high relative permittivity, and piezoelectric properties of K0.5Na0.5NbO3–Bi(Li1/3Ti2/3)O3 lead-free ceramics. Journal of Materials Science: Materials in Electronics, 2018, 29, 11199-11207.	2.2	2

#	Article	IF	CITATIONS
55	Excellent temperature stability on relative permittivity, and conductivity behavior of K0.5Na0.5NbO3 based lead free ceramics. Journal of Alloys and Compounds, 2018, 762, 697-705.	5.5	27
56	Phase structure, sintering behavior and adjustable microwave dielectric properties of Mg1â^'Li2Ti O1+2 solid solution ceramics. Journal of Alloys and Compounds, 2017, 696, 1255-1259.	5.5	66
57	Temperature-stable dielectric and piezoelectric properties of (K0.5Na0.5)NbO3-Bi(Cu0.75W0.25)O3 solid solutions. Materials Letters, 2017, 199, 128-130.	2.6	5
58	Good thermal stability and improved piezoelectric properties of (K0.5Na0.5)NbO3–Bi(Mg0.75W0.25)O3 solid solutions. Journal of Materials Science: Materials in Electronics, 2017, 28, 3931-3935.	2.2	6
59	Microwave dielectric properties of low-permittivity CaMgSiO4 ceramic. Journal of Materials Science: Materials in Electronics, 2017, 28, 15258-15262.	2.2	13
60	Excellent thermal stability and low dielectric loss of (1 ⴒ x)BaTiO3 ‑'xBi(Li0.5Nb0.5)O3 solid solutions a broad temperature range applied in X8R. Journal of Materials Science: Materials in Electronics, 2017, 28, 17278-17282.	in 2.2	10
61	Good high-temperature stability and improved piezoelectric properties of (K0.5Na0.5)NbO3–Bi(Mg0.5Zr0.5)O3 ceramics. Journal of Materials Science: Materials in Electronics, 2017, 28, 13126-13131.	2.2	5
62	High thermal stability and low dielectric loss of BaTiO 3 -Bi(Li 1/3 Zr 2/3)O 3 solid solution. Ceramics International, 2017, 43, 926-929.	4.8	18
63	Good Thermal Stability, High Permittivity, Low Dielectric Loss and Chemical Compatibility with Silver Electrodes of Low-Fired BaTiO3–Bi(Cu0.75W0.25)O3 Ceramics. Journal of Electronic Materials, 2017, 46, 143-149.	2.2	2
64	Processing of low-fired glass-free Li2MgTi3O8 microwave dielectric ceramics. Journal of Alloys and Compounds, 2016, 688, 8-13.	5.5	23
65	Glass-free Li2ZnTi3O8 low temperature cofired ceramics by pretreating raw materials. Journal of Materials Science: Materials in Electronics, 2016, 27, 11850-11855.	2.2	13
66	Structure and dielectric properties of a novel defect pyrochlore Bi1.34Fe0.66Nb1.34O6.35 ceramic. Journal of Materials Science: Materials in Electronics, 2016, 27, 8619-8622.	2.2	4
67	Enhanced sintering ability and microwave dielectric properties of LiZnNbO4 ceramics with pretreatment of raw materials. Journal of Alloys and Compounds, 2016, 665, 113-118.	5.5	14
68	Thermally stable Ba0.8Ca0.2TiO3–Bi(Mg0.5Zr0.5)O3 solid solution with low dielectric loss in a broad temperature usage range. Journal of Materials Science: Materials in Electronics, 2016, 27, 6552-6557.	2.2	6
69	Novel 5MgO–3Li2O–4WO3 ceramic: preparation, phase evolution and its microwave dielectric properties. Journal of Materials Science: Materials in Electronics, 2016, 27, 6389-6394.	2.2	2
70	Structural evolution, low-firing characteristic and microwave dielectric properties of magnesium and sodium vanadate ceramic. Ceramics International, 2015, 41, 11125-11131.	4.8	13
71	High relative permittivity, low dielectric loss and good thermal stability of novel (K0.5Na0.5)NbO3–Bi(Zn0.75W0.25)O3 solid solution. Materials Letters, 2015, 145, 247-249.	2.6	22
72	Temperature stability, structural evolution and dielectric properties of BaTiO3–Bi(Mg2/3Ta1/3)O3 perovskite ceramics. Ceramics International, 2015, 41, 7157-7161.	4.8	62

#	Article	IF	CITATIONS
73	Thermally stable BaTiO3–Bi(Zn0.75W0.25)O3 solid solution with high relative permittivity and low dielectric loss. Journal of Materials Science: Materials in Electronics, 2015, 26, 1413-1418.	2.2	8
74	Relaxor Behavior and Dielectric Properties of Bi(Zn2/3Nb1/3)O3-Modified BaTiO3 Ceramics. Journal of Electronic Materials, 2015, 44, 4804-4810.	2.2	26
75	(K0.5Na0.5)NbO3–Bi(Zn0.5Zr0.5)O3 perovskite ceramics: High relative permittivity, low dielectric loss and good thermal stability. Ceramics International, 2015, 41, 13883-13886.	4.8	12
76	High relative permittivity, low dielectric loss and good thermal stability of BaTiO3-bi(Mg0.5Zr0.5)O3 solid solution. Ceramics International, 2015, 41, 2081-2088.	4.8	46
77	Thermally Stable BaTiO ₃ â€Bi(Mg _{2/3} Nb _{1/3})O ₃ Solid Solution with High Relative Permittivity in a Broad Temperature Usage Range. Journal of the American Ceramic Society, 2015, 98, 804-810.	3.8	70
78	Series of thermally stable Li1+2x Mg4â^'x V3O12 ceramics: low temperature sintering characteristic, crystal structure and microwave dielectric properties. Journal of Materials Science: Materials in Electronics, 2014, 25, 1480-1484.	2.2	11
79	Thermally Stable BaTiO3-Bi(Mg0.75W0.25)O3 Solid Solutions: Sintering Characteristics, Phase Evolution, Raman Spectra, and Dielectric Properties. Journal of Electronic Materials, 2014, 43, 1112-1118.	2.2	24
80	An approach to further improve piezoelectric and ferroelectric properties of (K0.5Na0.5)NbO3 ceramic. Journal of Materials Science: Materials in Electronics, 2014, 25, 2634-2637.	2.2	6
81	A novel thermally stable low-firing LiMg4V3O12 ceramic: Sintering characteristic, crystal structure and microwave dielectric properties. Ceramics International, 2014, 40, 6335-6338.	4.8	29
82	(K0.5Na0.5)NbO3–Bi(Mg0.5Ti0.5)O3 solid solution: phase evolution, microstructure and electrical properties. Journal of Materials Science: Materials in Electronics, 2013, 24, 4346-4350.	2.2	12
83	Dielectric Properties and Impedance Analysis of <scp><scp>K</scp></scp> _{0.5} <scp>Na</scp> 0.5 <scp>NbOCeramics with Good Dielectric Temperature Stability. Journal of the American Ceramic Society, 2013, 96, 3489-3493.</scp>	> <su< td=""><td>b>3ॢs/sub>ấ€</td></su<>	b>3ॢs/sub>ấ€
84	Phase transition and electric properties of (1Ââ´`Âx)BaTiO3–xSr1.9Ca0.1NaNb5O15 perovskite solid solutions. Journal of Materials Science: Materials in Electronics, 2013, 24, 2873-2879.	2.2	6
85	Crystal structure and optimized microwave dielectric properties of (1Ââ^'Âx) LiZn0.5Ti1.5O4–xTiO2 ceramics for application in dielectric resonator. Journal of Materials Science: Materials in Electronics, 2013, 24, 2641-2645.	2.2	7
86	Improvement on ferroelectric and piezoelectric properties of (K0.5Na0.5)NbO3 ceramic with Sr0.53Ba0.47Nb2O6 addition. Journal of Materials Science: Materials in Electronics, 2013, 24, 770-775.	2.2	6
87	Evolution of phase transformation behavior and dielectric temperature stability of BaTiO3–Bi(Zn0.5Zr0.5)O3 ceramics system. Journal of Alloys and Compounds, 2013, 551, 365-369.	5.5	46
88	Effects of Bi(Zn0.5Zr0.5)O3 addition on the structure and electric properties of BaTiO3 lead-free piezoelectric ceramics. Ceramics International, 2013, 39, 3747-3751.	4.8	10
89	Preparation, phase structure and microwave dielectric properties of a new low cost MgLi2/3Ti4/3O4 compound. Materials Chemistry and Physics, 2012, 137, 22-25.	4.0	26
90	ZnLi2/3Ti4/3O4: A new low loss spinel microwave dielectric ceramic. Journal of the European Ceramic Society, 2012, 32, 261-265.	5.7	102

#	Article	IF	CITATIONS
91	Microwave dielectric properties and its compatibility with silver electrode of Li2MgTi3O8 ceramics. Journal of Alloys and Compounds, 2011, 509, 5829-5832.	5.5	56
92	Microwave dielectric properties of temperature stable Li2ZnxCo1â^'xTi3O8 ceramics. Journal of Alloys and Compounds, 2011, 509, 8840-8844.	5.5	31
93	Low-temperature sintering and compatibility with silver electrode of Ba4MgTi11O27 microwave dielectric ceramic. Materials Research Bulletin, 2010, 45, 1509-1512.	5.2	10
94	A new low-loss microwave dielectric ceramic for low temperature cofired ceramic applications. Journal of Materials Research, 2010, 25, 1235-1238.	2.6	42
95	Low-Temperature Synthesis and Characterization of Lead Zinc Niobate Thick Films. Journal of the American Ceramic Society, 2008, 91, 2559-2563.	3.8	0
96	Structure and dielectric properties of low-permittivity thermal-stable NiO–MgO–GeO2 system ceramics. Journal of Materials Science: Materials in Electronics, 0, , .	2.2	0
97	A Microwave Dielectric Ceramic with Ultra-low Dielectric Constant Prepared by Reaction Sintering Method, Journal of Electronic Materials, 0,	2.2	12