Xiuli Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6999329/publications.pdf

Version: 2024-02-01

97 papers	2,523 citations	29 h-index	223800 46 g-index
97	97	97	858
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Realizing ultrahigh recoverable energy density and superior charge–discharge performance in NaNbO ₃ -based lead-free ceramics ⟨i⟩via <td>5.5</td> <td>150</td>	5.5	150
2	ZnLi2/3Ti4/3O4: A new low loss spinel microwave dielectric ceramic. Journal of the European Ceramic Society, 2012, 32, 261-265.	5.7	102
3	Excellent energy storage properties and stability of NaNbO ₃ êeramics by introducing NaNbO ₃ êeramics by introducing (Bi _{0.5} Na _{0.5}) _{)_{Sr_{0.3}TiO₃. Journal of Materials Chemistry A. 2021. 9. 4789-4799.}}	10.3	92
4	Simultaneously achieving ultrahigh energy storage density and energy efficiency in barium titanate based ceramics. Ceramics International, 2020, 46, 2764-2771.	4.8	90
5	Simultaneous enhancement of polarization and breakdown strength in lead-free BaTiO3-based ceramics. Chemical Engineering Journal, 2021, 409, 128231.	12.7	89
6	High energy storage density and power density achieved simultaneously in NaNbO3-based lead-free ceramics via antiferroelectricity enhancement. Journal of Materiomics, 2021, 7, 629-639.	5.7	88
7	Ultrahigh Energy Storage Characteristics of Sodium Niobate-Based Ceramics by Introducing a Local Random Field. ACS Sustainable Chemistry and Engineering, 2020, 8, 14985-14995.	6.7	85
8	Novel lead-free ceramic capacitors with high energy density and fast discharge performance. Ceramics International, 2020, 46, 3426-3432.	4.8	80
9	Simultaneously with large energy density and high efficiency achieved in NaNbO3-based relaxor ferroelectric ceramics. Journal of the European Ceramic Society, 2021, 41, 1891-1903.	5.7	78
10	Thermally Stable BaTiO ₃ â€Bi(Mg _{2/3} Nb _{1/3})O ₃ Solid Solution with High Relative Permittivity in a Broad Temperature Usage Range. Journal of the American Ceramic Society, 2015, 98, 804-810.	3.8	70
11	Phase structure, sintering behavior and adjustable microwave dielectric properties of Mg1â^'Li2Ti O1+2 solid solution ceramics. Journal of Alloys and Compounds, 2017, 696, 1255-1259.	5.5	66
12	Temperature stability, structural evolution and dielectric properties of BaTiO3–Bi(Mg2/3Ta1/3)O3 perovskite ceramics. Ceramics International, 2015, 41, 7157-7161.	4.8	62
13	Realizing enhanced energy storage and hardness performances in 0.90NaNbO3â^'0.10Bi(Zn0.5Sn0.5)O3 ceramics. Journal of Advanced Ceramics, 2022, 11, 729-741.	17.4	57
14	Microwave dielectric properties and its compatibility with silver electrode of Li2MgTi3O8 ceramics. Journal of Alloys and Compounds, 2011, 509, 5829-5832.	5.5	56
15	Superior thermal and frequency stability and decent fatigue endurance of high energy storage properties in NaNbO3-based lead-free ceramics. Ceramics International, 2020, 46, 25731-25737.	4.8	52
16	High energy storage and ultrafast discharge in NaNbO3-based lead-free dielectric capacitors via a relaxor strategy. Ceramics International, 2021, 47, 3079-3088.	4.8	50
17	Evolution of phase transformation behavior and dielectric temperature stability of BaTiO3–Bi(Zn0.5Zr0.5)O3 ceramics system. Journal of Alloys and Compounds, 2013, 551, 365-369.	5.5	46
18	High relative permittivity, low dielectric loss and good thermal stability of BaTiO3-bi(Mg0.5Zr0.5)O3 solid solution. Ceramics International, 2015, 41, 2081-2088.	4.8	46

#	Article	IF	CITATIONS
19	Achieving ultrahigh energy storage density in NaNbO3–Bi(Ni0.5Zr0.5)O3 solid solution by enhancing the breakdown electric field. Ceramics International, 2020, 46, 28407-28413.	4.8	46
20	Phase evolution, microstructure, electric properties of (Ba1-xBi0.67xNa0.33x)(Ti1-xBi0.33xSn0.67x)O3 ceramics. Journal of Advanced Ceramics, 2019, 8, 427-437.	17.4	44
21	A lithium aluminium borate composite microwave dielectric ceramic with low permittivity, near-zero shrinkage, and low sintering temperature. Journal of the European Ceramic Society, 2019, 39, 1122-1126.	5.7	43
22	A new low-loss microwave dielectric ceramic for low temperature cofired ceramic applications. Journal of Materials Research, 2010, 25, 1235-1238.	2.6	42
23	Bismuth borate composite microwave ceramics synthesised by different ratios of H3BO3 for ULTCC technology. Journal of the European Ceramic Society, 2020, 40, 381-385.	5 . 7	41
24	Dielectric Properties and Impedance Analysis of <scp><scp>K</scp><scp>Na</scp></scp> _{0.5} <scp>NbO</scp> < Ceramics with Good Dielectric Temperature Stability. Journal of the American Ceramic Society, 2013, 96, 3489-3493.	:/sgp _} <su< td=""><td>b>3g/sub>â€</td></su<>	b>3g/sub>â€
25	Achieving ultrahigh energy storage density and energy efficiency simultaneously in barium titanate based ceramics. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	38
26	Bi(Mg _{0.5} Sn _{0.5})O ₃ -Doped NaNbO ₃ Lead-free Ceramics Achieve Excellent Energy-Storage and Charge/Discharge Performances. ACS Sustainable Chemistry and Engineering, 2021, 9, 4863-4871.	6.7	35
27	(1-x)[0.90NN-0.10Bi(Mg2/3Nb1/3)O3]-x(Bi0.5Na0.5)0.7Sr0.3TiO3 ceramics with core–shell structures: A pathway for simultaneously achieving high polarization and breakdown strength. Nano Energy, 2022, 101, 107577.	16.0	33
28	Microwave dielectric properties of temperature stable Li2ZnxCo1â°'xTi3O8 ceramics. Journal of Alloys and Compounds, 2011, 509, 8840-8844.	5.5	31
29	Effective strategy to realise excellent energy storage performances in lead-free barium titanate-based relaxor ferroelectric. Ceramics International, 2021, 47, 6077-6083.	4.8	31
30	A novel thermally stable low-firing LiMg4V3O12 ceramic: Sintering characteristic, crystal structure and microwave dielectric properties. Ceramics International, 2014, 40, 6335-6338.	4.8	29
31	Adjusting the Energy-Storage Characteristics of 0.95NaNbO ₃ 6="0.05Bi(Mg _{0.5} 5n _{0.5})O ₃ Ceramics by Doping Linear Perovskite Materials. ACS Applied Materials & amp; Interfaces, 2022, 14, 25609-25619.	8.0	28
32	Excellent temperature stability on relative permittivity, and conductivity behavior of K0.5Na0.5NbO3 based lead free ceramics. Journal of Alloys and Compounds, 2018, 762, 697-705.	5.5	27
33	Preparation, phase structure and microwave dielectric properties of a new low cost MgLi2/3Ti4/3O4 compound. Materials Chemistry and Physics, 2012, 137, 22-25.	4.0	26
34	Relaxor Behavior and Dielectric Properties of Bi(Zn2/3Nb1/3)O3-Modified BaTiO3 Ceramics. Journal of Electronic Materials, 2015, 44, 4804-4810.	2.2	26
35	NaTaO3 microwave dielectric ceramic a with high relative permittivity and as an excellent compensator for the temperature coefficient of resonant frequency. Ceramics International, 2021, 47, 121-129.	4.8	25
36	Enhanced energy storage performances of Bi(Ni1/2Sb2/3)O3 added NaNbO3 relaxor ferroelectric ceramics. Ceramics International, 2022, 48, 13862-13868.	4.8	25

#	Article	IF	CITATIONS
37	Thermally Stable BaTiO3-Bi(Mg0.75W0.25)O3 Solid Solutions: Sintering Characteristics, Phase Evolution, Raman Spectra, and Dielectric Properties. Journal of Electronic Materials, 2014, 43, 1112-1118.	2.2	24
38	Processing of low-fired glass-free Li2MgTi3O8 microwave dielectric ceramics. Journal of Alloys and Compounds, 2016, 688, 8-13.	5.5	23
39	High relative permittivity, low dielectric loss and good thermal stability of novel (K0.5Na0.5)NbO3–Bi(Zn0.75W0.25)O3 solid solution. Materials Letters, 2015, 145, 247-249.	2.6	22
40	Sintering characteristics and microwave dielectric properties of ultralow-loss SrY2O4 ceramics. Ceramics International, 2022, 48, 21299-21304.	4.8	22
41	Energy storage properties in Bi(Mg1/2Sb2/3)O3-doped NaNbO3 lead-free ceramics. Ceramics International, 2022, 48, 7723-7729.	4.8	19
42	High thermal stability and low dielectric loss of BaTiO 3 -Bi(Li 1/3 Zr 2/3)O 3 solid solution. Ceramics International, 2017, 43, 926-929.	4.8	18
43	Enhanced energy storage performance in Na(1-3x)BixNb0.85Ta0.15O3 relaxor ferroelectric ceramics. Ceramics International, 2022, 48, 776-783.	4.8	18
44	Simultaneously achieved high energy-storage density and efficiency in BaTiO3â€"Bi(Ni2/3Ta1/3)O3 lead-free relaxor ferroelectrics. Journal of Materials Science: Materials in Electronics, 2020, 31, 22780-22788.	2.2	17
45	Preparation, structure and microwave dielectric properties of novel La2MgGeO6 ceramics with hexagonal structure and adjustment of its Ï,, value. Ceramics International, 2021, 47, 7783-7789.	4.8	17
46	Simultaneously achieved high energy density and excellent thermal stability of lead-free barium titanate-based relaxor ferroelectric under low electric field. Journal of Materials Science: Materials in Electronics, 2019, 30, 15912-15922.	2.2	16
47	Phase evolution, microstructure, thermal stability and conductivity behavior of (Ba1-Bi0.67K0.33)(Ti1-Bi0.33Sn0.67)O3 solid solutions ceramics. Journal of Alloys and Compounds, 2019, 777, 1066-1073.	5.5	16
48	Enhanced thermal and frequency stability and decent fatigue endurance in lead-free NaNbO3-based ceramics with high energy storage density and efficiency. Journal of Materiomics, 2022, 8, 489-497.	5.7	16
49	Enhanced sintering ability and microwave dielectric properties of LiZnNbO4 ceramics with pretreatment of raw materials. Journal of Alloys and Compounds, 2016, 665, 113-118.	5.5	14
50	Phase Structure, Raman Spectra, Microstructure, and Dielectric Properties of (KO.5) Tj ETQq0 0 0 rgBT /Overloc	₹ 1 <u>9,7</u> f 50	222 Td (Na0.!
51	Structural evolution, low-firing characteristic and microwave dielectric properties of magnesium and sodium vanadate ceramic. Ceramics International, 2015, 41, 11125-11131.	4.8	13
52	Glass-free Li2ZnTi3O8 low temperature cofired ceramics by pretreating raw materials. Journal of Materials Science: Materials in Electronics, 2016, 27, 11850-11855.	2.2	13
53	Microwave dielectric properties of low-permittivity CaMgSiO4 ceramic. Journal of Materials Science: Materials in Electronics, 2017, 28, 15258-15262.	2.2	13
54	(Balâ^'xBi x)(Tilâ^'xNi0.5xSn0.5x)O3 Solid Solution: Phase Evolution, Microstructure, Dielectric Properties, and Impedance Analysis. Journal of Electronic Materials, 2018, 47, 2576-2583.	2.2	13

#	Article	IF	CITATIONS
55	(K0.5Na0.5)NbO3–Bi(Mg0.5Ti0.5)O3 solid solution: phase evolution, microstructure and electrical properties. Journal of Materials Science: Materials in Electronics, 2013, 24, 4346-4350.	2.2	12
56	(K0.5Na0.5)NbO3–Bi(Zn0.5Zr0.5)O3 perovskite ceramics: High relative permittivity, low dielectric loss and good thermal stability. Ceramics International, 2015, 41, 13883-13886.	4.8	12
57	Enhanced energy storage properties of Bi(Ni2/3Nb1/6Ta1/6)O3–NaNbO3 solid solution lead-free ceramics. Ceramics International, 2022, 48, 26466-26475.	4.8	12
58	A Microwave Dielectric Ceramic with Ultra-low Dielectric Constant Prepared by Reaction Sintering Method. Journal of Electronic Materials, 0, , .	2.2	12
59	Series of thermally stable Li1+2x Mg4â^'x V3O12 ceramics: low temperature sintering characteristic, crystal structure and microwave dielectric properties. Journal of Materials Science: Materials in Electronics, 2014, 25, 1480-1484.	2.2	11
60	Good electrical performances and impedance analysis of (1Ââ^'Âx)KNNâ€"xBMM lead-free ceramics. Journal of Materials Science: Materials in Electronics, 2018, 29, 4538-4546.	2.2	11
61	Sintering Behavior and Microwave Dielectric Properties of Low-Permittivity SrMgSi2O6 Ceramic. Journal of Electronic Materials, 2020, 49, 5989-5993.	2.2	11
62	Low-temperature sintering and compatibility with silver electrode of Ba4MgTi11O27 microwave dielectric ceramic. Materials Research Bulletin, 2010, 45, 1509-1512.	5.2	10
63	Effects of Bi(Zn0.5Zr0.5)O3 addition on the structure and electric properties of BaTiO3 lead-free piezoelectric ceramics. Ceramics International, 2013, 39, 3747-3751.	4.8	10
64	Excellent thermal stability and low dielectric loss of (1 â~' x)BaTiO3 –xBi(Li0.5Nb0.5)O3 solid solutions a broad temperature range applied in X8R. Journal of Materials Science: Materials in Electronics, 2017, 28, 17278-17282.	in 2.2	10
65	Phase structure, Raman spectroscopic, microstructure and dielectric properties of (K0.5Na0.5)NbO3–Bi(Li0.5Nb0.5)O3 lead-free ceramics. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	10
66	Novel series of MLa2WO7(M = Sr, Ba) microwave dielectric ceramic systems with monoclinic structures. Journal of Materials Science: Materials in Electronics, 2020, 31, 10819-10824.	2.2	9
67	Thermally stable BaTiO3–Bi(Zn0.75W0.25)O3 solid solution with high relative permittivity and low dielectric loss. Journal of Materials Science: Materials in Electronics, 2015, 26, 1413-1418.	2.2	8
68	Crystal structure and optimized microwave dielectric properties of (1Ââ ⁻ Âx) LiZn0.5Ti1.5O4–xTiO2 ceramics for application in dielectric resonator. Journal of Materials Science: Materials in Electronics, 2013, 24, 2641-2645.	2.2	7
69	Temperature-Stable Dielectric Properties from Ⱂ 56°C to 248°C in (1 â^' x)BaTiO3-xBi(Mg0.5SnC Journal of Electronic Materials, 2019, 48, 296-303.). <u>5)</u> Q3 Sys	tem.
70	Enhancing the microwave dielectric performance of SrSm2Al2O7 ceramic by Sr2+ nonstoichiometry and sintering aid addition. Journal of the European Ceramic Society, 2020, 40, 5494-5497.	5.7	7
71	Phase transition and electric properties of (1Ââ^'Âx)BaTiO3â€"xSr1.9Ca0.1NaNb5O15 perovskite solid solutions. Journal of Materials Science: Materials in Electronics, 2013, 24, 2873-2879.	2.2	6
72	Improvement on ferroelectric and piezoelectric properties of (K0.5Na0.5)NbO3 ceramic with Sr0.53Ba0.47Nb2O6 addition. Journal of Materials Science: Materials in Electronics, 2013, 24, 770-775.	2.2	6

#	Article	IF	Citations
73	An approach to further improve piezoelectric and ferroelectric properties of (K0.5Na0.5)NbO3 ceramic. Journal of Materials Science: Materials in Electronics, 2014, 25, 2634-2637.	2.2	6
74	Thermally stable Ba0.8Ca0.2TiO3–Bi(Mg0.5Zr0.5)O3 solid solution with low dielectric loss in a broad temperature usage range. Journal of Materials Science: Materials in Electronics, 2016, 27, 6552-6557.	2.2	6
75	Good thermal stability and improved piezoelectric properties of (K0.5Na0.5)NbO3–Bi(Mg0.75W0.25)O3 solid solutions. Journal of Materials Science: Materials in Electronics, 2017, 28, 3931-3935.	2.2	6
76	Temperature-stable dielectric and piezoelectric properties of (K0.5Na0.5)NbO3-Bi(Cu0.75W0.25)O3 solid solutions. Materials Letters, 2017, 199, 128-130.	2.6	5
77	Good high-temperature stability and improved piezoelectric properties of (K0.5Na0.5)NbO3–Bi(Mg0.5Zr0.5)O3 ceramics. Journal of Materials Science: Materials in Electronics, 2017, 28, 13126-13131.	2.2	5
78	Excellent thermal stability and low dielectric loss of (Ba1 â^' xBi0.5xSr0.5x)(Ti1 â^' xBi0.5xZr0.5x solution ceramics in a broad temperature range applied in X8R. Applied Physics A: Materials Science and Processing, 2018, 124, 1.)O3 solid 2.3	5
79	Structure and dielectric properties of novel series of 3CaO–RE2O3–2WO3 (RE = La, Nd and Sm) microwave ceramics and the adjustment of τf value. Journal of Materials Science: Materials in Electronics, 2020, 31, 14953-14960.	2.2	5
80	Structure and dielectric properties of a novel defect pyrochlore Bi1.34Fe0.66Nb1.34O6.35 ceramic. Journal of Materials Science: Materials in Electronics, 2016, 27, 8619-8622.	2.2	4
81	Crystal structure, microstructure and microwave dielectric properties of novel MgAl2Ti3O10 ceramic. Journal of Materials Science: Materials in Electronics, 2018, 29, 6232-6235.	2.2	4
82	Thermal stability of (K0.45Na0.45Li0.04La0.02)NbO3â€"Sr(Ni1/3Nb2/3)O3 ceramics in a broad temperature range. Journal of Materials Science: Materials in Electronics, 2020, 31, 2122-2129.	2.2	4
83	Super wide thermal stability and giant dielectric response of (Ba1â^Bi0.5Sr0.5)(Ti1â^Bi0.5Sn0.5)O3 ceramics. Materials Letters, 2018, 223, 112-115.	2.6	3
84	(K0.5Na0.5)NbO3-Bi(Cu2/3Nb1/3)O3 Lead-free Ceramics: Phase Transition, Enhanced Dielectric and Piezoelectric Properties. Journal of Electronic Materials, 2018, 47, 794-799.	2.2	3
85	Adjustable microwave dielectric properties of ZnO–TiO2–ZrO2–Nb2O5 composite ceramics via controlling the raw ZrO2 content and sintering temperature. Journal of Materials Science: Materials in Electronics, 2018, 29, 12055-12060.	2.2	3
86	Phase evolution, microstructure, thermal stability of (K0.45Na0.45Li0.04La0.02)NbO3–Bi(Ni0.5Zr0.5)O3 ceramics. Journal of Materials Science: Materials in Electronics, 2019, 30, 16407-16414.	2.2	3
87	Novel 5MgO–3Li2O–4WO3 ceramic: preparation, phase evolution and its microwave dielectric properties. Journal of Materials Science: Materials in Electronics, 2016, 27, 6389-6394.	2.2	2
88	Good Thermal Stability, High Permittivity, Low Dielectric Loss and Chemical Compatibility with Silver Electrodes of Low-Fired BaTiO3–Bi(Cu0.75W0.25)O3 Ceramics. Journal of Electronic Materials, 2017, 46, 143-149.	2.2	2
89	Excellent thermal-stability and low dielectric loss of BaTiO3-Bi(Sr2/3Nb1/3)O3 solid solution ceramics in a broad temperature range applied in X8R. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2018, 238-239, 130-135.	3.5	2
90	Giant permittivity and good thermal stability of LiCuNb ₃ O ₉ -Bi(Mg0.5Zr0.5)O ₃ solid solutions. Journal of Advanced Dielectrics, 2018, 08, 1850012.	2.4	2

XIULI CHEN

#	Article	IF	CITATION
91	(Ba1â^'xBi0.33xSr0.67x)(Ti1â^'xBi0.67xV0.33x)O3 and (Ba1â^'xBi0.5xSr0.5x)(Ti1â^'xBi0.5xTi0.5x)O3 solid solutions: phase evolution, microstructure, dielectric properties and impedance analysis. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	2
92	Excellent temperature stability, high relative permittivity, and piezoelectric properties of K0.5Na0.5NbO3–Bi(Li1/3Ti2/3)O3 lead-free ceramics. Journal of Materials Science: Materials in Electronics, 2018, 29, 11199-11207.	2.2	2
93	Phase Evolution, Microstructure, Conductivity Behavior and Microwave Dielectric Properties of Li2O-2MgO-Al2O3-6MoO3 Ceramics. Journal of Electronic Materials, 2019, 48, 5672-5676.	2.2	2
94	Good thermal stability and low dielectric loss of (K0.47Na0.47Li0.06)NbO3–(Bi0.5Na0.5)(Li0.25Ta0.75)O3 ceramics in a wide temperature range. Journal of Materials Science: Materials in Electronics, 2019, 30, 695-700.	2.2	1
95	Low-Temperature Synthesis and Characterization of Lead Zinc Niobate Thick Films. Journal of the American Ceramic Society, 2008, 91, 2559-2563.	3.8	O
96	Structure and dielectric properties of low-permittivity thermal-stable NiO–MgO–GeO2 system ceramics. Journal of Materials Science: Materials in Electronics, 0, , .	2.2	0
97	Novel high εr MNdTiNbO7 (M = Ca, Sr) microwave dielectric ceramics: preparation, phase composition, microstructure, and dielectric performance. Journal of Materials Science: Materials in Electronics, 2022, 33, 17295-17305.	2.2	O