Minna Hankaniemi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/699927/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coxsackievirus B1 Is Associated With Induction of β-Cell Autoimmunity That Portends Type 1 Diabetes. Diabetes, 2014, 63, 446-455.	0.6	228
2	Coxsackievirus B1 infections are associated with the initiation of insulin-driven autoimmunity that progresses to type 1 diabetes. Diabetologia, 2018, 61, 1193-1202.	6.3	95
3	Detection of enteroviruses in stools precedes islet autoimmunity by several months: possible evidence for slowly operating mechanisms in virus-induced autoimmunity. Diabetologia, 2017, 60, 424-431.	6.3	73
4	A Coxsackievirus B vaccine protects against virus-induced diabetes in an experimental mouse model of type 1 diabetes. Diabetologia, 2018, 61, 476-481.	6.3	58
5	A hexavalent Coxsackievirus B vaccine is highly immunogenic and has a strong protective capacity in mice and nonhuman primates. Science Advances, 2020, 6, eaaz2433.	10.3	55
6	Optimized production and purification of Coxsackievirus B1 vaccine and its preclinical evaluation in a mouse model. Vaccine, 2017, 35, 3718-3725.	3.8	27
7	A comparative study of the effect of UV and formalin inactivation on the stability and immunogenicity of a Coxsackievirus B1 vaccine. Vaccine, 2019, 37, 5962-5971.	3.8	19
8	Combination of three virus-derived nanoparticles as a vaccine against enteric pathogens; enterovirus, norovirus and rotavirus. Vaccine, 2019, 37, 7509-7518.	3.8	19
9	Coxsackievirus B Vaccines Prevent Infection-Accelerated Diabetes in NOD Mice and Have No Disease-Inducing Effect. Diabetes, 2021, 70, 2871-2878.	0.6	19
10	A novel rat CVB1-VP1 monoclonal antibody 3A6 detects a broad range of enteroviruses. Scientific Reports, 2018, 8, 33.	3.3	18
11	Formalin treatment increases the stability and immunogenicity of coxsackievirus B1 VLP vaccine. Antiviral Research, 2019, 171, 104595.	4.1	15
12	Modular vaccine platform based on the norovirus-like particle. Journal of Nanobiotechnology, 2021, 19, 25.	9.1	15
13	New Coxsackievirus 2Apro and 3Cpro protease antibodies for virus detection and discovery of pathogenic mechanisms. Journal of Virological Methods, 2018, 255, 29-37.	2.1	13
14	Structural Insight into CVB3-VLP Non-Adjuvanted Vaccine. Microorganisms, 2020, 8, 1287.	3.6	8
15	Antigenicity and immunogenicity of HA2 and M2e influenza virus antigens conjugated to norovirus-like, VP1 capsid-based particles by the SpyTag/SpyCatcher technology. Virology, 2022, 566, 89-97.	2.4	8
16	Host Cell Calpains Can Cleave Structural Proteins from the Enterovirus Polyprotein. Viruses, 2019, 11, 1106.	3.3	7
17	Antibody Responses against Enterovirus Proteases are Potential Markers for an Acute Infection. Viruses, 2020, 12, 78.	3.3	7
18	Rapid high-throughput compatible label-free virus particle quantification method based on time-resolved luminescence. Analytical and Bioanalytical Chemistry, 2022, 414, 4509-4518.	3.7	2