
Muhammad Arslan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6998870/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plant–bacteria partnerships for the remediation of persistent organic pollutants. Environmental Science and Pollution Research, 2017, 24, 4322-4336.	2.7	164
2	Transmission of SARS-CoV-2 via fecal-oral and aerosols–borne routes: Environmental dynamics and implications for wastewater management in underprivileged societies. Science of the Total Environment, 2020, 743, 140709.	3.9	124
3	Cr-resistant rhizo- and endophytic bacteria associated with Prosopis juliflora and their potential as phytoremediation enhancing agents in metal-degraded soils. Frontiers in Plant Science, 2014, 5, 755.	1.7	114
4	Floating treatment wetlands as a suitable option for large-scale wastewater treatment. Nature Sustainability, 2019, 2, 863-871.	11.5	113
5	On-site performance of floating treatment wetland macrocosms augmented with dye-degrading bacteria for the remediation of textile industry wastewater. Journal of Cleaner Production, 2019, 217, 541-548.	4.6	109
6	Extensive use of face masks during COVID-19 pandemic: (micro-)plastic pollution and potential health concerns in the Arabian Peninsula. Saudi Journal of Biological Sciences, 2020, 27, 3181-3186.	1.8	103
7	Floating Wetlands: A Sustainable Tool for Wastewater Treatment. Clean - Soil, Air, Water, 2018, 46, 1800120.	0.7	85
8	Treatment of the textile industry effluent in a pilot-scale vertical flow constructed wetland system augmented with bacterial endophytes. Science of the Total Environment, 2018, 645, 966-973.	3.9	84
9	Heterotrophic nitrification and aerobic denitrification process: Promising but a long way to go in the wastewater treatment. Science of the Total Environment, 2022, 805, 150212.	3.9	78
10	Nutrients Can Enhance the Abundance and Expression of Alkane Hydroxylase CYP153 Gene in the Rhizosphere of Ryegrass Planted in Hydrocarbon-Polluted Soil. PLoS ONE, 2014, 9, e111208.	1.1	75
11	Integrated perspectives on the use of bacterial endophytes in horizontal flow constructed wetlands for the treatment of liquid textile effluent: Phytoremediation advances in the field. Journal of Environmental Management, 2018, 224, 387-395.	3.8	71
12	Removal of pharmaceuticals and personal care products using constructed wetlands: effective plant-bacteria synergism may enhance degradation efficiency. Environmental Science and Pollution Research, 2019, 26, 21109-21126.	2.7	68
13	Phragmites australis in combination with hydrocarbons degrading bacteria is a suitable option for remediation of diesel-contaminated water in floating wetlands. Chemosphere, 2020, 240, 124890.	4.2	62
14	Phragmites australis — a helophytic grass — can establish successful partnership with phenol-degrading bacteria in a floating treatment wetland. Saudi Journal of Biological Sciences, 2019, 26, 1179-1186.	1.8	52
15	Immobilization of metribuzin degrading bacterial consortium MB3R on biochar enhances bioremediation of potato vegetated soil and restores bacterial community structure. Journal of Hazardous Materials, 2020, 390, 121493.	6.5	50
16	Enhanced degradation of phenol in floating treatment wetlands by plant-bacterial synergism. International Journal of Phytoremediation, 2018, 20, 692-698.	1.7	47
17	Remediation of textile bleaching effluent by bacterial augmented horizontal flow and vertical flow constructed wetlands: A comparison at pilot scale. Science of the Total Environment, 2019, 685, 370-379.	3.9	47
18	Potentialities of floating wetlands for the treatment of polluted water of river Ravi, Pakistan. Ecological Engineering, 2019, 133, 167-176.	1.6	46

MUHAMMAD ARSLAN

#	Article	IF	CITATIONS
19	Allium cepa assay based comparative study of selected vegetables and the chromosomal aberrations due to heavy metal accumulation. Saudi Journal of Biological Sciences, 2020, 27, 1368-1374.	1.8	45
20	High-rate nitrogen removal from carbon limited wastewater using sulfur-based constructed wetland: Impact of sulfur sources. Science of the Total Environment, 2020, 744, 140969.	3.9	33
21	Floating treatment wetlands as biological buoyant filters for wastewater reclamation. International Journal of Phytoremediation, 2019, 21, 1273-1289.	1.7	32
22	Combined solar activated sulfate radical-based advanced oxidation processes (SR-AOPs) and biofiltration for the remediation of dissolved organics in oil sands produced water. Chemical Engineering Journal, 2022, 433, 134579.	6.6	31
23	Bacterial Augmented Floating Treatment Wetlands for Efficient Treatment of Synthetic Textile Dye Wastewater. Sustainability, 2020, 12, 3731.	1.6	29
24	Insights into <i> Brevibacillus borstelensis</i> AK1 through Whole Genome Sequencing: A Thermophilic Bacterium Isolated from a Hot Spring in Saudi Arabia. BioMed Research International, 2018, 2018, 1-9.	0.9	22
25	Aerobic sludge granulation in shale gas flowback water treatment: Assessment of the bacterial community dynamics and modeling of bioreactor performance using artificial neural network. Bioresource Technology, 2020, 313, 123687.	4.8	22
26	Removal of per- and poly-fluoroalkyl substances (PFASs) by wetlands: Prospects on plants, microbes and the interplay. Science of the Total Environment, 2021, 800, 149570.	3.9	22
27	Impacts of climate change on <i>Capparis spinosa</i> L. based on ecological niche modeling. PeerJ, 2018, 6, e5792.	0.9	20
28	Effects of Inoculum Density on Plant Growth and Hydrocarbon Degradation. Pedosphere, 2016, 26, 774-778.	2.1	19
29	Removal of hexadecane by hydroponic root mats in partnership with alkane-degrading bacteria: bacterial augmentation enhances system's performance. International Journal of Environmental Science and Technology, 2019, 16, 4611-4620.	1.8	19
30	Biofiltration of oil sands process water in fixed-bed biofilm reactors shapes microbial community structure for enhanced degradation of naphthenic acids. Science of the Total Environment, 2020, 718, 137028.	3.9	18
31	Treatment of printing and dyeing wastewater in biological contact oxidation reactors comprising basalt fibers and combination fillers as bio-carriers: Elucidation of bacterial communities and underlying mechanisms. Science of the Total Environment, 2021, 785, 147272.	3.9	18
32	Low-current electro-oxidation enhanced the biodegradation of the recalcitrant naphthenic acids in oil sands process water. Journal of Hazardous Materials, 2020, 398, 122807.	6.5	18
33	Organic Micropollutants in the Environment: Ecotoxicity Potential and Methods for Remediation. , 2017, , 65-99.		16
34	Use of Mercury in Dental Silver Amalgam: An Occupational and Environmental Assessment. BioMed Research International, 2016, 2016, 1-9.	0.9	15
35	Cyperus laevigatus L. Enhances Diesel Oil Remediation in Synergism with Bacterial Inoculation in Floating Treatment Wetlands. Sustainability, 2020, 12, 2353.	1.6	15
36	Soil conditioners improve rhizodegradation of aged petroleum hydrocarbons and enhance the growth of Lolium multiflorum. Environmental Science and Pollution Research, 2022, 29, 9097-9109.	2.7	15

#	Article	IF	CITATIONS
37	Effective plant-endophyte interplay can improve the cadmium hyperaccumulation in Brachiaria mutica. World Journal of Microbiology and Biotechnology, 2019, 35, 188.	1.7	14
38	Persistent organic pollutants in Pakistan: Potential threat to ecological integrities in terms of genotoxicity and oxidative stress. Human and Ecological Risk Assessment (HERA), 2017, 23, 1249-1271.	1.7	12
39	Aerobic naphthenic acid-degrading bacteria in petroleum-coke improve oil sands process water remediation in biofilters: DNA-stable isotope probing reveals methylotrophy in Schmutzdecke. Science of the Total Environment, 2022, 815, 151961.	3.9	12
40	Application of basalt fibers in a biological contact oxidation reactor for the treatment of landfill leachate. Journal of Cleaner Production, 2021, 297, 126648.	4.6	11
41	Bacterial diversity in petroleum coke based biofilters treating oil sands process water. Science of the Total Environment, 2021, 782, 146742.	3.9	11
42	Operational parameters optimization for remediation of crude oil-polluted water in floating treatment wetlands using response surface methodology. Scientific Reports, 2022, 12, 4566.	1.6	11
43	Bioaugmentation-Enhanced Remediation of Crude Oil Polluted Water in Pilot-Scale Floating Treatment Wetlands. Water (Switzerland), 2021, 13, 2882.	1.2	9
44	Benthic foraminifera in sandy (siliciclastic) coastal sediments of the Arabian Gulf (Saudi Arabia): a technical report. Arabian Journal of Geosciences, 2016, 9, 1.	0.6	8
45	Enhanced degradation of hydrocarbons by gamma ray induced mutant strain of Pseudomonas putida. Biotechnology Letters, 2019, 41, 391-399.	1.1	8
46	Treatment of high-load organic wastewater by novel basalt fiber carrier media. Science of the Total Environment, 2021, 758, 143760.	3.9	8
47	Establishing and Optimizing a Bacterial Consortia for Effective Biodegradation of Petroleum Contaminants: Advancing Classical Microbiology via Experimental and Mathematical Approach. Water (Switzerland), 2021, 13, 3311.	1.2	8
48	Noise pollution in the hospital environment of a developing country: A case study of Lahore (Pakistan). Archives of Environmental and Occupational Health, 2018, 73, 367-374.	0.7	6
49	RNA-Seq analysis of soft rush (Juncus effusus): transcriptome sequencing, de novo assembly, annotation, and polymorphism identification. BMC Genomics, 2019, 20, 489.	1.2	6
50	Enhanced remediation of Cr ⁶⁺ in bacterialâ€assisted floating wetlands. Water and Environment Journal, 2020, 34, 970-978.	1.0	6
51	The Oxidative Stress Response of Mirabilis jalapa to Exhausted Engine Oil (EEO) during Phytoremediation. Polish Journal of Environmental Studies, 2016, 25, 2581-2587.	0.6	6
52	Novel Anoxybacillus flavithermus AK1: A Thermophile Isolated from a Hot Spring in Saudi Arabia. Arabian Journal for Science and Engineering, 2018, 43, 73-81.	1.7	5
53	Benthic Foraminifera in Eastern Bahrain: Relationships With Local Pollution Sources. Polish Journal of Environmental Studies, 2017, 26, 969-984.	0.6	5
54	Enhanced wastewater treatment by modified basalt fiber bio-carriers: Effect of etching and surface functionalization. Journal of Cleaner Production, 2022, 343, 130927.	4.6	5

MUHAMMAD ARSLAN

4
4
3
2
0