Karen Horsburgh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6998721/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nox2 underpins microvascular inflammation and vascular contributions to cognitive decline. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 1176-1191.	2.4	5
2	Global proteomic analysis of extracellular matrix in mouse and human brain highlights relevance to cerebrovascular disease. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 2423-2438.	2.4	14
3	Impaired Glymphatic Function and Pulsation Alterations in a Mouse Model of Vascular Cognitive Impairment. Frontiers in Aging Neuroscience, 2021, 13, 788519.	1.7	15
4	Small vessel disease pathological changes in neurodegenerative and vascular dementias concomitant with autonomic dysfunction. Brain Pathology, 2020, 30, 191-202.	2.1	27
5	Deficiency of Nrf2 exacerbates white matter damage and microglia/macrophage levels in a mouse model of vascular cognitive impairment. Journal of Neuroinflammation, 2020, 17, 367.	3.1	28
6	UK consensus on pre-clinical vascular cognitive impairment functional outcomes assessment: Questionnaire and workshop proceedings. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 1402-1414.	2.4	4
7	The effects of environmental enrichment on white matter pathology in a mouse model of chronic cerebral hypoperfusion. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 151-165.	2.4	25
8	Dimethyl fumarate improves white matter function following severe hypoperfusion: Involvement of microglia/macrophages and inflammatory mediators. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 1354-1370.	2.4	46
9	Minocycline reduces microgliosis and improves subcortical white matter function in a model of cerebral vascular disease. Clia, 2018, 66, 34-46.	2.5	40
10	White matter degeneration in vascular and other ageingâ€related dementias. Journal of Neurochemistry, 2018, 144, 617-633.	2.1	147
11	Astrocyte-specific overexpression of Nrf2 protects against optic tract damage and behavioural alterations in a mouse model of cerebral hypoperfusion. Scientific Reports, 2018, 8, 12552.	1.6	30
12	Effects of environmental enrichment on white matter glial responses in a mouse model of chronic cerebral hypoperfusion. Journal of Neuroinflammation, 2017, 14, 81.	3.1	44
13	Chronic cerebral hypoperfusion: a key mechanism leading to vascular cognitive impairment and dementia. Closing the translational gap between rodent models and human vascular cognitive impairment and dementia. Clinical Science, 2017, 131, 2451-2468.	1.8	258
14	Chronic cerebral hypoperfusion alters amyloid-β peptide pools leading to cerebral amyloid angiopathy, microinfarcts and haemorrhages in Tg-SwDI mice. Clinical Science, 2017, 131, 2109-2123.	1.8	27
15	Long-term cilostazol treatment reduces gliovascular damage and memory impairment in a mouse model of chronic cerebral hypoperfusion. Scientific Reports, 2017, 7, 4299.	1.6	35
16	Frontal white matter hyperintensities, clasmatodendrosis and gliovascular abnormalities in ageing and post-stroke dementia. Brain, 2016, 139, 242-258.	3.7	129
17	Gliovascular Disruption and Cognitive Deficits in a Mouse Model with Features of Small Vessel Disease. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 1005-1014.	2.4	89
18	Hypertension Fails to Disrupt White Matter Integrity in Young Or Aged Fisher (F44) Cyp1a1Ren2 Transgenic Rats. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 188-192.	2.4	10

KAREN HORSBURGH

#	Article	IF	CITATIONS
19	Impact of Age on the Cerebrovascular Proteomes of Wild-Type and Tg-SwDI Mice. PLoS ONE, 2014, 9, e89970.	1.1	19
20	White matter tract and glial-associated changes in 5-hydroxymethylcytosine following chronic cerebral hypoperfusion. Brain Research, 2014, 1592, 82-100.	1.1	6
21	Restoration of Oligodendrocyte Pools in a Mouse Model of Chronic Cerebral Hypoperfusion. PLoS ONE, 2014, 9, e87227.	1.1	35
22	Controlled hypertension induces cerebrovascular and gene alterations in Cyp1a1-Ren2 transgenic rats. Journal of the American Society of Hypertension, 2013, 7, 411-419.	2.3	7
23	Proteomic Analysis of Mitochondria in <i>APOE</i> Transgenic Mice and in Response to an Ischemic Challenge. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 164-176.	2.4	37
24	Selective white matter pathology induces a specific impairment in spatial working memory. Neurobiology of Aging, 2011, 32, 2324.e7-2324.e12.	1.5	74
25	MRI is a sensitive marker of subtle white matter pathology in hypoperfused mice. Neurobiology of Aging, 2011, 32, 2325.e1-2325.e6.	1.5	51
26	Activation of Nrf2-Regulated Glutathione Pathway Genes by Ischemic Preconditioning. Oxidative Medicine and Cellular Longevity, 2011, 2011, 1-7.	1.9	65
27	Axon–glial disruption: the link between vascular disease and Alzheimer's disease?. Biochemical Society Transactions, 2011, 39, 881-885.	1.6	15
28	Rapid Disruption of Axon–Glial Integrity in Response to Mild Cerebral Hypoperfusion. Journal of Neuroscience, 2011, 31, 18185-18194.	1.7	106
29	APOE Îμ3 Gene Transfer Attenuates Brain Damage after Experimental Stroke. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 477-487.	2.4	15
30	Extension of cerebral hypoperfusion and ischaemic pathology beyond MCA territory after intraluminal filament occlusion in C57Bl/6J mice. Brain Research, 2004, 997, 15-23.	1.1	102
31	Apolipoprotein E influences neuronal death and repair. International Congress Series, 2003, 1252, 171-178.	0.2	4
32	Estrogen is Neuroprotective via an Apolipoprotein E—Dependent Mechanism in a Mouse Model of Global Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 1189-1195.	2.4	65
33	4â€Hydroxynonenal Immunoreactivity is Increased in Human Hippocampus After Global Ischemia. Brain Pathology, 2001, 11, 414-421.	2.1	60
34	Minimal ischaemic neuronal damage and HSP70 expression in MF1 strain mice following bilateral common carotid artery occlusion. Brain Research, 2001, 914, 185-195.	1.1	46
35	Intraventricular Infusion of Apolipoprotein E Ameliorates Acute Neuronal Damage after Global Cerebral Ischemia in Mice. Journal of Cerebral Blood Flow and Metabolism, 2000, 20, 458-462.	2.4	62
36	The role of apolipoprotein E in Alzheimer's disease, acute brain injury and cerebrovascular disease: evidence of common mechanisms and utility of animal models. Neurobiology of Aging, 2000, 21, 245-255.	1.5	143

KAREN HORSBURGH

#	Article	IF	CITATIONS
37	Increased neuronal damage in apolipoprotein E-deficient mice following global ischaemia. NeuroReport, 1999, 10, 837-841.	0.6	75
38	Intracortical Glutamate Perfusionin VivoInduces Cellular Alterations in Specific Protein Kinase C Isoforms and Amyloid Precursor Protein. Experimental Neurology, 1997, 143, 207-218.	2.0	6
39	Alterations of functional glucose use and ligand binding to second messenger systems following unilateral orbital enucleation. Brain Research, 1991, 549, 317-321.	1.1	6
40	Autoradiographic Imaging of [3H]Phorbol 12,13-Dibutyrate Binding to Protein Kinase C in Alzheimer's Disease. Journal of Neurochemistry, 1991, 56, 1121-1129.	2.1	32
41	Differential perivascular microglial activation in the deep white matter in vascular dementia developed postâ€stroke. Brain Pathology, 0, , .	2.1	6