List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6998646/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pressure-Responsive Conductive Poly(vinyl alcohol) Composites Containing Waste Cotton Fibers Biochar. Micromachines, 2022, 13, 125.	1.4	10
2	Enhancement and Evaluation of Interfacial Adhesion between Active Screen Plasma Surface-Functionalised Carbon Fibres and the Epoxy Substrate. Polymers, 2022, 14, 824.	2.0	0
3	A Review on the Use of Biochar Derived Carbon Quantum Dots Production for Sensing Applications. Chemosensors, 2022, 10, 117.	1.8	20
4	A Review on Recent Advancements of Graphene and Graphene-Related Materials in Biological Applications. Applied Sciences (Switzerland), 2021, 11, 614.	1.3	68
5	High-Temperature Annealed Biochar as a Conductive Filler for the Production of Piezoresistive Materials for Energy Conversion Application. ACS Applied Electronic Materials, 2021, 3, 838-844.	2.0	26
6	A Review of Bio-Oil Production through Microwave-Assisted Pyrolysis. Processes, 2021, 9, 561.	1.3	18
7	Potential natural polymerâ€based nanofibres for the development of facemasks in countering viral outbreaks. Journal of Applied Polymer Science, 2021, 138, 50658.	1.3	41
8	Tuning the microwave electromagnetic properties of biochar-based composites by annealing. Carbon Trends, 2021, 4, 100062.	1.4	24
9	Innovative Biochar-Based Composite Fibres from Recycled Material. Materials, 2021, 14, 5304.	1.3	8
10	High Frequency Electromagnetic Shielding by Biochar-Based Composites. Nanomaterials, 2021, 11, 2383.	1.9	25
11	Mechanical Properties, Surface Assessment, and Structural Analysis of Functionalized CFRPs after Accelerated Weathering. Polymers, 2021, 13, 4092.	2.0	1
12	A Review of Non-Soil Biochar Applications. Materials, 2020, 13, 261.	1.3	79
13	Effect of incorporation of microstructured carbonized cellulose on surface and mechanical properties of epoxy composites. Journal of Applied Polymer Science, 2020, 137, 48896.	1.3	23
14	Influence of pyrolytic thermal history on olive pruning biochar and related epoxy composites mechanical properties. Journal of Composite Materials, 2020, 54, 1863-1873.	1.2	30
15	Comparative Physical–Mechanical Properties Assessment of Tailored Surface-Treated Carbon Fibres. Materials, 2020, 13, 3136.	1.3	9
16	Introducing the Novel Mixed Gaussian-Lorentzian Lineshape in the Analysis of the Raman Signal of Biochar. Nanomaterials, 2020, 10, 1748.	1.9	49
17	Electrical conductivity of wood biochar monoliths and its dependence on pyrolysis temperature. Biochar, 2020, 2, 369-378.	6.2	71
18	Electrical and Microwave Characterization of Thermal Annealed Sewage Sludge Derived Biochar Composites. Applied Sciences (Switzerland), 2020, 10, 1334.	1.3	24

#	Article	IF	CITATIONS
19	Development of Pressure-Responsive PolyPropylene and Biochar-Based Materials. Micromachines, 2020, 11, 339.	1.4	24
20	Carbon Nanostructures for Actuators: An Overview of Recent Developments. Actuators, 2019, 8, 46.	1.2	13
21	Influence of Commercial Biochar Fillers on Brittleness/Ductility of Epoxy Resin Composites. Applied Sciences (Switzerland), 2019, 9, 3109.	1.3	44
22	Analysis of biochar with different pyrolysis temperatures used as filler in epoxy resin composites. Biomass and Bioenergy, 2019, 122, 466-471.	2.9	65
23	X-ray Absorption and Magnetic Circular Dichroism in CVD Grown Carbon Nanotubes. Materials, 2019, 12, 1073.	1.3	2
24	Multi-Walled Carbon Nanotubes Composites for Microwave Absorbing Applications. Applied Sciences (Switzerland), 2019, 9, 851.	1.3	33
25	Graphene and MWCNT Printed Films: Preparation and RF Electrical Properties Study. Journal of Nanomaterials, 2019, 2019, 1-9.	1.5	4
26	Graphite-Si-SiC ceramics produced by microwave assisted reactive melt infiltration. Journal of the European Ceramic Society, 2019, 39, 2232-2243.	2.8	16
27	Shape tunability of carbonized cellulose nanocrystals. SN Applied Sciences, 2019, 1, 1.	1.5	17
28	Development of Coffee Biochar Filler for the Production of Electrical Conductive Reinforced Plastic. Polymers, 2019, 11, 1916.	2.0	61
29	Biochar as a cheap and environmental friendly filler able to improve polymer mechanical properties. Biomass and Bioenergy, 2019, 120, 219-223.	2.9	86
30	Extensive growth of MWCNTs on copper substrates using various diffusion barrier layers. Diamond and Related Materials, 2018, 82, 124-131.	1.8	7
31	Carbon fibre functionalization by plasma treatment for adhesion enhancement on polymers. AIP Conference Proceedings, 2018, , .	0.3	6
32	Thermal treatments for biochar and their electrical characterization in epoxy resin composites. AIP Conference Proceedings, 2018, , .	0.3	2
33	Thermal behavior of thermoplastic polymer nanocomposites containing graphene nanoplatelets. Journal of Applied Polymer Science, 2017, 134, .	1.3	18
34	Design of a graphene-loaded slotted ring resonator for sensor applications. , 2017, , .		3
35	Microwave characterization of graphene films for sensor applications. , 2017, , .		7
36	Biochar and carbon nanotubes as fillers in polymers: A comparison. , 2017, , .		6

MAURO GIORCELLI

#	Article	IF	CITATIONS
37	THE EFFECT OF CARBON NANOTUBES CONCENTRATION ON COMPLEX PERMITTIVITY OF NANOCOMPOSITES. Progress in Electromagnetics Research M, 2017, 55, 203-209.	0.5	4
38	Low-Cost Carbon Fillers to Improve Mechanical Properties and Conductivity of Epoxy Composites. Polymers, 2017, 9, 642.	2.0	74
39	Biochars as Innovative Humidity Sensing Materials. Chemosensors, 2017, 5, 35.	1.8	23
40	Microwave behaviour comparison between different carbon based materials in epoxy resin composites. AIP Conference Proceedings, 2016, , .	0.3	0
41	Biochar-polymer composites and thin films: Characterizations and applications. , 2016, , .		5
42	Photocatalytic discoloration of methyl orange dye by δ-Bi2O3 thin films. Thin Solid Films, 2016, 612, 72-81.	0.8	32
43	A novel approach to obtain conductive tracks on PP/MWCNT nanocomposites by laser printing. RSC Advances, 2016, 6, 28522-28531.	1.7	14
44	Microwave characterization of polymer composite based on Biochar: A comparison of composite behaviour for Biochar and MWCNTs. , 2016, , .		9
45	Multi-Walled Carbon Nanotube thin film loading for tuning microstrip patch antennas. , 2016, , .		13
46	Convective Heat Transfer Enhancement for Electronic Device Applications Using Patterned MWCNTs Structures. Heat Transfer Engineering, 2016, 37, 783-790.	1.2	5
47	Comparative analysis of MWCNTs nanocomposites at microwave frequency. , 2015, , .		0
48	Analysis and modeling of epoxy/MWCNT composites. , 2015, , .		0
49	Improvement in electromagnetic interference shielding effectiveness of cement composites using carbonaceous nano/micro inerts. Construction and Building Materials, 2015, 85, 208-216.	3.2	109
50	Silicon carbide hollow cylinders using carbon nanotubes structures as template. Materials Letters, 2015, 151, 12-15.	1.3	4
51	Carbon nanotube/polymer nanocomposites: A study on mechanical integrity through nanoindentation. Polymer Composites, 2015, 36, 1432-1446.	2.3	50
52	Investigation of epoxy resin/multiwalled carbon nanotube nanocomposite behavior at low frequency. Journal of Materials Research, 2015, 30, 101-107.	1.2	14
53	ANALYSIS OF MICROWAVE ABSORBING PROPERTIES OF EPOXY MWCNT COMPOSITES. Progress in Electromagnetics Research Letters, 2014, 44, 63-69.	0.4	57

54 RF characterization of polymer multi-walled carbon nanotube composites. , 2014, , .

3

#	Article	IF	CITATIONS
55	Analysis of MWCNT/epoxy composites at microwave frequency: reproducibility investigation. Nanoscale Research Letters, 2014, 9, 168.	3.1	20
56	Modification and characterization of carbon black with mercaptopropyltrimethoxysilane. Applied Surface Science, 2013, 286, 142-148.	3.1	47
57	Microwave absorption properties in epoxy resin Multi Walled Carbon Nanotubes composites. , 2013, , .		11
58	Growth of vertically aligned multiwall carbon nanotubes columns. Journal of Physics: Conference Series, 2013, 439, 012008.	0.3	7
59	Mimicking water striders' legs superhydrophobicity and buoyancy with cabbage leaves and nanotube carpets. Journal of Materials Research, 2013, 28, 976-983.	1.2	21
60	Nanomechanical and tribological properties of carbon nanotube/polyvinyl butyral composites. Polymer Composites, 2013, 34, 1950-1960.	2.3	24
61	Study of carbon nanotubes based Polydimethylsiloxane composite films. Journal of Physics: Conference Series, 2013, 439, 012010.	0.3	33
62	Carbon Nanotubes With Different Orientations for Electrochemical Biodevices. IEEE Sensors Journal, 2012, 12, 3356-3362.	2.4	3
63	Comparison of two different carbon nanotube-based surfaces with respect to potassium ferricyanide electrochemistry. Surface Science, 2012, 606, 156-160.	0.8	60
64	Alignments of Carbon Nanotubes in Polymer Matrix: A Raman Perspective. International Journal of Polymer Analysis and Characterization, 2012, 17, 534-539.	0.9	8
65	Improving the signal-to-noise ratio of an ECL-based sensor using ad hoc carbon nanotube electrodes. Journal of Micromechanics and Microengineering, 2012, 22, 074010.	1.5	6
66	Comparing the enhanced sensing interfaces of differently oriented carbon nanotubes onto silicon for bio-chip applications. , 2011, , .		2
67	Electrical Properties of CNT-Based Polymeric Matrix Nanocomposites. , 2011, , .		9
68	Comparing sensitivities of differently oriented multi-walled carbon nanotubes integrated on silicon wafer for electrochemical biosensors. Sensors and Actuators B: Chemical, 2011, 160, 327-333.	4.0	21
69	Facile functionalization by π-stacking of macroscopic substrates made of vertically aligned carbon nanotubes: Tracing reactive groups by electrochemiluminescence. Electrochimica Acta, 2011, 56, 9269-9276.	2.6	4
70	Carbon nanotube electrodes for electrochemiluminescence biosensors. , 2010, , .		0
71	Hydrogen Adsorption in Several Types of Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2010, 10, 3860-3866.	0.9	12
72	Thermal and Electronic Properties of Macroscopic Multi-Walled Carbon Nanotubes Blocks. Journal of Nanoscience and Nanotechnology, 2010, 10, 3828-3833.	0.9	10

#	Article	lF	CITATIONS
73	Carbon nanotube electrodes for electrochemiluminescence biosensors. Procedia Engineering, 2010, 5, 808-811.	1.2	2
74	Carbon nanotube electrodes for electrochemiluminescence biosensors. , 2010, 2010, 2722-5.		0
75	High coercivity magnetic multi-wall carbon nanotubes for low-dimensional high-density magnetic recording media. Diamond and Related Materials, 2010, 19, 553-556.	1.8	10
76	High-Temperature Annealing Effects on Multiwalled Carbon Nanotubes: Electronic Structure, Field Emission and Magnetic Behaviors. Journal of Nanoscience and Nanotechnology, 2009, 9, 6799-805.	0.9	10
77	Human Plasma Protein Adsorption on Carbon-Based Materials. Journal of Nanoscience and Nanotechnology, 2009, 9, 3785-3791.	0.9	11
78	Study of the Electrical Characteristics of the CNT/SiC Interface. Materials Science Forum, 2009, 615-617, 231-234.	0.3	0
79	Gas Chromatography Study of Reagent Degradation During Chemical Vapor Deposition of Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2009, 9, 3593-3598.	0.9	6
80	Hydrogen Adsorption in Several Types of Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2009, 9, 6806-12.	0.9	9
81	Fluid dynamic analysis of gas flow in a thermal-CVD system designed for growth of carbon nanotubes. Journal of Crystal Growth, 2008, 310, 477-483.	0.7	23
82	Improving macroscopic physical and mechanical properties of thick layers of aligned multiwall carbon nanotubes by annealing treatment. Diamond and Related Materials, 2008, 17, 542-547.	1.8	36
83	Preparation of polymer-based composite with magnetic anisotropy by oriented carbon nanotube dispersion. Diamond and Related Materials, 2008, 17, 1590-1595.	1.8	17
84	An analysis of carbon nanotube structure wettability before and after oxidation treatment. Journal of Physics Condensed Matter, 2008, 20, 474206.	0.7	50
85	Modification of MWNTs obtained by thermal-CVD. Diamond and Related Materials, 2007, 16, 1183-1187.	1.8	37
86	Macroscopic growth of carbon nanotube mats and their mechanical properties. Carbon, 2007, 45, 1133-1136.	5.4	30
87	Optimization of a thermal-CVD system for carbon nanotube growth. Physica E: Low-Dimensional Systems and Nanostructures, 2007, 37, 16-20.	1.3	45
88	Study of CNTs and nanographite grown by thermal CVD using different precursors. Journal of Non-Crystalline Solids, 2006, 352, 1310-1313.	1.5	16
89	Thermal CVD Growth of Carbon Nanotubes Thick Layers. Advances in Science and Technology, 2006, 48, 37.	0.2	2
90	Thermal-CVD System Designed for Growth of Carbon Nanotubes. , 2006, , .		0

#	Article	IF	CITATIONS
91	Towards Traditional Carbon Fillers: Biochar-Based Reinforced Plastic. , 0, , .		2