Alan M Myers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6998279/publications.pdf

Version: 2024-02-01

84171 71004 13,604 79 43 75 citations h-index g-index papers 82 82 82 11314 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Genome assembly and population genomic analysis provide insights into the evolution of modern sweet corn. Nature Communications, 2021, 12, 1227.	5.8	37
2	Engineering 6-phosphogluconate dehydrogenase improves grain yield in heat-stressed maize. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33177-33185.	3.3	22
3	Maize <i>defective kernel5</i> is a bacterial TamB homologue required for chloroplast envelope biogenesis. Journal of Cell Biology, 2019, 218, 2638-2658.	2.3	19
4	Effects of longâ€ŧerm exposure to elevated temperature on <i>Zea mays</i> endosperm development during grain fill. Plant Journal, 2019, 99, 23-40.	2.8	37
5	Transgenic analysis of maize endosperm metabolism. FASEB Journal, 2019, 33, 486.4.	0.2	О
6	Functions of maize genes encoding pyruvate phosphate dikinase in developing endosperm. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E24-E33.	3.3	35
7	Direct Determination of the Site of Addition of Glucosyl Units to Maltooligosaccharide Acceptors Catalyzed by Maize Starch Synthase I. Frontiers in Plant Science, 2018, 9, 1252.	1.7	2
8	Central metabolism and its spatial heterogeneity in maize endosperm, 2017, , 134-148.		1
9	Direct Characterization of the Maize Starch Synthase IIa Product Shows Maltodextrin Elongation Occurs at the Non-reducing End. Journal of Biological Chemistry, 2016, 291, 24951-24960.	1.6	6
10	Comparative inÂvitro analyses of recombinant maize starch synthases SSI, SSIIa, and SSIII reveal direct regulatory interactions and thermosensitivity. Archives of Biochemistry and Biophysics, 2016, 596, 63-72.	1.4	16
11	Functions of Multiple Genes Encoding ADP-Glucose Pyrophosphorylase Subunits in Maize Endosperm, Embryo, and Leaf Â. Plant Physiology, 2014, 164, 596-611.	2.3	65
12	Function of isoamylaseâ€type starch debranching enzymes <scp>ISA</scp> 1 and <scp>ISA</scp> 2 in the <i><i><scp>Z</scp>ea mays</i> leaf. New Phytologist, 2013, 200, 1009-1021.</i>	3.5	31
13	Molecular Structure of Starches from Maize Mutants Deficient in Starch Synthase III. Journal of Agricultural and Food Chemistry, 2013, 61, 9899-9907.	2.4	37
14	Distinct Functional Properties of Isoamylase-Type Starch Debranching Enzymes in Monocot and Dicot Leaves. Plant Physiology, 2013, 163, 1363-1375.	2.3	32
15	Functional Interactions between Starch Synthase III and Isoamylase-Type Starch-Debranching Enzyme in Maize Endosperm Â. Plant Physiology, 2012, 158, 679-692.	2.3	83
16	Integrated functions among multiple starch synthases determine both amylopectin chain length and branch linkage location in Arabidopsis leaf starch. Journal of Experimental Botany, 2011, 62, 4547-4559.	2.4	76
17	Maize <i>opaque5</i> Encodes Monogalactosyldiacylglycerol Synthase and Specifically Affects Galactolipids Necessary for Amyloplast and Chloroplast Function Â. Plant Cell, 2011, 23, 2331-2347.	3.1	85
18	Functions of Heteromeric and Homomeric Isoamylase-Type Starch-Debranching Enzymes in Developing Maize Endosperm Â. Plant Physiology, 2010, 153, 956-969.	2.3	84

#	Article	lF	Citations
19	Biochemistry and Genetics of Starch Synthesis. Annual Review of Food Science and Technology, 2010, 1, 271-303.	5.1	173
20	Proteins from Multiple Metabolic Pathways Associate with Starch Biosynthetic Enzymes in High Molecular Weight Complexes: A Model for Regulation of Carbon Allocation in Maize Amyloplasts Â. Plant Physiology, 2009, 149, 1541-1559.	2.3	188
21	Identification of the novel protein QQS as a component of the starch metabolic network in Arabidopsis leaves. Plant Journal, 2009, 58, 485-498.	2.8	118
22	The B73 Maize Genome: Complexity, Diversity, and Dynamics. Science, 2009, 326, 1112-1115.	6.0	3,612
23	Seed Starch Synthesis. , 2009, , 439-456.		3
24	Overlapping functions of the starch synthases SSII and SSIII in amylopectin biosynthesis in Arabidopsis. BMC Plant Biology, 2008, 8, 96.	1.6	111
25	Mechanistic Investigation of a Starch-Branching Enzyme Using Hydrodynamic Volume SEC Analysis. Biomacromolecules, 2008, 9, 954-965.	2.6	67
26	Starch Biosynthetic Enzymes from Developing Maize Endosperm Associate in Multisubunit Complexes. Plant Physiology, 2008, 146, 1892-1908.	2.3	195
27	Proteome and phosphoproteome analysis of starch granule-associated proteins from normal maize and mutants affected in starch biosynthesis. Journal of Experimental Botany, 2008, 59, 3395-3406.	2.4	136
28	Genome wide co-expression among the starch debranching enzyme genes AtISA1, AtISA2, and AtISA3 in Arabidopsis thaliana. Journal of Experimental Botany, 2007, 58, 3323-3342.	2.4	32
29	COX24 Codes for a Mitochondrial Protein Required for Processing of the COX1 Transcript. Journal of Biological Chemistry, 2006, 281, 3743-3751.	1.6	21
30	Towards the rational design of cereal starches. Current Opinion in Plant Biology, 2005, 8, 204-210.	3 . 5	100
31	Mutations Affecting Starch Synthase III in Arabidopsis Alter Leaf Starch Structure and Increase the Rate of Starch Synthesis. Plant Physiology, 2005, 138, 663-674.	2.3	135
32	Molecular characterization demonstrates that the Zea mays gene sugary2 codes for the starch synthase isoform SSIIa. Plant Molecular Biology, 2004, 54, 865-879.	2.0	152
33	Starch synthesis in the cereal endosperm. Current Opinion in Plant Biology, 2003, 6, 215-222.	3.5	457
34	Assembly interdependence among the S. cerevisiae bud neck ring proteins Elm1p, Hsl1p and Cdc12p. Yeast, 2003, 20, 813-826.	0.8	22
35	Mutational Analysis of the Pullulanase-Type Debranching Enzyme of Maize Indicates Multiple Functions in Starch Metabolism. Plant Cell, 2003, 15, 666-680.	3.1	172
36	STA11, a Chlamydomonas reinhardtii Locus Required for Normal Starch Granule Biogenesis, Encodes Disproportionating Enzyme. Further Evidence for a Function of α-1,4 Glucanotransferases during Starch Granule Biosynthesis in Green Algae. Plant Physiology, 2003, 132, 137-145.	2.3	47

#	Article	IF	CITATIONS
37	One- and Two-dimensional Native PAGE Activity Gel Analyses of Maize Endosperm Proteins Reveal Functional Interactions between Specific Starch Metabolizing Enzymes. Journal of Applied Glycoscience (1999), 2003, 50, 207-212.	0.3	32
38	Genetic Analysis Indicates Maize Pullulanase- and Isoamylase-type Starch Debranching Enzymes Have Partially Overlapping Functions in Starch Metabolism. Journal of Applied Glycoscience (1999), 2003, 50, 191-195.	0.3	4
39	Functional Interactions between Heterologously Expressed Starch-Branching Enzymes of Maize and the Glycogen Synthases of Brewer's Yeast. Plant Physiology, 2002, 128, 1189-1199.	2.3	40
40	Enzymatic properties and regulation of ZPU1, the maize pullulanase-type starch debranching enzyme. Archives of Biochemistry and Biophysics, 2002, 406, 21-32.	1.4	36
41	Molecular Structure of Three Mutations at the Maizesugary1 Locus and Their Allele-Specific Phenotypic Effects. Plant Physiology, 2001, 125, 1406-1418.	2.3	138
42	Two Loci Control Phytoglycogen Production in the Monocellular Green Alga Chlamydomonas reinhardtii. Plant Physiology, 2001, 125, 1710-1722.	2.3	45
43	Biochemical Characterization of Wild-Type and Mutant Isoamylases of Chlamydomonas reinhardtii Supports a Function of the Multimeric Enzyme Organization in Amylopectin Maturation. Plant Physiology, 2001, 125, 1723-1731.	2.3	54
44	Recent Progress toward Understanding Biosynthesis of the Amylopectin Crystal. Plant Physiology, 2000, 122, 989-998.	2.3	472
45	Purification and Characterization of Soluble Starch Synthases from Maize Endosperm. Archives of Biochemistry and Biophysics, 2000, 373, 135-146.	1.4	59
46	Identification of the Soluble Starch Synthase Activities of Maize Endosperm1. Plant Physiology, 1999, 120, 205-216.	2.3	149
47	Purification and Molecular Genetic Characterization of ZPU1, a Pullulanase-Type Starch-Debranching Enzyme from Maize1. Plant Physiology, 1999, 119, 255-266.	2.3	101
48	Control of <i>Saccharomyces cerevisiae</i> Filamentous Growth by Cyclin-Dependent Kinase Cdc28. Molecular and Cellular Biology, 1999, 19, 1369-1380.	1.1	86
49	Phenotypic analysis and molecular cloning of discolored-1 (dsc1), a maize gene required for early kernel development., 1998, 37, 483-493.		20
50	Candida albicans ALS3 and insights into the nature of the ALS gene family. Current Genetics, 1998, 33, 451-459.	0.8	217
51	Characterization of SU1 Isoamylase, a Determinant of Storage Starch Structure in Maize1. Plant Physiology, 1998, 117, 425-435.	2.3	100
52	Characterization of dull1, a Maize Gene Coding for a Novel Starch Synthase. Plant Cell, 1998, 10, 399-412.	3.1	230
53	Characterization of dull 1, a Maize Gene Coding for a Novel Starch Synthase. Plant Cell, 1998, 10, 399.	3.1	16
54	Serine-threonine protein kinase activity of Elm1p, a regulator of morphologic differentiation in Saccharomyces cerevisiae. FEBS Letters, 1997, 408, 109-114.	1.3	25

#	Article	IF	Citations
55	Cloning and characterization of MRP10, a yeast gene coding for a mitochondrial ribosomal protein. Current Genetics, 1997, 31, 228-234.	0.8	26
56	The maize gene empty pericarp-2 is required for progression beyond early stages of embryogenesis. Plant Journal, 1997, 12, 901-909.	2.8	16
57	From Glycogen to Amylopectin: A Model for the Biogenesis of the Plant Starch Granule. Cell, 1996, 86, 349-352.	13.5	445
58	Characterization of the Maize Gene sugary1, a Determinant of Starch Composition in Kernels. Plant Cell, 1995, 7, 417.	3.1	5
59	Characterization of the maize gene sugary1, a determinant of starch composition in kernels Plant Cell, 1995, 7, 417-429.	3.1	425
60	Interactions between the bud emergence proteins Bem1p and Bem2p and Rho-type GTPases in yeast Journal of Cell Biology, 1994, 127, 1395-1406.	2.3	206
61	The Saccharomyces cerevisiae mutation elm4-1 facilitates pseudohyphal differentiation and interacts with a deficiency in phosphoribosylpyrophosphate synthase activity to cause constitutive pseudohyphal growth Molecular and Cellular Biology, 1994, 14, 4671-4681.	1.1	22
62	DNA sequence and transcript analysis of transposon MuA2, a regulator of Mutator transposable element activity in maize. Plant Molecular Biology, 1993, 21, 1181-1185.	2.0	32
63	Functional analysis of mRNA 3' end formation signals in the convergent and overlapping transcription units of the S. cerevisia egenes RH01 and MRP2. Nucleic Acids Research, 1993, 21, 5500-5508.	6.5	32
64	Regulation of dimorphism in Saccharomyces cerevisiae: involvement of the novel protein kinase homolog Elm1p and protein phosphatase 2A Molecular and Cellular Biology, 1993, 13, 5567-5581.	1.1	135
65	Recovery of mitochondrial DNA from blood leukocytes using detergent lysis. Biochemical Genetics, 1992, 30, 27-33.	0.8	15
66	Expression of human brain hexokinase in Escherichiacoli: Purification and characterization of the expressed enzyme. Biochemical and Biophysical Research Communications, 1991, 177, 305-311.	1.0	37
67	[33] High-expression vectors with multiple cloning sites for construction of trpE fusion genes: pATH vectors. Methods in Enzymology, 1991, 194, 477-490.	0.4	392
68	The small GTP-binding protein Rho1p is localized on the Golgi apparatus and post-Golgi vesicles in Saccharomyces cerevisiae Journal of Cell Biology, 1991, 115, 309-319.	2.3	55
69	A Yeast Mitochondrial Leader Peptide Functions in vivo as a Dual Targeting Signal for Both Chloroplasts and Mitochondria. Plant Cell, 1990, 2, 1249.	3.1	20
70	Molecular Analysis of Cytoplasmic Genetic Variation in Holstein Cows. Journal of Animal Science, 1989, 67, 1926.	0.2	44
71	Characterization of the yeast HSP60 gene coding for a mitochondrial assembly factor. Nature, 1989, 337, 655-659.	13.7	365
72	Characterization of two members of the rho gene family from the yeast Saccharomyces cerevisiae Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 779-783.	3.3	272

#	Article	IF	CITATION
73	Yeast shuttle and integrative vectors with multiple cloning sites suitable for construction of lacZ fusions. Gene, 1986, 45, 299-310.	1.0	658
74	Genetics of Mitochondrial Biogenesis. Annual Review of Biochemistry, 1986, 55, 249-285.	5.0	441
75	Yeast/E. coli shuttle vectors with multiple unique restriction sites. Yeast, 1986, 2, 163-167.	0.8	1,471
76	Immunological similarities between specific chloroplast ribosomal proteins from Chlamydomonas reinhardtii and ribosomal proteins from Escherichia coli Molecular Biology and Evolution, 1984, 1, 317-34.	3.5	81
77	Chloroplast ribosomal proteins of Chlamydomonas synthesized in the cytoplasm are made as precursors Journal of Cell Biology, 1984, 98, 2011-2018.	2.3	51
78	Mutations in a nuclear gene of Chlamydomonas cause the loss of two chloroplast ribosomal proteins, one synthesized in the chloroplast and the other in the cytoplasm. Current Genetics, 1984, 8, 369-378.	0.8	16
79	Mutants of Chlamydomonas reinhardtii with physical alterations in their chloroplast DNA. Plasmid, 1982, 7, 133-151.	0.4	88