Maheswar Rupakheti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6997986/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nitrogenous and carbonaceous aerosols in PM2.5 and TSP during pre-monsoon: Characteristics and sources in the highly polluted mountain valley. Journal of Environmental Sciences, 2022, 115, 10-24.	3.2	5
2	Trends in physical, optical and chemical columnar aerosol characteristics and radiative effects over South and East Asia: Satellite and ground-based observations. Gondwana Research, 2022, 105, 366-387.	3.0	10
3	Insights into recent aerosol trends over Asia from observations and CMIP6 simulations. Science of the Total Environment, 2022, 807, 150756.	3.9	15
4	Water vapour characteristics and radiative effects at high-altitude Himalayan sites. Atmospheric Pollution Research, 2022, 13, 101303.	1.8	5
5	Current status of source apportionment of ambient aerosols in India. Atmospheric Environment, 2022, 274, 118987.	1.9	11
6	Climate Benefits of Cleaner Energy Transitions in East and South Asia Through Black Carbon Reduction. Frontiers in Environmental Science, 2022, 10, .	1.5	6
7	Trends in the types and absorption characteristics of ambient aerosols over the Indo-Gangetic Plain and North China Plain in last two decades. Science of the Total Environment, 2022, 831, 154867.	3.9	7
8	Estimation of air pollutant emissions from captive diesel generators and its mitigation potential through microgrid and solar energy. Energy Reports, 2022, 8, 3251-3262.	2.5	14
9	Pre-monsoon submicron aerosol composition and source contribution in the Kathmandu Valley, Nepal. Environmental Science Atmospheres, 2022, 2, 978-999.	0.9	4
10	Estimating contributions of black and brown carbon to solar absorption from aethalometer and AERONET measurements in the highly polluted Kathmandu Valley, Nepal. Atmospheric Research, 2021, 247, 105164.	1.8	15
11	Inter-annual and seasonal variations in optical and physical characteristics of columnar aerosols over the Pokhara Valley in the Himalayan foothills. Atmospheric Research, 2021, 248, 105254.	1.8	7
12	Spatio-temporal characteristics of air pollutants over Xinjiang, northwestern China. Environmental Pollution, 2021, 268, 115907.	3.7	38
13	Black Carbon in Surface Soil and Its Sources in Three Central Asian Countries. Archives of Environmental Contamination and Toxicology, 2021, 80, 558-566.	2.1	3
14	The COVIDâ€19 Pandemic Not Only Poses Challenges, but Also Opens Opportunities for Sustainable Transformation. Earth's Future, 2021, 9, e2021EF001996.	2.4	42
15	Influence of transboundary air pollution on air quality in southwestern China. Geoscience Frontiers, 2021, 12, 101239.	4.3	17
16	Modifications in aerosol physical, optical and radiative properties during heavy aerosol events over Dushanbe, Central Asia. Geoscience Frontiers, 2021, 12, 101251.	4.3	9
17	Impacts of Indian summer monsoon and stratospheric intrusion on air pollutants in the inland Tibetan Plateau. Geoscience Frontiers, 2021, 12, 101255.	4.3	13
18	Air Pollution in New Delhi during Late Winter: An Overview of a Group of Campaign Studies Focusing on Composition and Sources. Atmosphere, 2021, 12, 1432.	1.0	13

MAHESWAR RUPAKHETI

#	Article	IF	CITATIONS
19	Year-round aerosol characteristics and radiative effects in the South Asian pollution outflow over a background site in the Maldives. Atmospheric Environment, 2020, 240, 117813.	1.9	8
20	Aerosol-induced atmospheric heating rate decreases over South and East Asia as a result of changing content and composition. Scientific Reports, 2020, 10, 20091.	1.6	44
21	Two heavy haze events over Lumbini in southern Nepal: Enhanced aerosol radiative forcing and heating rates. Atmospheric Environment, 2020, 236, 117658.	1.9	12
22	Black carbon dominates the aerosol absorption over the Indo-Gangetic Plain and the Himalayan foothills. Environment International, 2020, 142, 105814.	4.8	47
23	Ambient air quality in the Kathmandu Valley, Nepal, during the pre-monsoon: concentrations and sources of particulate matter and trace gases. Atmospheric Chemistry and Physics, 2020, 20, 2927-2951.	1.9	40
24	Light absorption properties of elemental carbon (EC) and water-soluble brown carbon (WS–BrC) in the Kathmandu Valley, Nepal: A 5-year study. Environmental Pollution, 2020, 261, 114239.	3.7	35
25	Severe air pollution and characteristics of light-absorbing particles in a typical rural area of the Indo-Gangetic Plain. Environmental Science and Pollution Research, 2020, 27, 10617-10628.	2.7	15
26	Inter-annual and seasonal variations in columnar aerosol characteristics and radiative effects over the Pokhara Valley in the Himalayan foothills – Composition, radiative forcing, and atmospheric heating. Environmental Pollution, 2020, 264, 114799.	3.7	9
27	Columnar aerosol properties and radiative effects over Dushanbe, Tajikistan in Central Asia. Environmental Pollution, 2020, 265, 114872.	3.7	21
28	Seasonal source variability of carbonaceous aerosols at the Rwanda Climate Observatory. Atmospheric Chemistry and Physics, 2020, 20, 4561-4573.	1.9	10
29	Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): emissions of particulate matter and sulfur dioxide from vehicles and brick kilns and their impacts on air quality in the Kathmandu Valley, Nepal. Atmospheric Chemistry and Physics, 2019, 19, 8209-8228.	1.9	14
30	Carbonaceous aerosol characteristics on the Third Pole: A primary study based on the Atmospheric Pollution and Cryospheric Change (APCC) network. Environmental Pollution, 2019, 253, 49-60.	3.7	64
31	Nepal emission inventory – Part I: Technologies and combustion sources (NEEMI-Tech) for 2001–2016. Atmospheric Chemistry and Physics, 2019, 19, 12953-12973.	1.9	27
32	Identification of absorbing aerosol types at a site in the northern edge of Indo-Gangetic Plain and a polluted valley in the foothills of the central Himalayas. Atmospheric Research, 2019, 223, 15-23.	1.8	44
33	Molecular characterization of organic aerosols in the Kathmandu Valley, Nepal: insights into primary and secondary sources. Atmospheric Chemistry and Physics, 2019, 19, 2725-2747.	1.9	41
34	Linking atmospheric pollution to cryospheric change in the Third Pole region: current progress and future prospects. National Science Review, 2019, 6, 796-809.	4.6	271
35	An overview of airborne measurement in Nepal – Part 1: Vertical profile of aerosol size, number, spectral absorption, and meteorology. Atmospheric Chemistry and Physics, 2019, 19, 245-258.	1.9	15
36	Seasonal and diurnal variability in O ₃ , black carbon, and CO measured at the Rwanda Climate Observatory. Atmospheric Chemistry and Physics, 2019, 19, 2063-2078.	1.9	23

#	Article	IF	CITATIONS
37	Indoor levels of black carbon and particulate matters in relation to cooking activities using different cook stove-fuels in rural Nepal. Energy for Sustainable Development, 2019, 48, 25-33.	2.0	30
38	Air Pollution in the Hindu Kush Himalaya. , 2019, , 339-387.		31
39	Observation of optical properties and sources of aerosols at Buddha's birthplace, Lumbini, Nepal: environmental implications. Environmental Science and Pollution Research, 2018, 25, 14868-14881.	2.7	31
40	Observation and analysis of spatiotemporal characteristics of surface ozone and carbon monoxide at multiple sites in the Kathmandu Valley, Nepal. Atmospheric Chemistry and Physics, 2018, 18, 14113-14132.	1.9	19
41	WRF and WRF-Chem v3.5.1 simulations of meteorology and black carbon concentrations in the Kathmandu Valley. Geoscientific Model Development, 2018, 11, 2067-2091.	1.3	35
42	Long-term trends in the total columns of ozone and its precursor gases derived from satellite measurements during 2004–2015 over three different regions in South Asia: Indo-Gangetic Plain, Himalayas and Tibetan Plateau. International Journal of Remote Sensing, 2018, 39, 7384-7404.	1.3	6
43	Variations in surface ozone and carbon monoxide in the Kathmandu Valley and surrounding broader regions during SusKat-ABC field campaign: role of local and regional sources. Atmospheric Chemistry and Physics, 2018, 18, 11949-11971.	1.9	38
44	Black Carbon and Ozone Variability at the Kathmandu Valley and at the Southern Himalayas: A Comparison between a "Hot Spot―and a Downwind High-Altitude Site. Aerosol and Air Quality Research, 2018, 18, 623-635.	0.9	16
45	Characterizations of atmospheric particulate-bound mercury in the Kathmandu Valley of Nepal, South Asia. Science of the Total Environment, 2017, 579, 1240-1248.	3.9	39
46	Seasonal and diurnal variations in methane and carbon dioxide in the Kathmandu Valley in the foothills of the central Himalayas. Atmospheric Chemistry and Physics, 2017, 17, 12573-12596.	1.9	29
47	Pre-monsoon air quality over Lumbini, aÂworld heritage site along the Himalayan foothills. Atmospheric Chemistry and Physics, 2017, 17, 11041-11063.	1.9	70
48	Wintertime aerosol optical and radiative properties in the Kathmandu Valley during the SusKat-ABC field campaign. Atmospheric Chemistry and Physics, 2017, 17, 12617-12632.	1.9	19
49	Near-road sampling of PM _{2. 5} , BC, and fine-particle chemical components in Kathmandu Valley, Nepal. Atmospheric Chemistry and Physics, 2017, 17, 6503-6516.	1.9	38
50	Source apportionment of NMVOCs in the Kathmandu Valley during the SusKat-ABC international field campaign using positive matrix factorization. Atmospheric Chemistry and Physics, 2017, 17, 8129-8156.	1.9	73
51	Investigation of the mixing layer height derived from ceilometer measurements in the Kathmandu Valley and implications for local air quality. Atmospheric Chemistry and Physics, 2017, 17, 8157-8176.	1.9	46
52	Organic molecular tracers in the atmospheric aerosols from Lumbini, Nepal, in the northern Indo-Gangetic Plain: influence of biomass burning. Atmospheric Chemistry and Physics, 2017, 17, 8867-8885.	1.9	91
53	Characteristics of Particulate-Phase Polycyclic Aromatic Hydrocarbons (PAHs) in the Atmosphere over the Central Himalayas. Aerosol and Air Quality Research, 2017, 17, 2942-2954.	0.9	23
54	Respiratory Effects of High Levels of Particulate Exposure in a Cohort of Traffic Police in Kathmandu, Nepal. Journal of Occupational and Environmental Medicine, 2016, 58, e218-e225.	0.9	20

#	Article	IF	CITATIONS
55	Source apportionment of particle-bound polycyclic aromatic hydrocarbons in Lumbini, Nepal by using the positive matrix factorization receptor model. Atmospheric Research, 2016, 182, 46-53.	1.8	47
56	Overview of VOC emissions and chemistry from PTR-TOF-MS measurements during the SusKat-ABC campaign: high acetaldehyde, isoprene and isocyanic acid in wintertime air of the Kathmandu Valley. Atmospheric Chemistry and Physics, 2016, 16, 3979-4003.	1.9	102
57	The impact of residential combustion emissions on atmospheric aerosol, human health, and climate. Atmospheric Chemistry and Physics, 2016, 16, 873-905.	1.9	122
58	PM Modelling over Nepal with WRF-Chem. Springer Proceedings in Complexity, 2016, , 319-323.	0.2	0
59	Variability of Anthropogenic Gases: Nitrogen Oxides, Sulfur Dioxide, Ozone and Ammonia in Kathmandu Valley, Nepal. Aerosol and Air Quality Research, 2016, 16, 3088-3101.	0.9	30
60	Seasonal variation of ozone and black carbon observed at Paknajol, an urban site in the Kathmandu Valley, Nepal. Atmospheric Chemistry and Physics, 2015, 15, 13957-13971.	1.9	56
61	Atmospheric brown clouds reach the Tibetan Plateau by crossing the Himalayas. Atmospheric Chemistry and Physics, 2015, 15, 6007-6021.	1.9	156
62	The "dual-spot" Aethalometer: an improved measurement of aerosol black carbon with real-time loading compensation. Atmospheric Measurement Techniques, 2015, 8, 1965-1979.	1.2	662
63	Source apportionment of PM10 mass and particulate carbon in the Kathmandu Valley, Nepal. Atmospheric Environment, 2015, 123, 190-199.	1.9	59
64	Characteristics and sources of polycyclic aromatic hydrocarbons in atmospheric aerosols in the Kathmandu Valley, Nepal. Science of the Total Environment, 2015, 538, 86-92.	3.9	85
65	Analysis of the vehicle fleet in the Kathmandu Valley for estimation ofÂenvironment and climate co-benefits of technology intrusions. Atmospheric Environment, 2013, 81, 579-590.	1.9	65
66	Characterization of organosulfates in atmospheric aerosols at Four Asian locations. Atmospheric Environment, 2012, 47, 323-329.	1.9	131
67	An Intensive Study of the Size and Composition of Submicron Atmospheric Aerosols at a Rural Site in Ontario, Canada. Aerosol Science and Technology, 2005, 39, 722-736.	1.5	47
68	STUDY OF AEROSOL OPTICAL PROPERTIES OVER TWO SITES IN THE FOOTHILLS OF THE CENTRAL HIMALAYAS. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLII-3, 1493-1497.	0.2	1