Surendar Moogi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6997736/publications.pdf

Version: 2024-02-01

713013 566801 22 604 15 21 citations h-index g-index papers 22 22 22 644 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Sawdust pyrolysis from the furniture industry in an auger pyrolysis reactor system for biochar and bio-oil production. Energy Conversion and Management, 2020, 226, 113502.	4.4	77
2	Pt doped LaCoO 3 perovskite: A precursor for a highly efficientÂcatalyst for hydrogen production from glycerol. International Journal of Hydrogen Energy, 2016, 41, 2285-2297.	3.8	54
3	Pyrolysis of solid waste residues from Lemon Myrtle essential oils extraction for bio-oil production. Bioresource Technology, 2020, 318, 123913.	4.8	51
4	Influence of method of preparation on the activity of La–Ni–Ce mixed oxide catalysts for dry reforming of methane. RSC Advances, 2014, 4, 50226-50232.	1.7	50
5	Linear low-density polyethylene gasification over highly active Ni/CeO2-ZrO2 catalyst for enhanced hydrogen generation. Journal of Industrial and Engineering Chemistry, 2021, 94, 336-342.	2.9	49
6	Enhancement of aromatics from catalytic pyrolysis of yellow poplar: Role of hydrogen and methane decomposition. Bioresource Technology, 2020, 315, 123835.	4.8	46
7	Copper promoted Co/MgO: A stable and efficient catalyst for glycerol steam reforming. International Journal of Hydrogen Energy, 2021, 46, 18073-18084.	3.8	38
8	Effect of La2O3 and CeO2 loadings on formation of nickel-phyllosilicate precursor during preparation of Ni/SBA-15 for hydrogen-rich gas production from ethanol steam reforming. International Journal of Hydrogen Energy, 2019, 44, 29537-29546.	3.8	31
9	Selective conversion of fructose to 5-hydroxymethylfurfural over WO ₃ /SnO ₂ catalysts. New Journal of Chemistry, 2017, 41, 8520-8529.	1.4	27
10	Catalytic steam reforming of glycerol over Ni–La2O3–CeO2/SBA-15 catalyst for stable hydrogen-rich gas production. International Journal of Hydrogen Energy, 2020, 45, 28462-28475.	3.8	25
11	Glycerol steam reforming over La–Ce–Co mixed oxide-derived cobalt catalysts. RSC Advances, 2015, 5, 45184-45193.	1.7	22
12	Valorization of rice husk to aromatics via thermocatalytic conversion in the presence of decomposed methane. Chemical Engineering Journal, 2021, 417, 129264.	6.6	18
13	Hydrogen-rich gas production via steam gasification of food waste over basic oxides (MgO/CaO/SrO) promoted-Ni/Al2O3 catalysts. Chemosphere, 2022, 287, 132224.	4.2	18
14	Influence of La ₂ O ₃ composition in MgO–La ₂ O ₃ mixed oxide-supported Co catalysts on the hydrogen yield in glycerol steam reforming. Sustainable Energy and Fuels, 2017, 1, 354-361.	2.5	17
15	Biohydrogen synthesis from catalytic steam gasification of furniture waste using nickel catalysts supported on modified CeO2. International Journal of Hydrogen Energy, 2021, 46, 16603-16611.	3.8	17
16	A Highly Stable and Efficient Co–Mg–Sr Mixed Oxide Catalysts for Hydrogen Production from Glycerol Steam Reforming. Catalysis Letters, 2020, 150, 2734-2743.	1.4	15
17	Co-Combustion of Blends of Coal and Underutilised Biomass Residues for Environmental Friendly Electrical Energy Production. Sustainability, 2021, 13, 4881.	1.6	15
18	Enhancement of bioaromatics production from food waste through catalytic pyrolysis over Zn and Mo-loaded HZSM-5 under an environment of decomposed methane. Chemical Engineering Journal, 2022, 446, 137215.	6.6	12

#	Article	IF	CITATIONS
19	Catalytic upgrading of Quercus Mongolica under methane environment to obtain high yield of bioaromatics. Environmental Pollution, 2021, 272, 116016.	3.7	10
20	Influence of promoters on the structural and catalytic functionalities of V2O5/Al2O3 catalysts for the ammoxidation of ortho-chlorotoluene. Reaction Kinetics, Mechanisms and Catalysis, 2015, 114, 121-134.	0.8	9
21	Natural marble powder-modified SBA-15 as an efficient catalyst for the selective production of 2-methyl-2-pentenal from n-propanal self-aldol condensation. Journal of Industrial and Engineering Chemistry, 2021, 94, 448-456.	2.9	3
22	The effect of NaOH treatment of rice husk on its catalytic fast pyrolysis under decomposed methane for the production of aromatics. Catalysis Today, 2021 , , .	2.2	0