Chen Fang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6997711/publications.pdf

Version: 2024-02-01

17 papers	246 citations	9 h-index	996975 15 g-index
18	18	18	130
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	High sensitivity plasmonic refractive index and temperature sensor based on square ring shape resonator with nanorods defects. Optical and Quantum Electronics, 2022, 54, 1.	3.3	10
2	Triple-band perfect absorber based on the gold-Al2O3-grating structure in visible and near-infrared wavelength range. Optical and Quantum Electronics, 2022, 54 , 1 .	3.3	9
3	Pressure sensor based on multiple Fano resonance in metal–insulator–metal waveguide coupled resonator structure. Journal of the Optical Society of America B: Optical Physics, 2022, 39, 1716.	2.1	18
4	Controllable optical bistability in the quantum dot biexciton–exciton cascaded scheme. Journal of Optics (India), 2021, 50, 147-151.	1.7	0
5	Sensor based on multiple Fano resonances in MIM waveguide resonator system with silver nanorod-defect. Optik, 2021, 229, 166237.	2.9	21
6	Controllable transparency and slow light in a hybrid optomechanical system with quantum dot molecules. Optical and Quantum Electronics, 2020, 52, 1 .	3.3	9
7	Tunable Plasmonic Perfect Absorber Based on a Multilayer Graphene Strip-Grating Structure. Journal of Electronic Materials, 2019, 48, 5603-5608.	2.2	10
8	Double-band perfect absorber based on the dielectric grating and Fabry–Perot cavity. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	19
9	Tunable perfect absorber based on gold grating including phase-changing material in visible range. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	21
10	Electrically tunable Fano resonance based on ring resonator coupled with a stub. Optik, 2019, 185, 585-591.	2.9	6
11	Temperature tunable Fano resonance based on ring resonator side coupled with a MIM waveguide. Optics and Laser Technology, 2019, 116, 293-299.	4.6	63
12	Refractive index and temperature sensing based on defect resonator coupled with a MIM waveguide. Modern Physics Letters B, 2019, 33, 1950017.	1.9	12
13	Controllable optical bistability in double quantum dot molecule. IET Optoelectronics, 2018, 12, 215-219.	3.3	6
14	Optical absorption properties and nanosensing application based on metallic rectangle nanoparticles array. Micro and Nano Letters, 2018, 13, 758-762.	1.3	0
15	A tunable high-efficiency optical switch based on graphene coupled photonic crystals structure. Journal of Modern Optics, 2017, 64, 1531-1537.	1.3	11
16	Tunable power splitter based on MIM waveguide-rectangle cavity system with Kerr material. Modern Physics Letters B, 2016, 30, 1650376.	1.9	10
17	Realizing of plasmon Fano resonance with a metal nanowall moving along MIM waveguide. Optics Communications, 2016, 369, 72-78.	2.1	20