Yu Yang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6997165/yu-yang-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

82	3,005	31	54
papers	citations	h-index	g-index
85 ext. papers	3,558 ext. citations	8.2 avg, IF	5.56 L-index

#	Paper	IF	Citations
82	Polydimethylsiloxane-decorated magnetic cellulose nanofiber composite for highly efficient oil-water separation. <i>Carbohydrate Polymers</i> , 2022 , 277, 118787	10.3	3
81	Rational Design of Li-Wicking Hosts for Ultrafast Fabrication of Flexible and Stable Lithium Metal Anodes. <i>Small</i> , 2021 , e2105308	11	6
80	Small Things Make a Big Difference: the Small-molecule Cross-linker of Robust Water-soluble Network Binders for Stable Si Anodes. <i>Chemical Research in Chinese Universities</i> , 2021 , 37, 304-310	2.2	1
79	Water-based dual-network conductive polymer binders for high-performance LiB batteries. <i>Electrochimica Acta</i> , 2021 , 371, 137822	6.7	3
78	In Situ-Cross-linked Supramolecular Eco-Binders for Improved Capacity and Stability of LithiumBulfur Batteries. <i>ACS Applied Energy Materials</i> , 2021 , 4, 3803-3811	6.1	3
77	Vanadium Nitride Quantum Dots/Holey Graphene Matrix Boosting Adsorption and Conversion Reaction Kinetics for High-Performance Lithium-Sulfur Batteries. <i>ACS Applied Materials & ACS Applied & ACS A</i>	9.5	4
76	S, O dual-doped porous carbon derived from activation of waste papers as electrodes for high performance lithium ion capacitors. <i>Nanoscale Advances</i> , 2021 , 3, 738-746	5.1	2
75	The controlled synthesis of V-doped MoS2-NixSy hollow nanospheres and their electrocatalytic performance in hydrogen evolution reaction. <i>Sustainable Energy and Fuels</i> , 2021 , 5, 698-703	5.8	3
74	Metal chelation based supramolecular self-assembly enables a high-performance organic anode for lithium ion batteries. <i>Chemical Engineering Journal</i> , 2021 , 413, 127525	14.7	3
73	Morphology regulation of Ga particles from ionic liquids and their lithium storage properties. <i>New Journal of Chemistry</i> , 2021 , 45, 4408-4413	3.6	2
7 2	Porous structure O-rich carbon nanotubes as anode material for sodium-ion batteries. <i>Ionics</i> , 2021 , 27, 667-675	2.7	O
71	Preparation of 3D Printed Chitosan/Polyvinyl Alcohol Double Network Hydrogel Scaffolds. <i>Macromolecular Bioscience</i> , 2021 , 21, e2000398	5.5	12
70	Natural Cocoons Enabling Flexible and Stable Fabric Lithium-Sulfur Full Batteries. <i>Nano-Micro Letters</i> , 2021 , 13, 84	19.5	11
69	Vegetable Oil-Based Waterborne Polyurethane as Eco-Binders for Sulfur Cathodes in Lithium-Sulfur Batteries. <i>Macromolecular Rapid Communications</i> , 2021 , 42, e2100342	4.8	0
68	Hyperporous magnetic catalyst foam for highly efficient and stable adsorption and reduction of aqueous organic contaminants. <i>Journal of Hazardous Materials</i> , 2021 , 420, 126622	12.8	1
67	Co-electrodeposited Al-Ga composite electrode from ionic liquid with volume expansion adaptability in energy storage. <i>Materials Letters</i> , 2021 , 303, 130484	3.3	0
66	Electrodeposition of a continuous, dendrite-free aluminum film from an ionic liquid and its electrochemical properties. <i>Journal of Materials Science: Materials in Electronics</i> , 2020 , 31, 9937-9945	2.1	6

(2019-2020)

65	Additive Functionalization and Embroidery for Manufacturing Wearable and Washable Textile Supercapacitors. <i>Advanced Functional Materials</i> , 2020 , 30, 1910541	15.6	32
64	Water-Based Dual-Cross-Linked Polymer Binders for High-Energy-Density Lithium-Sulfur Batteries. <i>ACS Applied Materials & Description (Control of ACS Applied & Description (Control of ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	3
63	Compressible nanowood/polymer composite adsorbents for wastewater purification applications. <i>Composites Science and Technology</i> , 2020 , 198, 108320	8.6	10
62	Improved dielectric properties of PVDF nanocomposites with coreEhell structured BaTiO3 @polyurethane nanoparticles. <i>IET Nanodielectrics</i> , 2020 , 3, 94-98	2.8	10
61	Hierarchical structure N, O-co-doped porous carbon/carbon nanotube composite derived from coal for supercapacitors and CO2 capture. <i>Nanoscale Advances</i> , 2020 , 2, 878-887	5.1	19
60	Mo, Co co-doped NiS bulks supported on Ni foam as an efficient electrocatalyst for overall water splitting in alkaline media. <i>Sustainable Energy and Fuels</i> , 2020 , 4, 1654-1664	5.8	10
59	Soft Hybrid Scaffold (SHS) Strategy for Realization of Ultrahigh Energy Density of Wearable Aqueous Supercapacitors. <i>Advanced Materials</i> , 2020 , 32, e1907088	24	31
58	Self-Healing Double-Cross-Linked Supramolecular Binders of a Polyacrylamide-Grafted Soy Protein Isolate for LiB Batteries. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 12799-12808	8.3	18
57	Low-Cost and Environmentally Friendly Biopolymer Binders for Liß Batteries. <i>Macromolecules</i> , 2020 , 53, 8539-8547	5.5	7
56	Unique Cd1₪ZnxS@WO3₪ and Cd1₪ZnxS@WO3₪/CoOx/NiOx Z-scheme photocatalysts for efficient visible-light-induced H2 evolution. <i>Science China Materials</i> , 2020 , 63, 75-90	7.1	10
55	An efficient polymer coating for highly acid-stable zeolitic imidazolate frameworks based composite sponges. <i>Journal of Hazardous Materials</i> , 2020 , 382, 121057	12.8	14
54	FeIII chelated organic anode with ultrahigh rate performance and ultra-long cycling stability for lithium-ion batteries. <i>Energy Storage Materials</i> , 2020 , 24, 432-438	19.4	13
53	A universal cross-linking binding polymer composite for ultrahigh-loading Li-ion battery electrodes. Journal of Materials Chemistry A, 2020 , 8, 9693-9700	13	15
52	Water-based phytic acid-crosslinked supramolecular binders for lithium-sulfur batteries. <i>Chemical Engineering Journal</i> , 2020 , 395, 124981	14.7	25
51	Ultralight, robustly compressible and super-hydrophobic biomass-decorated carbonaceous melamine sponge for oil/water separation with high oil retention. <i>Applied Surface Science</i> , 2019 , 489, 922-929	6.7	38
50	Freestanding Lamellar Porous Carbon Stacks for Low-Temperature-Foldable Supercapacitors. <i>Small</i> , 2019 , 15, e1902071	11	27
49	A robust aqueous-processable polymer binder for long-life, high-performance lithium sulfur battery. <i>Energy Storage Materials</i> , 2019 , 21, 61-68	19.4	35
48	Photoinduced healing of polyolefin dielectrics enabled by surface plasmon resonance of gold nanoparticles. <i>Journal of Applied Polymer Science</i> , 2019 , 136, 47158	2.9	1

47	Flexible polyimides through one-pot synthesis as water-soluble binders for silicon anodes in lithium ion batteries. <i>Journal of Power Sources</i> , 2018 , 379, 26-32	8.9	42
46	Lithiophilic Co/Co4N nanoparticles embedded in hollow N-doped carbon nanocubes stabilizing lithium metal anodes for LiBir batteries. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 22096-22105	13	36
45	A Quadruple-Hydrogen-Bonded Supramolecular Binder for High-Performance Silicon Anodes in Lithium-Ion Batteries. <i>Small</i> , 2018 , 14, e1801189	11	117
44	Template-free growth of coral-like Ge nanorod bundles via UV-assisted ionic liquid electrodeposition. <i>Journal of Materials Science: Materials in Electronics</i> , 2018 , 29, 14105-14110	2.1	3
43	Improved performances of lithium-ion batteries using intercalated a-Si-Ag thin film layers as electrodes <i>RSC Advances</i> , 2018 , 8, 41404-41414	3.7	8
42	Glycinamide modified polyacrylic acid as high-performance binder for silicon anodes in lithium-ion batteries. <i>Journal of Power Sources</i> , 2018 , 406, 102-109	8.9	42
41	Aqueous-processable polymer binder with strong mechanical and polysulfide-trapping properties for high performance of lithiumBulfur batteries. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 18660-18668	13	38
40	Enhanced storage capability by biomass-derived porous carbon for lithium-ion and sodium-ion battery anodes. <i>Sustainable Energy and Fuels</i> , 2018 , 2, 2358-2365	5.8	28
39	Spontaneous repairing liquid metal/Si nanocomposite as a smart conductive-additive-free anode for lithium-ion battery. <i>Nano Energy</i> , 2018 , 50, 359-366	17.1	64
38	Dielectric Elastomer Generator with Improved Energy Density and Conversion Efficiency Based on Polyurethane Composites. <i>ACS Applied Materials & Description of Materials & Description</i>	9.5	53
37	Waterproof, Ultrahigh Areal-Capacitance, Wearable Supercapacitor Fabrics. <i>Advanced Materials</i> , 2017 , 29, 1606679	24	249
36	Enhanced positive temperature coefficient behavior of the high-density polyethylene composites with multi-dimensional carbon fillers and their use for temperature-sensing resistors. <i>RSC Advances</i> , 2017 , 7, 11338-11344	3.7	28
35	Plasticized thermoplastic polyurethanes for dielectric elastomers with improved electromechanical actuation. <i>Journal of Applied Polymer Science</i> , 2017 , 134, 45123	2.9	5
34	Self-Healing Materials for Next-Generation Energy Harvesting and Storage Devices. <i>Advanced Energy Materials</i> , 2017 , 7, 1700890	21.8	147
33	UV-assisted, template-free electrodeposition of germanium nanowire cluster arrays from an ionic liquid for anodes in lithium-ion batteries. <i>New Journal of Chemistry</i> , 2017 , 41, 15210-15215	3.6	9
32	Rational selection of amorphous or crystalline VO cathode for sodium-ion batteries. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 25645-25654	3.6	41
31	Pickering high internal phase emulsion-based hydroxyapatite-poly(Eaprolactone) nanocomposite scaffolds. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 3848-3857	7.3	48
30	Fabrication of Graphene-Based Xerogels for Removal of Heavy Metal lons and Capacitive Deionization. <i>ACS Sustainable Chemistry and Engineering</i> , 2015 , 3, 1056-1065	8.3	90

(2014-2015)

29	MoS2 armored polystyrene particles with a narrow size distribution via membrane-assisted Pickering emulsions for monolayer-shelled liquid marbles. <i>RSC Advances</i> , 2015 , 5, 80424-80427	3.7	
28	Nanocomposite porous scaffolds for bone tissue engineering by emulsion templating. <i>Journal of Controlled Release</i> , 2015 , 213, e127	11.7	3
27	Oil Absorbents Based on Melamine/Lignin by a Dip Adsorbing Method. <i>ACS Sustainable Chemistry and Engineering</i> , 2015 , 3, 3012-3018	8.3	86
26	Redox responsive diselenide colloidosomes templated from Pickering emulsions for drug release. Journal of Controlled Release, 2015 , 213, e119-20	11.7	6
25	Novel Nanocomposite Hydrogels Consisting of C-Dots with Excellent Mechanical Properties. <i>Macromolecular Materials and Engineering</i> , 2015 , 300, 1043-1048	3.9	31
24	Multilayer composite microcapsules synthesized by Pickering emulsion templates and their application in self-healing coating. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 13749-13757	13	108
23	Functional nanoparticle-decorated graphene oxide sheets as stabilizers for Pickering high internal phase emulsions and graphene oxide based foam monoliths. <i>RSC Advances</i> , 2015 , 5, 103394-103402	3.7	27
22	Facile fabrication of graphenepolypyrroleMn composites as high-performance electrodes for capacitive deionization. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 5866-5874	13	59
21	Facile Fabrication of Macroporous PLGA Microspheres via Double-Pickering Emulsion Templates. <i>Macromolecular Chemistry and Physics</i> , 2015 , 216, 714-720	2.6	12
20	Multifunctional, robust sponges by a simple adsorptiondombustion method. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 5875-5881	13	56
19	Porous Ag/polymer composite microspheres for adsorption and catalytic degradation of organic dyes in aqueous solutions. <i>Composites Science and Technology</i> , 2015 , 107, 137-144	8.6	26
18	One-pot synthesis of photoluminescent carbon nanodots by carbonization of cyclodextrin and their application in Ag+ detection. <i>RSC Advances</i> , 2014 , 4, 62446-62452	3.7	30
17	One-step synthesis of porous graphene-based hydrogels containing oil droplets for drug delivery. <i>RSC Advances</i> , 2014 , 4, 3211-3218	3.7	27
16	Preparation and magnetic properties of Fe2O3@SiO2 core shell ellipsoids with different aspect ratios. <i>New Journal of Chemistry</i> , 2014 , 38, 4351	3.6	18
15	Facile fabrication of poly(L-lactic acid)-grafted hydroxyapatite/poly(lactic-co-glycolic acid) scaffolds by Pickering high internal phase emulsion templates. <i>ACS Applied Materials & Discounty (ACS APPLIED & DISCOUNT</i>	9.5	99
14	Multifunctional foams derived from poly(melamine formaldehyde) as recyclable oil absorbents. Journal of Materials Chemistry A, 2014 , 2, 9994-9999	13	115
13	Nitrogen-rich and fire-resistant carbon aerogels for the removal of oil contaminants from water. <i>ACS Applied Materials & Discrete Samp; Interfaces</i> , 2014 , 6, 6351-60	9.5	154
12	Renewable Lignin-Based Xerogels with Self-Cleaning Properties and Superhydrophobicity. <i>ACS Sustainable Chemistry and Engineering</i> , 2014 , 2, 1729-1733	8.3	88

Hierarchical porous polymeric microspheres as efficient adsorbents and catalyst scaffolds. Chemical

Multihollow nanocomposite microspheres with tunable pore structures by templating Pickering

Hollow magnetic Janus microspheres templated from double Pickering emulsions. RSC Advances,

Alkaline lignin extracted from furfural residues for pH-responsive Pickering emulsions and their

double emulsions. Reactive and Functional Polymers, 2013, 73, 1231-1241

recyclable polymerization. Green Chemistry, 2012, 14, 3230

56

26

28

136

5.8

4.6

3.7

10

Polymer Chemistry, 2013, 4, 5407

Communications, 2013, 49, 8761-3

2012, 2, 5510

1