Qianwang Chen

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6997036/qianwang-chen-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

348	17,636	72	119
papers	citations	h-index	g-index
370	20,111	7.4	7.18
ext. papers	ext. citations	avg, IF	L-index

#	Paper	IF	Citations
348	Artificial Heterogeneous Interphase Layer with Boosted Ion Affinity and Diffusion for Na/K Metal Batteries <i>Advanced Materials</i> , 2022 , e2109439	24	11
347	Hollow Cuprous Oxide@Nitrogen-Doped Carbon Nanocapsules for Cascade Chemodynamic Therapy <i>Small</i> , 2022 , e2107422	11	3
346	Electrocatalysis in Room Temperature Sodium-Sulfur Batteries: Tunable Pathway of Sulfur Speciation <i>Small Methods</i> , 2022 , e2200335	12.8	1
345	Regulating the sodium storage sites in nitrogen-doped carbon materials by sulfur-doping engineering for sodium ion batteries. <i>Electrochimica Acta</i> , 2022 , 424, 140645	6.7	1
344	One-Step Construction of VS Nanoparticles Embedded in Amorphous Carbon Nanorods for High-Capacity and Long-Life Potassium Ion Half/Full Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 54308-54314	9.5	O
343	Tuning the p-Orbital Electron Structure of s-Block Metal Ca Enables a High-Performance Electrocatalyst for Oxygen Reduction. <i>Advanced Materials</i> , 2021 , 33, e2107103	24	12
342	Boosting the K-adsorption capacity in edge-nitrogen doped hierarchically porous carbon spheres for ultrastable potassium ion battery anodes. <i>Nanoscale</i> , 2021 , 13, 19634-19641	7.7	3
341	Cu Nanocluster-Loaded TiO Nanosheets for Highly Efficient Generation of CO-Free Hydrogen by Selective Photocatalytic Dehydrogenation of Methanol to Formaldehyde. <i>ACS Applied Materials & Mamp; Interfaces</i> , 2021 , 13, 18619-18626	9.5	7
340	Out-of-Plane Alignment of Conjugated Semiconducting Polymers by Horizontal Rotation in a High Magnetic Field. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 3476-3484	6.4	3
339	Structural engineering of sulfur-doped carbon encapsulated bismuth sulfide core-shell structure for enhanced potassium storage performance. <i>Nano Research</i> , 2021 , 14, 3545-3551	10	2
338	Ultrafast Potassium Storage in F-Induced Ultra-High Edge-Defective Carbon Nanosheets. <i>ACS Nano</i> , 2021 , 15, 10217-10227	16.7	27
337	Boosting Hydrazine Oxidation Reaction on CoP/Co Mott-Schottky Electrocatalyst through Engineering Active Sites. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 4849-4856	6.4	5
336	High Catalytic Performance of Au/BiO for Preferential Oxidation of CO in H. ACS Applied Materials & amp; Interfaces, 2021,	9.5	4
335	The creation of extra storage capacity in nitrogen-doped porous carbon as high-stable potassium-ion battery anodes. <i>Carbon</i> , 2021 , 178, 256-264	10.4	23
334	N and O multi-coordinated vanadium single atom with enhanced oxygen reduction activity. <i>Journal of Colloid and Interface Science</i> , 2021 , 594, 466-473	9.3	5
333	Self-Assembled Single-Site Nanozyme for Tumor-Specific Amplified Cascade Enzymatic Therapy. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 3001-3007	16.4	67
332	Self-Assembled Single-Site Nanozyme for Tumor-Specific Amplified Cascade Enzymatic Therapy. <i>Angewandte Chemie</i> , 2021 , 133, 3038-3044	3.6	12

331	Tuning the nitrogen-doping configuration in carbon materials via sulfur doping for ultrastable potassium ion storage. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 16150-16159	13	11
330	High-Capacity and Stable Sodium-Sulfur Battery Enabled by Confined Electrocatalytic Polysulfides Full Conversion. <i>Advanced Functional Materials</i> , 2021 , 31, 2100666	15.6	14
329	Bioinspired Microenvironment Responsive Nanoprodrug as an Efficient Hydrophobic Drug Self-Delivery System for Cancer Therapy. <i>ACS Applied Materials & Camp; Interfaces</i> , 2021 , 13, 33926-33936	5 ^{9.5}	2
328	Defect-induced ferromagnetism in a S = 1/2 quasi-one-dimensional Heisenberg antiferromagnetic chain compound. <i>Scientific Reports</i> , 2021 , 11, 14442	4.9	O
327	MOFs-Derived N-Doped Carbon-Encapsulated Metal/Alloy Electrocatalysts to Tune the Electronic Structure and Reactivity of Carbon Active Sites [Ichinese Journal of Chemistry, 2021, 39, 2626-2637]	4.9	2
326	Constructing Graphitic-Nitrogen-Bonded Pentagons in Interlayer-Expanded Graphene Matrix toward Carbon-Based Electrocatalysts for Acidic Oxygen Reduction Reaction. <i>Advanced Materials</i> , 2021 , 33, e2103133	24	8
325	Lewis-Basic EDTA as a Highly Active Molecular Electrocatalyst for CO2 Reduction to CH4. <i>Angewandte Chemie</i> , 2021 , 133, 23184	3.6	4
324	Lewis-Basic EDTA as a Highly Active Molecular Electrocatalyst for CO Reduction to CH. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 23002-23009	16.4	7
323	Edge-nitrogen enriched carbon nanosheets for potassium-ion battery anodes with an ultrastable cycling stability. <i>Carbon</i> , 2021 , 184, 277-286	10.4	9
322	Construction of flexible V3S4@CNF films as long-term stable anodes for sodium-ion batteries. <i>Chemical Engineering Journal</i> , 2021 , 423, 130229	14.7	11
321	A highly active defect engineered Cl-doped carbon catalyst for the N2 reduction reaction. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 5807-5814	13	5
320	Construction of NiS Nanosheets Anchored on the Inner Surface of Nitrogen-Doped Hollow Carbon Matrixes with Enhanced Sodium and Potassium Storage Performances. <i>ACS Applied Energy Materials</i> , 2021 , 4, 662-670	6.1	10
319	Redox Catalysis Promoted Activation of Sulfur Redox Chemistry for Energy-Dense Flexible Solid-State Zn-S Battery. <i>ACS Nano</i> , 2021 ,	16.7	5
318	Solvent Vapor-Assisted Magnetic Manipulation of Molecular Orientation and Carrier Transport of Semiconducting Polymers. <i>ACS Applied Materials & Description</i> (12, 29487-29496)	9.5	4
317	Engineering the coordination environment enables molybdenum single-atom catalyst for efficient oxygen reduction reaction. <i>Journal of Catalysis</i> , 2020 , 389, 150-156	7.3	32
316	Synthesis of urchin-like nickel nanoparticles with enhanced rotating magnetic field-induced cell necrosis and tumor inhibition. <i>Chemical Engineering Journal</i> , 2020 , 400, 125823	14.7	5
315	Turning main-group element magnesium into a highly active electrocatalyst for oxygen reduction reaction. <i>Nature Communications</i> , 2020 , 11, 938	17.4	105
314	Self-Additive Low-Dimensional Ruddlesden P opper Perovskite by the Incorporation of Glycine Hydrochloride for High-Performance and Stable Solar Cells. <i>Advanced Functional Materials</i> , 2020 , 30, 2000034	15.6	34

313	Biomineralization-inspired nanozyme for single-wavelength laser activated photothermal-photodynamic synergistic treatment against hypoxic tumors. <i>Nanoscale</i> , 2020 , 12, 4051-4051-4051-4051-4051-4051-4051-4051-	<u>ଷ୍ଟ୍ର</u>	17
312	Atomically Dispersed Mn within Carbon Frameworks as High-Performance Oxygen Reduction Electrocatalysts for ZincAir Battery. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 427-434	8.3	21
311	Magnetic-induced graphene quantum dots for imaging-guided photothermal therapy in the second near-infrared window. <i>Biomaterials</i> , 2020 , 232, 119700	15.6	83
310	Mn-Doped RuO2 Nanocrystals as Highly Active Electrocatalysts for Enhanced Oxygen Evolution in Acidic Media. <i>ACS Catalysis</i> , 2020 , 10, 1152-1160	13.1	118
309	Energetic Metal-Organic Frameworks Derived Highly Nitrogen-Doped Porous Carbon for Superior Potassium Storage. <i>Small</i> , 2020 , 16, e2002771	11	21
308	Boosting oxygen evolution reaction on graphene through engineering electronic structure. <i>Carbon</i> , 2020 , 170, 414-420	10.4	10
307	A robust spring-like lamellar VO/C nanostructure for high-rate and long-life potassium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 23939-23946	13	4
306	Silver Nanoparticles Encapsulated in an N-Doped Porous Carbon Matrix as High-Active Catalysts toward Oxygen Reduction Reaction via Electron Transfer to Outer Graphene Shells. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 16511-16519	8.3	11
305	O species-decorated graphene shell encapsulating iridium lickel alloy as an efficient electrocatalyst towards hydrogen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 15079-15	5088	19
304	Enhancing the Capacitance of Battery-Type Hybrid Capacitors by Encapsulating MgO Nanoparticles in Porous Carbon as Reservoirs for OH Ions from Electrolytes. <i>ACS Applied Materials & Amp; Interfaces,</i> 2019 , 11, 21567-21577	9.5	7
303	A Mesoporous Nanoenzyme Derived from Metal-Organic Frameworks with Endogenous Oxygen Generation to Alleviate Tumor Hypoxia for Significantly Enhanced Photodynamic Therapy. <i>Advanced Materials</i> , 2019 , 31, e1901893	24	179
302	Nitrogen/oxygen co-doped mesoporous carbon octahedrons for high-performance potassium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 12317-12324	13	78
301	Magnetochemistry and chemical synthesis. <i>Chinese Physics B</i> , 2019 , 28, 037102	1.2	1
300	Improving electrocatalytic activity of iridium for hydrogen evolution at high current densities above 1000 mA cm 2 . <i>Applied Catalysis B: Environmental</i> , 2019 , 258, 117965	21.8	25
299	The Enhancement of the Catalytic Oxidation of CO on Ir/CeO Nanojunctions. <i>Inorganic Chemistry</i> , 2019 , 58, 14238-14243	5.1	9
298	Dual Graphitic-N Doping in a Six-Membered C-Ring of Graphene-Analogous Particles Enables an Efficient Electrocatalyst for the Hydrogen Evolution Reaction. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 16973-16980	16.4	28
297	Dual Graphitic-N Doping in a Six-Membered C-Ring of Graphene-Analogous Particles Enables an Efficient Electrocatalyst for the Hydrogen Evolution Reaction. <i>Angewandte Chemie</i> , 2019 , 131, 17129-17	436	5
296	Oxygen/Fluorine Dual-Doped Porous Carbon Nanopolyhedra Enabled Ultrafast and Highly Stable Potassium Storage. <i>Advanced Functional Materials</i> , 2019 , 29, 1906126	15.6	86

(2018-2019)

295	Nitrogen-Doped Graphene Quantum Dots as Metal-Free Photocatalysts for Near-Infrared Enhanced Reduction of 4-Nitrophenol. <i>ACS Applied Nano Materials</i> , 2019 , 2, 7043-7050	5.6	17
294	Highly Ambient-Stable 1T-MoS and 1T-WS by Hydrothermal Synthesis under High Magnetic Fields. <i>ACS Nano</i> , 2019 , 13, 1694-1702	16.7	89
293	Increase of Co 3d projected electronic density of states in AgCoO2 enabled an efficient electrocatalyst toward oxygen evolution reaction. <i>Nano Energy</i> , 2019 , 57, 753-760	17.1	23
292	In Situ One-Pot Synthesis of MOF-Polydopamine Hybrid Nanogels with Enhanced Photothermal Effect for Targeted Cancer Therapy. <i>Advanced Science</i> , 2018 , 5, 1800287	13.6	81
291	Carbon-based hybrid nanogels: a synergistic nanoplatform for combined biosensing, bioimaging, and responsive drug delivery. <i>Chemical Society Reviews</i> , 2018 , 47, 4198-4232	58.5	146
290	Tuning the structure and properties of a multiferroic metal-organic-framework growing under high magnetic fields <i>RSC Advances</i> , 2018 , 8, 13675-13678	3.7	2
289	Metal-Free Catalytic Reduction of 4-Nitrophenol by MOFs-Derived N-Doped Carbon. <i>ChemistrySelect</i> , 2018 , 3, 1108-1112	1.8	23
288	Electroless Deposition Metals on Poly(dimethylsiloxane) with Strong Adhesion As Flexible and Stretchable Conductive Materials. <i>ACS Applied Materials & Description of the English Action (Conductive Materials & Description of the English Action (Conductive Materials & Description of the English Action (Conductive Materials & Description of the English Conductive Materials & Description of the E</i>	9.5	43
287	Tuning the Activity of Carbon for Electrocatalytic Hydrogen Evolution via an Iridium-Cobalt Alloy Core Encapsulated in Nitrogen-Doped Carbon Cages. <i>Advanced Materials</i> , 2018 , 30, 1705324	24	152
286	Vapochromic behavior of MOF for selective sensing of ethanol. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2018 , 194, 158-162	4.4	14
285	Novel Metal Polyphenol Framework for MR Imaging-Guided Photothermal Therapy. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 3295-3304	9.5	45
284	A Flexible Sulfur-Enriched Nitrogen Doped Multichannel Hollow Carbon Nanofibers Film for High Performance Sodium Storage. <i>Small</i> , 2018 , 14, e1802218	11	73
283	Variations of Major Product Derived from Conversion of 5-Hydroxymethylfurfural over a Modified MOFs-Derived Carbon Material in Response to Reaction Conditions. <i>Nanomaterials</i> , 2018 , 8,	5.4	14
282	Adhesion-Enhanced Flexible Conductive Metal Patterns on Polyimide Substrate Through Direct Writing Catalysts with Novel Surface-Modification Electroless Deposition. <i>ChemistrySelect</i> , 2018 , 3, 76	12 1 7618	₈ 4
281	Core-Shell Structurized FeO@C@MnO Nanoparticles as pH Responsive T-T* Dual-Modal Contrast Agents for Tumor Diagnosis. <i>ACS Biomaterials Science and Engineering</i> , 2018 , 4, 3047-3054	5.5	15
280	Ultra-small Albumin Templated Gd/Ru Composite Nanodots for In Vivo Dual modal MR/Thermal Imaging Guided Photothermal Therapy. <i>Advanced Healthcare Materials</i> , 2018 , 7, e1800322	10.1	20
279	Bimetallic Zeolitic Imidazolate Framework as an Intrinsic Two-Photon Fluorescence and pH-Responsive MR Imaging Agent. <i>ACS Omega</i> , 2018 , 3, 9790-9797	3.9	17
278	Generation of Pd@Ni-CNTs from Polyethylene Wastes and Their Application in the Electrochemical Hydrogen Evolution Reaction. <i>ChemistrySelect</i> , 2018 , 3, 5321-5325	1.8	7

277	Designing highly efficient dual-metal single-atom electrocatalysts for the oxygen reduction reaction inspired by biological enzyme systems. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 13254-13262	13	106
276	Incorporation of Cu-N cofactors into graphene encapsulated Co as biomimetic electrocatalysts for efficient oxygen reduction. <i>Nanoscale</i> , 2018 , 10, 21076-21086	7.7	28
275	Turning Carbon Atoms into Highly Active Oxygen Reduction Reaction Electrocatalytic Sites in Nitrogen-Doped Graphene-Coated Co@Ag. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 14033-7	14041	7
274	Photo-Enhanced Singlet Oxygen Generation of Prussian Blue-Based Nanocatalyst for Augmented Photodynamic Therapy. <i>IScience</i> , 2018 , 9, 14-26	6.1	27
273	Water Splitting: Cobalt Nanocrystals Encapsulated in Heteroatom-Rich Porous Carbons Derived from Conjugated Microporous Polymers for Efficient Electrocatalytic Hydrogen Evolution (Small 42/2018). Small, 2018, 14, 1870193	11	2
272	Ultrasmall Ru/Cu-doped RuO Complex Embedded in Amorphous Carbon Skeleton as Highly Active Bifunctional Electrocatalysts for Overall Water Splitting. <i>Small</i> , 2018 , 14, e1803009	11	104
271	Cobalt Nanocrystals Encapsulated in Heteroatom-Rich Porous Carbons Derived from Conjugated Microporous Polymers for Efficient Electrocatalytic Hydrogen Evolution. <i>Small</i> , 2018 , 14, e1803232	11	23
270	Acceleration of LiquidBolid Redox Reaction with a Magneto-Catalyzed Method. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 21543-21547	3.8	1
269	Interface engineering of Rullo3O4 nanocomposites for enhancing CO oxidation. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 11037-11043	13	27
268	Tuning the Electronic Structure of Se via Constructing Rh-MoSe2 Nanocomposite to Generate High-Performance Electrocatalysis for Hydrogen Evolution Reaction. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 9137-9144	8.3	23
267	Metallic 1T phase MoS2 nanosheets decorated hollow cobalt sulfide polyhedra for high-performance lithium storage. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 12613-12622	13	34
266	O-, N-Atoms-Coordinated Mn Cofactors within a Graphene Framework as Bioinspired Oxygen Reduction Reaction Electrocatalysts. <i>Advanced Materials</i> , 2018 , 30, e1801732	24	165
265	Enhanced Activity for Hydrogen Evolution Reaction over CoFe Catalysts by Alloying with Small Amount of Pt. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 3596-3601	9.5	96
264	Sodium-Ion Batteries: Improving the Rate Capability of 3D Interconnected Carbon Nanofibers Thin Film by Boron, Nitrogen Dual-Doping. <i>Advanced Science</i> , 2017 , 4, 1600468	13.6	132
263	MOF-derived RuO2/Co3O4 heterojunctions as highly efficient bifunctional electrocatalysts for HER and OER in alkaline solutions. <i>RSC Advances</i> , 2017 , 7, 3686-3694	3.7	87
262	Pt-like electrocatalytic behavior of RuMoO2 nanocomposites for the hydrogen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 5475-5485	13	150
261	A MOF-derived self-template strategy toward cobalt phosphide electrodes with ultralong cycle life and high capacity. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 10321-10327	13	72
260	Biocompatible Chitosan-Carbon Dot Hybrid Nanogels for NIR-Imaging-Guided Synergistic Photothermal-Chemo Therapy. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 18639-18649	9.5	97

(2016-2017)

259	Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media. <i>Nature Communications</i> , 2017 , 8, 14969	17.4	488
258	Tuning Electronic Structures of Nonprecious Ternary Alloys Encapsulated in Graphene Layers for Optimizing Overall Water Splitting Activity. <i>ACS Catalysis</i> , 2017 , 7, 469-479	13.1	255
257	Free-Standing Holey Ni(OH) Nanosheets with Enhanced Activity for Water Oxidation. <i>Small</i> , 2017 , 13, 1700334	11	75
256	CoreBhell Metal-Organic Frameworks as Fe2+ Suppliers for Fe2+-Mediated Cancer Therapy under Multimodality Imaging. <i>Chemistry of Materials</i> , 2017 , 29, 3477-3489	9.6	77
255	Elemental two-dimensional nanosheets beyond graphene. Chemical Society Reviews, 2017, 46, 2127-215	57 8.5	220
254	Rapid Adsorption Enables Interface Engineering of PdMnCo Alloy/Nitrogen-Doped Carbon as Highly Efficient Electrocatalysts for Hydrogen Evolution Reaction. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 38419-38427	9.5	23
253	Nanoporous PtFe Nanoparticles Supported on N-Doped Porous Carbon Sheets Derived from Metal-Organic Frameworks as Highly Efficient and Durable Oxygen Reduction Reaction Catalysts. <i>ACS Applied Materials & Description of Sciences</i> , 2017 , 9, 32106-32113	9.5	38
252	Insights into the reduction of 4-nitrophenol to 4-aminophenol on catalysts. <i>Chemical Physics Letters</i> , 2017 , 684, 148-152	2.5	70
251	Biomass waste inspired nitrogen-doped porous carbon materials as high-performance anode for lithium-ion batteries. <i>Journal of Alloys and Compounds</i> , 2017 , 693, 1197-1204	5.7	64
250	Biodegradable Core-shell Dual-Metal-Organic-Frameworks Nanotheranostic Agent for Multiple Imaging Guided Combination Cancer Therapy. <i>Theranostics</i> , 2017 , 7, 4605-4617	12.1	57
249	Formation of Co3O4 hollow polyhedrons from metal-organic frameworks and their catalytic activity for CO oxidation. <i>Materials Letters</i> , 2016 , 182, 214-217	3.3	31
248	Magnetically guided delivery of DHA and Fe ions for enhanced cancer therapy based on pH-responsive degradation of DHA-loaded Fe3O4@C@MIL-100(Fe) nanoparticles. <i>Biomaterials</i> , 2016 , 107, 88-101	15.6	141
247	Conversion of 5-hydroxymethylfurfural into 5-ethoxymethylfurfural and ethyl levulinate catalyzed by MOF-based heteropolyacid materials. <i>Green Chemistry</i> , 2016 , 18, 5884-5889	10	81
246	Enhanced CO oxidation on CeO/CoO nanojunctions derived from annealing of metal organic frameworks. <i>Nanoscale</i> , 2016 , 8, 19761-19768	7.7	42
245	The effect of external magnetic fields on the catalytic activity of Pd nanoparticles in Suzuki cross-coupling reactions. <i>Nanoscale</i> , 2016 , 8, 8355-62	7.7	21
244	Pd-Co3[Co(CN)6]2 hybrid nanoparticles: preparation, characterization, and challenge for the Suzuki-Miyaura coupling of aryl chlorides under mild conditions. <i>Dalton Transactions</i> , 2016 , 45, 539-44	4.3	9
243	Preparation of porous MoO2@C nano-octahedrons from a polyoxometalate-based metal b rganic framework for highly reversible lithium storage. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 12434-12441	13	73
242	Controllable synthesis of dual-MOFs nanostructures for pH-responsive artemisinin delivery, magnetic resonance and optical dual-model imaging-guided chemo/photothermal combinational cancer therapy. <i>Biomaterials</i> , 2016 , 100, 27-40	15.6	193

241	Active and Durable Hydrogen Evolution Reaction Catalyst Derived from Pd-Doped Metal-Organic Frameworks. <i>ACS Applied Materials & Samp; Interfaces</i> , 2016 , 8, 13378-83	9.5	82
240	Surface polarization enhancement: high catalytic performance of Cu/CuOx/C nanocomposites derived from Cu-BTC for CO oxidation. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 8412-8420	13	92
239	Co3ZnC/Co nano heterojunctions encapsulated in N-doped graphene layers derived from PBAs as highly efficient bi-functional OER and ORR electrocatalysts. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 9204-9212	13	116
238	Photoluminescence distinction of lung adenocarcinoma cells A549 and squamous cells H520 using metallothionein expression in response to Cd-doped Mn3[Co(CN)6]2 nanocubes. <i>RSC Advances</i> , 2016 , 6, 84810-84814	3.7	
237	MetalBrganic framework-derived porous Mn1.8Fe1.2O4 nanocubes with an interconnected channel structure as high-performance anodes for lithium ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 2815-2824	13	126
236	Experimental and theoretical investigations of nitro-group doped porous carbon as a high performance lithium-ion battery anode. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 18657-18666	13	46
235	Mn(II) mediated degradation of artemisinin based on Fe3O4@MnSiO3-FA nanospheres for cancer therapy in vivo. <i>Nanoscale</i> , 2015 , 7, 12542-51	7.7	35
234	MOF-derived ultrafine MnO nanocrystals embedded in a porous carbon matrix as high-performance anodes for lithium-ion batteries. <i>Nanoscale</i> , 2015 , 7, 9637-45	7.7	192
233	Experimental and theoretical studies on the effects of magnetic fields on the arrangement of surface spins and the catalytic activity of Pd nanoparticles. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 6019-24	9.5	19
232	Non-precious alloy encapsulated in nitrogen-doped graphene layers derived from MOFs as an active and durable hydrogen evolution reaction catalyst. <i>Energy and Environmental Science</i> , 2015 , 8, 35	63-3 1 7	1 ⁴¹⁹
231	FeO@carbon@zeolitic imidazolate framework-8 nanoparticles as multifunctional pH-responsive drug delivery vehicles for tumor therapy in vivo. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 9033-9042	7.3	60
230	MOF-derived self-assembled ZnO/Co3O4 nanocomposite clusters as high-performance anodes for lithium-ion batteries. <i>Dalton Transactions</i> , 2015 , 44, 16946-52	4.3	73
229	Synthesis of FeCo nanocrystals encapsulated in nitrogen-doped graphene layers for use as highly		
	efficient catalysts for reduction reactions. <i>Nanoscale</i> , 2015 , 7, 450-4	7.7	70
228		7·7 11	7053
228	efficient catalysts for reduction reactions. <i>Nanoscale</i> , 2015 , 7, 450-4 Novel Mn3 [Co(CN)6]2@SiO2@Ag Core-Shell Nanocube: Enhanced Two-Photon Fluorescence and Magnetic Resonance Dual-Modal Imaging-Guided Photothermal and Chemo-therapy. <i>Small</i> , 2015 ,		•
	efficient catalysts for reduction reactions. <i>Nanoscale</i> , 2015 , 7, 450-4 Novel Mn3 [Co(CN)6]2@SiO2@Ag Core-Shell Nanocube: Enhanced Two-Photon Fluorescence and Magnetic Resonance Dual-Modal Imaging-Guided Photothermal and Chemo-therapy. <i>Small</i> , 2015 , 11, 5956-67 Enhanced Activity of CuCeO Catalysts for CO Oxidation: Influence of Cu2O and the Dispersion of	11	53
227	efficient catalysts for reduction reactions. <i>Nanoscale</i> , 2015 , 7, 450-4 Novel Mn3 [Co(CN)6]2@SiO2@Ag Core-Shell Nanocube: Enhanced Two-Photon Fluorescence and Magnetic Resonance Dual-Modal Imaging-Guided Photothermal and Chemo-therapy. <i>Small</i> , 2015 , 11, 5956-67 Enhanced Activity of CuCeO Catalysts for CO Oxidation: Influence of Cu2O and the Dispersion of Cu2O, CuO, and CeO2. <i>ChemPhysChem</i> , 2015 , 16, 2415-23 MoS2 ultrathin nanosheets obtained under a high magnetic field for lithium storage with stable	3.2	53

(2014-2015)

223	Nano electrochemical reactors of Fe2O3 nanoparticles embedded in shells of nitrogen-doped hollow carbon spheres as high-performance anodes for lithium-ion batteries. <i>Nanoscale</i> , 2015 , 7, 3410-	- 7 7·7	155
222	Universal strategy for homogeneously doping noble metals into cyano-bridged coordination polymers. <i>ACS Applied Materials & Damp; Interfaces</i> , 2015 , 7, 2088-96	9.5	32
221	A novel approach for the in situ synthesis of Pt-Pd nanoalloys supported on Fe3O4@C core-shell nanoparticles with enhanced catalytic activity for reduction reactions. <i>ACS Applied Materials & Interfaces</i> , 2014 , 6, 2671-8	9.5	106
220	Doped graphene for metal-free catalysis. <i>Chemical Society Reviews</i> , 2014 , 43, 2841-57	58.5	608
219	The influence of N-doped carbon materials on supported Pd: enhanced hydrogen storage and oxygen reduction performance. <i>ChemPhysChem</i> , 2014 , 15, 344-50	3.2	16
218	Dual-layer-structured nickel hexacyanoferrate/MnO2 composite as a high-energy supercapacitive material based on the complementarity and interlayer concentration enhancement effect. <i>ACS Applied Materials & Discounty Interfaces</i> , 2014 , 6, 6196-201	9.5	63
217	One for two: conversion of waste chicken feathers to carbon microspheres and (NH4)HCO3. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	23
216	Probing the influence of different oxygenated groups on graphene oxide's catalytic performance. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 610-613	13	57
215	Preparation of Fe2O3@C@MoO3 core/shell nanocomposites as magnetically recyclable catalysts for efficient and selective epoxidation of olefins. <i>Dalton Transactions</i> , 2014 , 43, 6041-9	4.3	35
214	High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. <i>Nature Communications</i> , 2014 , 5, 5261	17.4	1051
213	Synthesis and assembly of nanomaterials under magnetic fields. <i>Nanoscale</i> , 2014 , 6, 14064-105	7.7	104
212	CoMn2O4 hierarchical microspheres with high catalytic activity towards p-nitrophenol reduction. <i>Dalton Transactions</i> , 2014 , 43, 13865-73	4.3	39
211	High and stable catalytic activity of porous Ag/Co 3 O 4 nanocomposites derived from MOFs for CO oxidation. <i>Applied Catalysis A: General</i> , 2014 , 487, 189-194	5.1	31
21 0	Magnetically responsive photonic watermarks on banknotes. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 3695	7.1	100
209	Hollow/porous nanostructures derived from nanoscale metal-organic frameworks towards high performance anodes for lithium-ion batteries. <i>Nanoscale</i> , 2014 , 6, 1236-57	7.7	257
208	Synthesis of novel two-phase Co@SiOIhanorattles with high catalytic activity. <i>Inorganic Chemistry</i> , 2014 , 53, 9073-9	5.1	38
207	Conversion of chicken feather waste to N-doped carbon nanotubes for the catalytic reduction of 4-nitrophenol. <i>Environmental Science & Environmental S</i>	10.3	86

205	Facile fabrication of porous Ni(x)Co(3-x)O4 nanosheets with enhanced electrochemical performance as anode materials for Li-ion batteries. <i>ACS Applied Materials & Discrete Section</i> , 100 (2014), 6, 9256-64	9.5	127
204	Low-cost, acid/alkaline-resistant, and fluorine-free superhydrophobic fabric coating from onionlike carbon microspheres converted from waste polyethylene terephthalate. <i>Environmental Science & Environmental Science</i>	10.3	39
203	Multifunctional mesoporous nanoparticles as pH-responsive Fe(2+) reservoirs and artemisinin vehicles for synergistic inhibition of tumor growth. <i>Biomaterials</i> , 2014 , 35, 6498-507	15.6	48
202	Improved performance of graphene doped with pyridinic N for Li-ion battery: a density functional theory model. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 12982-7	3.6	72
201	Hollow porous SiO2 nanocubes towards high-performance anodes for lithium-ion batteries. <i>Scientific Reports</i> , 2013 , 3, 1568	4.9	304
200	Manganese hexacyanoferrate/MnO2 composite nanostructures as a cathode material for supercapacitors. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 2621	13	78
199	Yolk-type Au@Fe3O4@C nanospheres for drug delivery, MRI and two-photon fluorescence imaging. <i>Dalton Transactions</i> , 2013 , 42, 9906-13	4.3	30
198	Metal-free catalytic reduction of 4-nitrophenol to 4-aminophenol by N-doped graphene. <i>Energy and Environmental Science</i> , 2013 , 6, 3260	35.4	330
197	Facile synthesis of porous Mn2O3 hierarchical microspheres for lithium battery anode with improved lithium storage properties. <i>Journal of Alloys and Compounds</i> , 2013 , 576, 86-92	5.7	56
196	Parameters optimization of low carbon low alloy steel annealing process. <i>Acta Metallurgica Sinica</i> (English Letters), 2013 , 26, 122-130	2.5	2
195	ZnO/Co3O4 porous nanocomposites derived from MOFs: room-temperature ferromagnetism and high catalytic oxidation of CO. <i>ChemPhysChem</i> , 2013 , 14, 3953-9	3.2	28
194	FexCo3NO4 nanoporous particles stemmed from metalBrganic frameworks Fe3[Co(CN)6]2: A highly efficient material for removal of organic dyes from water. <i>Journal of Alloys and Compounds</i> , 2013 , 559, 57-63	5.7	32
193	A facile synthesis of multifunctional ZnO/Ag sea urchin-like hybrids as highly sensitive substrates for surface-enhanced Raman detection. <i>RSC Advances</i> , 2013 , 3, 11715	3.7	30
192	Synthesis of 3CBiC nanowires by reaction of poly(ethylene terephthalate) waste with SiO2 microspheres. <i>Journal of Alloys and Compounds</i> , 2013 , 566, 212-216	5.7	8
191	Enhanced oxygen reduction reactions in fuel cells on H-decorated and B-substituted graphene. <i>ChemPhysChem</i> , 2013 , 14, 514-9	3.2	52
190	High catalytic activity for CO oxidation of Co3O4 nanoparticles in SiO2 nanocapsules. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 637-643	13	56
189	Enhanced SERS of the complex substrate using Au supported on graphene with pyridine and R6G as the probe molecules. <i>Chemical Physics Letters</i> , 2013 , 564, 54-59	2.5	19
188	The positive influence of boron-doped graphyne on surface enhanced Raman scattering with pyridine as the probe molecule and oxygen reduction reaction in fuel cells. <i>RSC Advances</i> , 2013 , 3, 4074	3.7	34

(2012-2013)

187	Experimental investigations on the weakening effect of magnetic fields on surface-enhanced Raman scattering. <i>Journal of Raman Spectroscopy</i> , 2013 , 44, 525-530	2.3	7
186	Preparation and biological characterization of hollow magnetic FeO@C nanoparticles as drug carriers with high drug loading capability, pH-control drug release and MRI properties. <i>Biomaterials Science</i> , 2013 , 1, 965-974	7.4	22
185	Magnetically controllable colloidal photonic crystals: unique features and intriguing applications. Journal of Materials Chemistry C, 2013 , 1, 6013	7.1	42
184	CuO/Cu2O composite hollow polyhedrons fabricated from metal-organic framework templates for lithium-ion battery anodes with a long cycling life. <i>Nanoscale</i> , 2013 , 5, 4186-90	7.7	286
183	Multifunctional Fe3O4@C@Ag hybrid nanoparticles as dual modal imaging probes and near-infrared light-responsive drug delivery platform. <i>Biomaterials</i> , 2013 , 34, 571-81	15.6	101
182	Facile approach to prepare Pd nanoarray catalysts within porous alumina templates on macroscopic scales. <i>ACS Applied Materials & District Scales</i> , 2013, 5, 12695-700	9.5	21
181	Exploration of the Structures of the Magnetically Induced Self-Assembly Photonic Crystals in a Solidified Polymer Matrix. <i>Advanced Materials Research</i> , 2013 , 634-638, 2324-2331	0.5	1
180	Invisible photonic printing: computer designing graphics, UV printing and shown by a magnetic field. <i>Scientific Reports</i> , 2013 , 3, 1484	4.9	88
179	Mn[Co(CN)] SiOltore-shell nanocubes: novel bimodal contrast agents for MRI and optical imaging. <i>Scientific Reports</i> , 2013 , 3, 2647	4.9	36
178	REMOVAL OF CATIONIC DYES FROM AQUEOUS SOLUTION USING CARBON-ENCAPSULATED SUPERPARAMAGNETIC COLLOIDAL NANOPARTICLES AS ADSORBENT. <i>Nano</i> , 2013 , 08, 1350006	1.1	4
177	FeDIhanoparticles wrapped in multi-walled carbon nanotubes with enhanced lithium storage capability. <i>Scientific Reports</i> , 2013 , 3, 3392	4.9	90
176	Experimental and Theoretical Investigations on the Ferroelectricity of Graphene Oxides. <i>Acta Chimica Sinica</i> , 2013 , 71, 381	3.3	6
175	Change in reaction pathway of nickel(II) complex induced by magnetic fields. <i>Materials Chemistry and Physics</i> , 2012 , 133, 541-546	4.4	7
174	Co3O4 Nanocages for High-Performance Anode Material in Lithium-Ion Batteries. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 7227-7235	3.8	374
173	Foamlike porous spinel Mn(x)Co(3-x)O4 material derived from Mn3[Co(CN)6]2?nH2O nanocubes: a highly efficient anode material for lithium batteries. <i>Chemistry - A European Journal</i> , 2012 , 18, 15049-56	5 ^{4.8}	67
172	Visually readable and highly stable self-display photonic humidity sensor. <i>Journal of Materials Chemistry</i> , 2012 , 22, 1021-1027		60
171	A facile approach to prepare Ni, Co, and Fe nanoarrays inside a native porous alumina template via a redox reaction. <i>RSC Advances</i> , 2012 , 2, 2250	3.7	7
170	Photonic anti-counterfeiting using structural colors derived from magnetic-responsive photonic crystals with double photonic bandgap heterostructures. <i>Journal of Materials Chemistry</i> , 2012 , 22, 1104	18	101

169	CoMn(2)O(4) spinel hierarchical microspheres assembled with porous nanosheets as stable anodes for lithium-ion batteries. <i>Scientific Reports</i> , 2012 , 2, 986	4.9	262
168	Investigation on the magnetic and electrical properties of fluorine-doped magnetites. <i>Journal Physics D: Applied Physics</i> , 2012 , 45, 335001	3	6
167	Synthesis of carbon-coated, porous and water-dispersive Fe3O4 nanocapsules and their excellent performance for heavy metal removal applications. <i>Dalton Transactions</i> , 2012 , 41, 5854-61	4.3	67
166	PdBe3O4@C hybrid nanoparticles: preparation, characterization, and their high catalytic activity toward Suzuki coupling reactions. <i>Journal of Materials Chemistry</i> , 2012 , 22, 22750		77
165	The positive influence of boron-doped graphene with pyridine as a probe molecule on SERS: a density functional theory study. <i>Journal of Materials Chemistry</i> , 2012 , 22, 15336		29
164	The positive influence of boron-doped graphene for its supported Au clusters: enhancement of SERS and oxygen molecule adsorption. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 13564-8	3.6	18
163	A general route to synthesize water-dispersive noble metal-iron oxide bifunctional hybrid nanoparticles. <i>Dalton Transactions</i> , 2012 , 41, 346-50	4.3	12
162	Bifunctional luminescent superparamagnetic nanocomposites of CdSe/CdS-Fe3O4 synthesized via a facile method. <i>Journal of Materials Chemistry</i> , 2012 , 22, 8263		22
161	Fe nanoparticle-functionalized multi-walled carbon nanotubes: one-pot synthesis and their applications in magnetic removal of heavy metal ions. <i>Journal of Materials Chemistry</i> , 2012 , 22, 9230		64
160	Morphology-Controllable Synthesis of Metal Organic Framework Cd3[Co(CN)6]2[hH2O Nanostructures for Hydrogen Storage Applications. <i>Crystal Growth and Design</i> , 2012 , 12, 2257-2264	3.5	48
159	Ferromagnetic resonance characterization of greigite (Fe3S4), monoclinic pyrrhotite (Fe7S8), and non-interacting titanomagnetite (Fe3-xTixO4). <i>Geochemistry, Geophysics, Geosystems</i> , 2012 , 13,	3.6	14
158	Fabrication based on the Kirkendall effect of Co3O4 porous nanocages with extraordinarily high capacity for lithium storage. <i>Chemistry - A European Journal</i> , 2012 , 18, 8971-7	4.8	207
157	Theoretical investigation on SERS of pyridine adsorbed on Cn clusters induced by charge transfer: a hint that SERS could be applied on many materials. <i>ChemPhysChem</i> , 2012 , 13, 1449-53	3.2	8
156	Size- and Solvent-Dependent Magnetically Responsive Optical Diffraction of Carbon-Encapsulated Superparamagnetic Colloidal Photonic Crystals. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 11427-11434	4 ^{3.8}	83
155	Controlled synthesis of Co(3)O(4) nanocubes under external magnetic fields and their magnetic properties. <i>Dalton Transactions</i> , 2011 , 40, 597-601	4.3	36
154	Room-temperature synthesis of Prussian blue analogue Co3[Co(CN)6]2 porous nanostructures and their CO2 storage properties. <i>RSC Advances</i> , 2011 , 1, 1574	3.7	49
153	Carboxyl-functionalized nanoparticles with magnetic core and mesopore carbon shell as adsorbents for the removal of heavy metal ions from aqueous solution. <i>Dalton Transactions</i> , 2011 , 40, 559-63	4.3	64
152	One-pot facile synthesis and optical properties of porous La2O2CO3 hollow microspheres. <i>Journal of Alloys and Compounds</i> , 2011 , 509, 744-747	5.7	16

(2010-2011)

151	Advances and Prospects in Wheat Eyespot Research: Contributions from Genetics and Molecular Tools. <i>Journal of Phytopathology</i> , 2011 , 159, 457-470	1.8	12
150	Lithium Storage Properties of Porous Carbon Formed Through the Reaction of Supercritical Carbon Dioxide with Alkali Metals. <i>Journal of the American Ceramic Society</i> , 2011 , 94, 3078-3083	3.8	20
149	Treatment of discarded oil in supercritical carbon dioxide for preparation of carbon microspheres. Journal of Material Cycles and Waste Management, 2011 , 13, 298-304	3.4	8
148	Colloids of superparamagnetic shell: synthesis and self-assembly into 3D colloidal crystals with anomalous optical properties. <i>CrystEngComm</i> , 2011 , 13, 5394	3.3	18
147	Carboxyl and negative charge-functionalized superparamagnetic nanochains with amorphous carbon shell and magnetic core: synthesis and their application in removal of heavy metal ions. <i>Nanoscale</i> , 2011 , 3, 4600-3	7.7	38
146	Synthesis and characterization of bracelet-like magnetic nanorings consisting of Ag-Fe3O4 bi-component nanoparticles. <i>Dalton Transactions</i> , 2011 , 40, 8622-9	4.3	18
145	Assembly of superparamagnetic colloidal nanoparticles into field-responsive purple Bragg reflectors. <i>Dalton Transactions</i> , 2011 , 40, 4810-3	4.3	15
144	Prussian Blue Analogue Mn3[Co(CN)6]2[hH2O porous nanocubes: large-scale synthesis and their CO2 storage properties. <i>Dalton Transactions</i> , 2011 , 40, 5557-62	4.3	55
143	Reusable photonic wordpad with water as ink prepared by radical polymerization. <i>Journal of Materials Chemistry</i> , 2011 , 21, 13062		26
142	Improved surface-enhanced Raman scattering on micro-scale Au hollow spheres: synthesis and application in detecting tetracycline. <i>Analyst, The</i> , 2011 , 136, 2527-32	5	33
141	MAGNETIC NANOCHAINS: A REVIEW. <i>Nano</i> , 2011 , 06, 1-17	1.1	63
140	Converting poly(ethylene terephthalate) waste into carbon microspheres in a supercritical CO2 system. <i>Environmental Science & Environmental Science &</i>	10.3	37
139	Magnetically separable Prussian blue analogue Mn[Co(CN)]IhHD porous nanocubes as excellent absorbents for heavy metal ions. <i>Nanoscale</i> , 2011 , 3, 4270-4	7.7	46
138	Experimental and theoretical investigations on the negative influence of an applied magnetic field on SERS of Ag nanoparticles. <i>Chemical Communications</i> , 2011 , 47, 11237-9	5.8	21
137	Product change of molecule-magnetic material synthesis induced by magnetic field in hydrothermal system. <i>Journal of Crystal Growth</i> , 2011 , 329, 82-85	1.6	3
136	Dynamically Regulate and Control Complicated Auto Panel Uniform Forming. <i>Advanced Materials Research</i> , 2011 , 239-242, 1543-1551	0.5	
135	Assembly of non-crystalline cobalt particles into crystalline tricobalt tetroxide nanowires under an external magnetic field. <i>CrystEngComm</i> , 2010 , 12, 3262	3.3	10
134	SYNTHESIS OF PEG-ENCAPSULATED SUPERPARAMAGNETIC COLLOIDAL NANOCRYSTALS CLUSTERS. <i>Nano</i> , 2010 , 05, 333-339	1.1	7

133	Synthesis of SiO2 spheres with magnetic cores: Implications for the primary accretion in the solar nebula. <i>Journal of Geophysical Research</i> , 2010 , 115,		2
132	Synthesis of necklace-like magnetic nanorings. <i>Langmuir</i> , 2010 , 26, 5957-62	4	41
131	Synthesis of Superparamagnetic Colloidal Nanochains as Magnetic-Responsive Bragg Reflectors. Journal of Physical Chemistry C, 2010 , 114, 19660-19666	3.8	31
130	Synthesis of carbon-encapsulated superparamagnetic colloidal nanoparticles with magnetic-responsive photonic crystal property. <i>Dalton Transactions</i> , 2010 , 39, 9565-9	4.3	113
129	Experimental and theoretical investigations on the magnetic-field-induced variation of surface energy of Co3O4 crystal faces. <i>Chemistry - A European Journal</i> , 2010 , 16, 12088-90	4.8	31
128	GAMMA-RAY IRRADIATION-INDUCED IMPROVEMENT OF HYDROGEN ADSORPTION IN MULTI-WALLED CARBON NANOTUBES. <i>Nano</i> , 2009 , 04, 7-11	1.1	16
127	Shape-controlled synthesis and self-assembly of hexagonal cobalt ultrathin nanoflakes. <i>Materials Chemistry and Physics</i> , 2009 , 113, 675-679	4.4	9
126	A facile carboxylation of CNT/Fe3O4 composite nanofibers for biomedical applications. <i>Materials Chemistry and Physics</i> , 2009 , 114, 33-36	4.4	25
125	Magnetic Field Effects on the Formation and Properties of Nickel Nanostructures. <i>European Journal of Inorganic Chemistry</i> , 2009 , 2009, 435-440	2.3	10
124	Synthesis of octahedral magnetite microcrystals with high crystallinity and low coercive field. Journal of Crystal Growth, 2009 , 311, 394-398	1.6	39
123	Low-temperature magnetic properties of greigite (Fe3S4). <i>Geochemistry, Geophysics, Geosystems</i> , 2009 , 10, n/a-n/a	3.6	37
122	CoreBhell Cylindrical Magnetic Domains in Nickel Wires Prepared under Magnetic Fields. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 2710-2714	3.8	22
121	Magnetic-field-induced formation of one-dimensional magnetite nanochains. <i>Langmuir</i> , 2009 , 25, 7135-	·9 ₄	102
120	Study of Self-Assembly of Octahedral Magnetite under an External Magnetic Field. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 17301-17305	3.8	48
119	Reduction of Complex Precursor Cobalt Bis(4-pyridine carboxylate) Tetrahydrate under an External Magnetic Field. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 7123-7128	3.8	8
118	Magnetic structure of greigite (Fe3S4) probed by neutron powder diffraction and polarized neutron diffraction. <i>Journal of Geophysical Research</i> , 2009 , 114,		21
117	2-(Pyrimidin-2-ylsulfan-yl)acetic acid. <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2009 , 65, o652		2
116	RbCa(2)Nb(3)O(10) from X-ray powder data. <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2009 , 65, i44		5

(2007-2008)

115	Chainlike assembly of magnetite coated with SiO2 nanostructures induced by an applied magnetic field. <i>Materials Research Bulletin</i> , 2008 , 43, 1321-1326	5.1	12
114	Synthesis and luminescence properties of hand-like Bi2O3 microcrystals. <i>Materials Letters</i> , 2008 , 62, 1165-1168	3.3	48
113	RECENT DEVELOPMENT IN DIAMOND SYNTHESIS. <i>International Journal of Modern Physics B</i> , 2008 , 22, 309-326	1.1	5
112	Synthesis of magnetosome chain-like structures. <i>Nanotechnology</i> , 2008 , 19, 475603	3.4	20
111	Formation of Nickel Dendritic Crystals with Peculiar Orientations by Magnetic-Induced Aggregation and Limited Diffusion. <i>Crystal Growth and Design</i> , 2008 , 8, 2464-2468	3.5	45
110	Morphogenesis of Branched Coaxial Nanorods Formed in Supercritical Carbon Dioxide. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 2337-2342	3.8	7
109	Synthesis and Characterization of Cobalt-Carbon Core-Shell Microspheres in Supercritical Carbon Dioxide System. <i>Chinese Journal of Chemical Physics</i> , 2008 , 21, 76-80	0.9	5
108	Magnetic properties of nickel film formed under magnetic fields. <i>Journal Physics D: Applied Physics</i> , 2008 , 41, 205011	3	8
107	Preparation of Plywood-like Fe3BO5Nanorods by a Facile Hydrothermal Method at Low Temperature. <i>Chemistry Letters</i> , 2008 , 37, 752-753	1.7	14
106	4-[4-(Diethyl-amino)benzyl-ideneamino]-4H-1,2,4-triazole. <i>Acta Crystallographica Section E:</i> Structure Reports Online, 2008 , 64, o980		1
105	One-step electroless synthesis and properties of copper film deposited on silicon substrate. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2008 , 205, 1580-1584	1.6	2
104	Magnetic field-induced formation of molecule-based magnetic material [Co1.5(N3)(OH)(L)]n with antiferromagnetic coupling. <i>Journal of Crystal Growth</i> , 2008 , 310, 3788-3791	1.6	5
103	Synthesis and magnetic properties of iron oxide nanoparticles/C and Fe/iron oxide nanoparticles/C composites. <i>Journal of Magnetism and Magnetic Materials</i> , 2008 , 320, 107-112	2.8	19
102	Fundamental magnetic parameters from pure synthetic greigite (Fe3S4). <i>Journal of Geophysical Research</i> , 2008 , 113,		91
101	Formation of one-dimensional nickel wires by chemical reduction of nickel ions under magnetic fields. <i>Chemical Communications</i> , 2007 , 2844-6	5.8	64
100	Reducing reaction of Fe3O4 in nanoscopic reactors of a-CNTs. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 1724-8	3.4	30
99	Synthesis and Assembly of Magnetite Nanocubes into Flux-Closure Rings. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 6998-7003	3.8	91
98	Magnetic characteristics of synthetic pseudo-single-domain and multi-domain greigite (Fe3S4). <i>Geophysical Research Letters</i> , 2007 , 34,	4.9	26

97	Preparation of ferromagnetic I Fe2O3 nanocrystallites by oxidative co-decomposition of PEG 6000 and ferrocene. <i>Solid State Communications</i> , 2007 , 141, 573-576	1.6	14
96	Synthesis of carbon E e3O4 coaxial nanofibres by pyrolysis of ferrocene in supercritical carbon dioxide. <i>Carbon</i> , 2007 , 45, 727-731	10.4	47
95	A novel two-dimensional square grid cobalt complex: Synthesis, structure, luminescent and magnetic properties. <i>Inorganic Chemistry Communication</i> , 2007 , 10, 1360-1364	3.1	35
94	High-yield synthesis of single-crystal short Eu2O3 nanorods through a facile solgel template approach. <i>Journal of Crystal Growth</i> , 2007 , 309, 192-196	1.6	7
93	Tetraaquabis[4-(imidazol-1-yl)benzoato-N3]nickel(II). <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2007 , 63, m1042-m1043		1
92	Growth of dendritic bismuth microspheres by solution-phase process. <i>Materials Letters</i> , 2007 , 61, 3037	-3 <u>9</u> 40	13
91	Synthesis of Eu2O3 hollow submicrometer spheres through a solgel template approach. <i>Materials Letters</i> , 2007 , 61, 4452-4455	3.3	24
90	General solution-based route to VIVI semiconductors nanorods from hydrolysate. <i>Journal of Nanoparticle Research</i> , 2007 , 9, 269-274	2.3	18
89	The formation of legume-like structures of Co nanoparticles through a polymer-assisted magnetic-field-induced assembly. <i>Nanotechnology</i> , 2007 , 18, 345301	3.4	45
88	Alignment of Fe3O4-Carbon Coaxial Nanofibres in a Polymer for Improving Microwave Absorption 2007 ,		2
87	A Simple and Practical Method for the Preparation of Magnetite Nanowires. <i>Chemistry Letters</i> , 2007 , 36, 840-841	1.7	17
86	Synthesis of hexagonal tungsten carbide in tungstenBodium and supercritical carbon dioxide system. <i>Materials Chemistry and Physics</i> , 2006 , 95, 113-116	4.4	9
85	Synthesis of MgFe2O4 nanocrystallites under mild conditions. <i>Materials Chemistry and Physics</i> , 2006 , 97, 394-397	4.4	92
84	A novel approach for the synthesis of 6H-SiC at a low temperature of 460°C. <i>Materials Letters</i> , 2006 , 60, 2855-2857	3.3	6
83	Carbon based Nanostructures 2006 , 247-274		1
82	Low temperature synthesis and photoluminescence of cubic silicon carbide. <i>Journal Physics D: Applied Physics</i> , 2006 , 39, 1472-1476	3	9
81	Synthesis of polygonized carbon nanotubes utilizing inhomogeneous catalyst activity of nonspherical Fe3O4 nanoparticles. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 16404-7	3.4	21
80	Ni Hollow Nanospheres: Preparation and Catalytic Activity. <i>Journal of Nanomaterials</i> , 2006 , 2006, 1-7	3.2	10

(2005-2006)

79	Low temperature synthesis of carbon nanospheres by reducing supercritical carbon dioxide with bimetallic lithium and potassium. <i>Carbon</i> , 2006 , 44, 1303-1307	10.4	27
78	Early Mars may have had a methanol ocean. <i>Icarus</i> , 2006 , 180, 88-92	3.8	9
77	Effect of a low magnetic field on crystallinity and magnetic susceptibility of molecular magnet {NBu4[FeCr(ox)3]}x (NBu4+=tetra(n-butyl) ammonium ion; ox2目oxalate ion). <i>Journal of Magnetism and Magnetic Materials</i> , 2006 , 307, 38-42	2.8	3
76	FORMATION AND HARD MAGNETIC PROPERTIES OF A HEXAGONAL NETWORK OF NICKEL FERRITE NANOPARTICLES. <i>Modern Physics Letters B</i> , 2006 , 20, 1645-1651	1.6	
75	Supercritical carbon dioxide assisted growth of sodium tungsten bronze (Na x WO3) crystallites. Journal of Materials Science, 2006 , 41, 285-288	4.3	1
74	Formation of carbon micro-sphere chains by defluorination of PTFE in a magnesium and supercritical carbon dioxide system. <i>Green Chemistry</i> , 2005 , 7, 733	10	28
73	Growth of conical carbon nanotubes by chemical reduction of MgCO3. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 10557-60	3.4	20
72	Synthesis of Magnetite Nanorods through Reduction of 軒eOOH. <i>Chemistry Letters</i> , 2005 , 34, 636-637	1.7	30
71	A Novel Way for Preparing Cu Nanowires. <i>Chemistry Letters</i> , 2005 , 34, 430-431	1.7	7
70	A		
70	A case of magnetic field-induced change in final product. <i>Solid State Communications</i> , 2005 , 136, 490-49	9 3 1.6	3
69	Formation of variously shaped carbon nanotubes in carbon dioxidellkali metal (Li, Na) system. <i>Carbon</i> , 2005 , 43, 1104-1108	10.4	21
	Formation of variously shaped carbon nanotubes in carbon dioxidellkali metal (Li, Na) system.		
69	Formation of variously shaped carbon nanotubes in carbon dioxidellkali metal (Li, Na) system. <i>Carbon</i> , 2005 , 43, 1104-1108 Magnetic field-assisted hydrothermal growth of chain-like nanostructure of magnetite. <i>Chemical</i>	10.4	21
69 68	Formation of variously shaped carbon nanotubes in carbon dioxidellkali metal (Li, Na) system. <i>Carbon</i> , 2005 , 43, 1104-1108 Magnetic field-assisted hydrothermal growth of chain-like nanostructure of magnetite. <i>Chemical Physics Letters</i> , 2005 , 401, 374-379 Sonochemical preparation of bimetallic Co/Cu nanoparticles in aqueous solution. <i>Materials</i>	10.4	21
69 68 67	Formation of variously shaped carbon nanotubes in carbon dioxidellkali metal (Li, Na) system. Carbon, 2005, 43, 1104-1108 Magnetic field-assisted hydrothermal growth of chain-like nanostructure of magnetite. Chemical Physics Letters, 2005, 401, 374-379 Sonochemical preparation of bimetallic Co/Cu nanoparticles in aqueous solution. Materials Research Bulletin, 2005, 40, 1623-1629 Necklace-shaped assembly of single-crystal NiFe2O4 nanospheres under magnetic field. Materials	10.4 2.5 5.1	21 108 13
69 68 67	Formation of variously shaped carbon nanotubes in carbon dioxidellkali metal (Li, Na) system. Carbon, 2005, 43, 1104-1108 Magnetic field-assisted hydrothermal growth of chain-like nanostructure of magnetite. Chemical Physics Letters, 2005, 401, 374-379 Sonochemical preparation of bimetallic Co/Cu nanoparticles in aqueous solution. Materials Research Bulletin, 2005, 40, 1623-1629 Necklace-shaped assembly of single-crystal NiFe2O4 nanospheres under magnetic field. Materials Letters, 2005, 59, 2101-2103 Preparation of carbon micro-spheres by hydrothermal treatment of methylcellulose sol. Materials	10.4 2.5 5.1 3.3	211081319
69 68 67 66	Formation of variously shaped carbon nanotubes in carbon dioxideBlkali metal (Li, Na) system. <i>Carbon</i> , 2005 , 43, 1104-1108 Magnetic field-assisted hydrothermal growth of chain-like nanostructure of magnetite. <i>Chemical Physics Letters</i> , 2005 , 401, 374-379 Sonochemical preparation of bimetallic Co/Cu nanoparticles in aqueous solution. <i>Materials Research Bulletin</i> , 2005 , 40, 1623-1629 Necklace-shaped assembly of single-crystal NiFe2O4 nanospheres under magnetic field. <i>Materials Letters</i> , 2005 , 59, 2101-2103 Preparation of carbon micro-spheres by hydrothermal treatment of methylcellulose sol. <i>Materials Letters</i> , 2005 , 59, 3738-3741	10.4 2.5 5.1 3.3	21 108 13 19
69 68 67 66 65	Formation of variously shaped carbon nanotubes in carbon dioxideBlkali metal (Li, Na) system. Carbon, 2005, 43, 1104-1108 Magnetic field-assisted hydrothermal growth of chain-like nanostructure of magnetite. Chemical Physics Letters, 2005, 401, 374-379 Sonochemical preparation of bimetallic Co/Cu nanoparticles in aqueous solution. Materials Research Bulletin, 2005, 40, 1623-1629 Necklace-shaped assembly of single-crystal NiFe2O4 nanospheres under magnetic field. Materials Letters, 2005, 59, 2101-2103 Preparation of carbon micro-spheres by hydrothermal treatment of methylcellulose sol. Materials Letters, 2005, 59, 3738-3741 Synthesis of hollow microspheres of nickel using spheres of metallic zinc as templates under mild conditions. Journal of Materials Science, 2005, 40, 4411-4413 Magnetic properties of assembled ferrite nanostructures induced by magnetic fields. Journal of	10.4 2.5 5.1 3.3 4.3	21 108 13 19 49

61	ROOM TEMPERATURE SELF-ASSEMBLY GROWTH OF COBALT NANOWIRES UNDER MAGNETIC FIELDS. <i>International Journal of Modern Physics B</i> , 2005 , 19, 2728-2733	1.1	1
60	IMPROVEMENT OF COERCIVITY IN COBALT-DOPED ANATASE TIO2 NANOPARTICLES HYDROTHERMALLY PREPARED. <i>International Journal of Modern Physics B</i> , 2005 , 19, 2550-2555	1.1	
59	The enhanced coercivity for the magnetite/silica nanocomposite at room temperature. <i>Materials Research Bulletin</i> , 2004 , 39, 1875-1880	5.1	12
58	Preparation of carbon spheres consisting of amorphous carbon cores and graphene shells. <i>Carbon</i> , 2004 , 42, 229-232	10.4	56
57	Synthesis and magnetic properties of Zn1⊠MnxFe2O4 nanoparticles. <i>Physica B: Condensed Matter</i> , 2004 , 349, 124-128	2.8	74
56	Reply to Comment on G rowth of Large Diamond Crystals by Reduction of Magnesium Carbonate with Metallic Sodium[] <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 4700	16.4	
55	Magnetic-Field-Induced Growth of Single-Crystalline Fe3O4 Nanowires. <i>Advanced Materials</i> , 2004 , 16, 137-140	24	447
54	Reply to Comment on G rowth of Large Diamond Crystals by Reduction of Magnesium Carbonate with Metallic Sodium[] <i>Angewandte Chemie</i> , 2004 , 116, 4804	3.6	
53	Synthesis and Magnetic Properties of Single-Crystals of MnFe2O4 Nanorods. <i>European Journal of Inorganic Chemistry</i> , 2004 , 2004, 1165-1168	2.3	60
52	Magnetic Field-induced Increasing of the Reaction Rates Controlled by the Diffusion of Paramagnetic Gases. <i>Chemical Engineering and Technology</i> , 2004 , 27, 1273-1276	2	9
51	Magnetic properties in BaFe12O19 nanoparticles prepared under a magnetic field. <i>Journal of Magnetism and Magnetic Materials</i> , 2004 , 280, 281-286	2.8	28
50	Growth of magnetite nanorods along its easy-magnetization axis of [110]. <i>Journal of Crystal Growth</i> , 2004 , 263, 616-619	1.6	69
49	Magnetic properties improvement in Fe3O4 nanoparticles grown under magnetic fields. <i>Journal of Crystal Growth</i> , 2004 , 266, 500-504	1.6	55
48	Disappearing of the Verwey transition in magnetite nanoparticles synthesized under a magnetic field: implications for the origin of charge ordering. <i>Chemical Physics Letters</i> , 2004 , 390, 55-58	2.5	33
47	Growth of Magnesium Carbonate Single Crystal in Supercritical Carbon Dioxide Molten Sodium System. <i>Crystal Growth and Design</i> , 2004 , 4, 415-417	3.5	13
46	Hydrothermal formation of magnetic Ni L u alloy nanocrystallites at low temperatures. <i>Nanotechnology</i> , 2004 , 15, 1054-1058	3.4	35
45	Synthesis of Large-Size Diamonds by Reduction of Dense Carbon Dioxide with Alkali Metals (K, Li). Journal of Physical Chemistry B, 2004 , 108, 4239-4241	3.4	27
44	Synthesis and catalytic properties of nickel-silica composite hollow nanospheres. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 6311-4	3.4	69

(2000-2004)

43	Synthesis and One-Dimensional Self-Assembly of Acicular Nickel Nanocrystallites under Magnetic Fields. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 3996-3999	3.4	141
42	Hydrothermal Synthesis and Characterization of Bi2Fe4O9Nanoparticles. <i>Chemistry Letters</i> , 2004 , 33, 502-503	1.7	50
41	One-step hydrothermal process to prepare highly crystalline Fe3O4 nanoparticles with improved magnetic properties. <i>Materials Research Bulletin</i> , 2003 , 38, 1113-1118	5.1	161
40	Growth of Large Diamond Crystals by Reduction of Magnesium Carbonate with Metallic Sodium. <i>Angewandte Chemie</i> , 2003 , 115, 4639-4641	3.6	4
39	Growth of large diamond crystals by reduction of magnesium carbonate with metallic sodium. <i>Angewandte Chemie - International Edition</i> , 2003 , 42, 4501-3	16.4	14
38	Synthesis of carbon nanotubes by reduction of carbon dioxide with metallic lithium. <i>Carbon</i> , 2003 , 41, 3063-3067	10.4	90
37	Preparation and characterization of single-crystalline bismuth nanowires by a low-temperature solvothermal process. <i>Chemical Physics Letters</i> , 2003 , 367, 141-144	2.5	73
36	Synthesis and characterization of single-crystalline BaH2SiO4 nanowires. <i>Chemical Physics Letters</i> , 2003 , 375, 167-170	2.5	2
35	Magnetic field-induced growth and self-assembly of cobalt nanocrystallites. <i>Journal of Materials Chemistry</i> , 2003 , 13, 1803		135
34	Soft magnetic nanoparticles of BaFe12O19fabricated under mild conditions. <i>Journal of Physics Condensed Matter</i> , 2003 , 15, L335-L339	1.8	67
33	Diamond formation by reduction of carbon dioxide at low temperatures. <i>Journal of the American Chemical Society</i> , 2003 , 125, 9302-3	16.4	75
32	A way to obtain visible blue light emission in porous silicon. <i>Applied Physics Letters</i> , 2003 , 82, 1018-1020	3.4	47
31	Irreversible quenching of luminescence in porous silicon. <i>Journal of Luminescence</i> , 2002 , 99, 125-129	3.8	1
30	Transport properties in iron-passivated porous silicon. <i>Applied Surface Science</i> , 2002 , 191, 218-222	6.7	5
29	STABLE PHOTOLUMINESCENCE IN LOW-TEMPERATURE ANNEALED POROUS SILICON. <i>Modern Physics Letters B</i> , 2001 , 15, 1077-1085	1.6	1
28	Carrier band-to-band recombination in Mn-passivated porous silicon. <i>Journal of Physics Condensed Matter</i> , 2001 , 13, 5377-5385	1.8	1
27	Material synthesis: Microstructure and light emitting in porous silicon derived from hydrothermal etching. <i>High Pressure Research</i> , 2001 , 20, 1-8	1.6	8
26	Strong and stable ultraviolet luminescence in porous silicon in situ passivated by manganese. <i>Applied Physics Letters</i> , 2000 , 77, 854-856	3.4	15

25	Preparation and Characterization of Porous Silicon Powder. Materials Research Bulletin, 1998, 33, 293-	297.1	3
24	Fabrication of colored CaCO3 compacts by hydrothermal hot-pressing method. <i>Materials Research Innovations</i> , 1998 , 2, 45-48	1.9	6
23	Silicon quantum dot superlattice and metallic conducting behaviour in porous silicon. <i>Journal of Physics Condensed Matter</i> , 1997 , 9, L569-L572	1.8	4
22	The role of in the blue luminescence in hydrothermally prepared porous silicon. <i>Journal of Physics Condensed Matter</i> , 1997 , 9, L151-L156	1.8	9
21	High-density crystalline quantum dots in blue emitting porous silicon. <i>Journal of Applied Physics</i> , 1997 , 81, 7970-7972	2.5	12
20	Hydrothermal doping of cobalt and magnetic properties in gamma iron oxide thin films. <i>Materials Letters</i> , 1997 , 31, 247-250	3.3	O
19	Variations of normal state resistivity and Cu2+ localized spin moment in the single crystal Bi2Sr2 CaCU2O8 + x. <i>Physica C: Superconductivity and Its Applications</i> , 1997 , 279, 241-245	1.3	12
18	Anisotropic resistivity and Cu2+ localized spin moment in Bi2Sr2CaCu2O8+x crystals. <i>Physica C:</i> Superconductivity and Its Applications, 1997 , 282-287, 1159-1160	1.3	1
17	Blue light emitted from porous silicon obtained by hydrothermal etching. <i>Journal of Physics Condensed Matter</i> , 1996 , 8, L753-L758	1.8	6
16	Hydrothermal deposition and characterization of ultrafine ZrO2 thin films. <i>Scripta Materialia</i> , 1996 , 7, 467-471		4
15	Preparation of zinc sulfide thin films by the hydrothermal method. <i>Thin Solid Films</i> , 1996 , 272, 1-3	2.2	10
14	Photoluminescence in porous silicon obtained by hydrothermal etching. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1996 , 220, 293-296	2.3	19
13	Ultraviolet light emission from porous silicon hydrothermally prepared. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1996 , 224, 133-136	2.3	15
12	Low-temperature deposition of ultrafine rutile TiO2 thin films by the hydrothermal method. <i>Physica Status Solidi A</i> , 1996 , 156, 381-385		14
11	Photoluminescence in ultrafine zinc sulfide thin film. <i>Applied Physics Letters</i> , 1996 , 68, 3582-3584	3.4	11
10	Hydrothermal epitaxy of highly oriented TiO2 thin films on silicon. <i>Applied Physics Letters</i> , 1995 , 66, 16	085.461	041
9	Hydrothermal preparation of highly oriented polycrystalline ZnO thin films. <i>Materials Letters</i> , 1995 , 22, 93-95	3.3	17
8	Preparation of TiO2 powders with different morphologies by an oxidation-hydrothermal combination method. <i>Materials Letters</i> , 1995 , 22, 77-80	3.3	33

LIST OF PUBLICATIONS

7	Fabrication of ultrafine SnO2 thin films by the hydrothermal method. <i>Thin Solid Films</i> , 1995 , 264, 25-27	2.2	24
6	Origin of the grain growth anisotropy in Titania. <i>Materials Research Bulletin</i> , 1994 , 29, 1079-1083	5.1	1
5	Preparation of ultrafine powders of TiO2 by hydrothermal H2O2 oxidation starting from metallic Ti. <i>Journal of Materials Chemistry</i> , 1993 , 3, 203		80
4	RuP Nanoparticles Supported on N, O Codoped Porous Hollow Carbon for Efficient Hydrogen Oxidation Reaction. <i>Advanced Materials Interfaces</i> ,2102193	4.6	2
3	Atomically Dispersed Manganese Lewis Acid Sites Catalyze Electrohydrogenation of Nitrogen to Ammonia. <i>CCS Chemistry</i> ,2104-2115	7.2	5
2	Optimizing the nitrogen configuration in interlayer-expanded carbon materials via sulfur-bridged bonds toward remarkable energy storage performances. <i>Journal of Materials Chemistry A</i> ,	13	4
1	Redox Catalysis Promoted Fast Iodine Kinetics for Polyiodide-Free Na-I2 Electrochemistry. <i>Journal of Materials Chemistry A</i> ,	13	1