Qianwang Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6997036/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nature Communications, 2014, 5, 5261.	5.8	1,257
2	Doped graphene for metal-free catalysis. Chemical Society Reviews, 2014, 43, 2841-2857.	18.7	710
3	Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media. Nature Communications, 2017, 8, 14969.	5.8	656
4	Non-precious alloy encapsulated in nitrogen-doped graphene layers derived from MOFs as an active and durable hydrogen evolution reaction catalyst. Energy and Environmental Science, 2015, 8, 3563-3571.	15.6	498
5	Magnetic-Field-Induced Growth of Single-Crystalline Fe3O4 Nanowires. Advanced Materials, 2004, 16, 137-140.	11.1	476
6	Co ₃ O ₄ Nanocages for High-Performance Anode Material in Lithium-Ion Batteries. Journal of Physical Chemistry C, 2012, 116, 7227-7235.	1.5	409
7	Metal-free catalytic reduction of 4-nitrophenol to 4-aminophenol by N-doped graphene. Energy and Environmental Science, 2013, 6, 3260.	15.6	390
8	Hollow Porous SiO2 Nanocubes Towards High-performance Anodes for Lithium-ion Batteries. Scientific Reports, 2013, 3, 1568.	1.6	344
9	Tuning Electronic Structures of Nonprecious Ternary Alloys Encapsulated in Graphene Layers for Optimizing Overall Water Splitting Activity. ACS Catalysis, 2017, 7, 469-479.	5.5	342
10	CuO/Cu2O composite hollow polyhedrons fabricated from metal–organic framework templates for lithium-ion battery anodes with a long cycling life. Nanoscale, 2013, 5, 4186.	2.8	326
11	Mn-Doped RuO ₂ Nanocrystals as Highly Active Electrocatalysts for Enhanced Oxygen Evolution in Acidic Media. ACS Catalysis, 2020, 10, 1152-1160.	5.5	302
12	Elemental two-dimensional nanosheets beyond graphene. Chemical Society Reviews, 2017, 46, 2127-2157.	18.7	285
13	CoMn2O4 Spinel Hierarchical Microspheres Assembled with Porous Nanosheets as Stable Anodes for Lithium-ion Batteries. Scientific Reports, 2012, 2, 986.	1.6	282
14	A Mesoporous Nanoenzyme Derived from Metal–Organic Frameworks with Endogenous Oxygen Generation to Alleviate Tumor Hypoxia for Significantly Enhanced Photodynamic Therapy. Advanced Materials, 2019, 31, e1901893.	11.1	282
15	Hollow/porous nanostructures derived from nanoscale metal–organic frameworks towards high performance anodes for lithium-ion batteries. Nanoscale, 2014, 6, 1236-1257.	2.8	281
16	Controllable synthesis of dual-MOFs nanostructures for pH-responsive artemisinin delivery, magnetic resonance and optical dual-model imaging-guided chemo/photothermal combinational cancer therapy. Biomaterials, 2016, 100, 27-40.	5.7	245
17	Oâ€, Nâ€Atoms oordinated Mn Cofactors within a Graphene Framework as Bioinspired Oxygen Reduction Reaction Electrocatalysts. Advanced Materials, 2018, 30, e1801732.	11.1	239
18	Turning main-group element magnesium into a highly active electrocatalyst for oxygen reduction reaction. Nature Communications, 2020, 11, 938.	5.8	238

#	Article	IF	CITATIONS
19	MOF-derived ultrafine MnO nanocrystals embedded in a porous carbon matrix as high-performance anodes for lithium-ion batteries. Nanoscale, 2015, 7, 9637-9645.	2.8	226
20	Fabrication Based on the Kirkendall Effect of Co ₃ O ₄ Porous Nanocages with Extraordinarily High Capacity for Lithium Storage. Chemistry - A European Journal, 2012, 18, 8971-8977.	1.7	225
21	Pt-like electrocatalytic behavior of Ru–MoO ₂ nanocomposites for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 5475-5485.	5.2	213
22	Tuning the Activity of Carbon for Electrocatalytic Hydrogen Evolution via an Iridiumâ€Cobalt Alloy Core Encapsulated in Nitrogenâ€Doped Carbon Cages. Advanced Materials, 2018, 30, 1705324.	11.1	211
23	Carbon-based hybrid nanogels: a synergistic nanoplatform for combined biosensing, bioimaging, and responsive drug delivery. Chemical Society Reviews, 2018, 47, 4198-4232.	18.7	201
24	Magnetically guided delivery of DHA and Fe ions for enhanced cancer therapy based on pH-responsive degradation of DHA-loaded Fe 3 O 4 @C@MIL-100(Fe) nanoparticles. Biomaterials, 2016, 107, 88-101.	5.7	194
25	One-step hydrothermal process to prepare highly crystalline Fe3O4 nanoparticles with improved magnetic properties. Materials Research Bulletin, 2003, 38, 1113-1118.	2.7	189
26	Nano electrochemical reactors of Fe ₂ O ₃ nanoparticles embedded in shells of nitrogen-doped hollow carbon spheres as high-performance anodes for lithium-ion batteries. Nanoscale, 2015, 7, 3410-3417.	2.8	188
27	Sodiumâ€ion Batteries: Improving the Rate Capability of 3D Interconnected Carbon Nanofibers Thin Film by Boron, Nitrogen Dualâ€Doping. Advanced Science, 2017, 4, 1600468.	5.6	164
28	Designing highly efficient dual-metal single-atom electrocatalysts for the oxygen reduction reaction inspired by biological enzyme systems. Journal of Materials Chemistry A, 2018, 6, 13254-13262.	5.2	156
29	Selfâ€Assembled Single‣ite Nanozyme for Tumor‣pecific Amplified Cascade Enzymatic Therapy. Angewandte Chemie - International Edition, 2021, 60, 3001-3007.	7.2	156
30	Co ₃ ZnC/Co nano heterojunctions encapsulated in N-doped graphene layers derived from PBAs as highly efficient bi-functional OER and ORR electrocatalysts. Journal of Materials Chemistry A, 2016, 4, 9204-9212.	5.2	154
31	Ultrasmall Ru/Cuâ€doped RuO ₂ Complex Embedded in Amorphous Carbon Skeleton as Highly Active Bifunctional Electrocatalysts for Overall Water Splitting. Small, 2018, 14, e1803009.	5.2	151
32	Synthesis and One-Dimensional Self-Assembly of Acicular Nickel Nanocrystallites under Magnetic Fields. Journal of Physical Chemistry B, 2004, 108, 3996-3999.	1.2	148
33	Metal–organic framework-derived porous Mn _{1.8} Fe _{1.2} O ₄ nanocubes with an interconnected channel structure as high-performance anodes for lithium ion batteries. Journal of Materials Chemistry A, 2015_3_2815-2824	5.2	148
34	Facile Fabrication of Porous Ni _{<i>x</i>} Co _{3–<i>x</i>} O ₄ Nanosheets with Enhanced Electrochemical Performance As Anode Materials for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 9256-9264.	4.0	141
35	Magnetic field-induced growth and self-assembly of cobalt nanocrystallites. Journal of Materials Chemistry, 2003, 13, 1803.	6.7	140
36	Biocompatible Chitosan–Carbon Dot Hybrid Nanogels for NIR-Imaging-Guided Synergistic Photothermal–Chemo Therapy. ACS Applied Materials & Interfaces, 2017, 9, 18639-18649.	4.0	137

#	Article	IF	CITATIONS
37	Synthesis of carbon-encapsulated superparamagnetic colloidal nanoparticles with magnetic-responsive photonic crystal property. Dalton Transactions, 2010, 39, 9565.	1.6	135
38	Photonic anti-counterfeiting using structural colors derived from magnetic-responsive photonic crystals with double photonic bandgap heterostructures. Journal of Materials Chemistry, 2012, 22, 11048.	6.7	134
39	Magnetically responsive photonic watermarks on banknotes. Journal of Materials Chemistry C, 2014, 2, 3695.	2.7	134
40	Highly Ambient-Stable 1T-MoS ₂ and 1T-WS ₂ by Hydrothermal Synthesis under High Magnetic Fields. ACS Nano, 2019, 13, 1694-1702.	7.3	131
41	Magnetic-induced graphene quantum dots for imaging-guided photothermal therapy in the second near-infrared window. Biomaterials, 2020, 232, 119700.	5.7	128
42	Synthesis and assembly of nanomaterials under magnetic fields. Nanoscale, 2014, 6, 14064-14105.	2.8	126
43	Enhanced Activity for Hydrogen Evolution Reaction over CoFe Catalysts by Alloying with Small Amount of Pt. ACS Applied Materials & Interfaces, 2017, 9, 3596-3601.	4.0	126
44	Oxygen/Fluorine Dualâ€Doped Porous Carbon Nanopolyhedra Enabled Ultrafast and Highly Stable Potassium Storage. Advanced Functional Materials, 2019, 29, 1906126.	7.8	123
45	Surface polarization enhancement: high catalytic performance of Cu/CuO _x /C nanocomposites derived from Cu-BTC for CO oxidation. Journal of Materials Chemistry A, 2016, 4, 8412-8420.	5.2	119
46	MOF-derived RuO ₂ /Co ₃ O ₄ heterojunctions as highly efficient bifunctional electrocatalysts for HER and OER in alkaline solutions. RSC Advances, 2017, 7, 3686-3694.	1.7	116
47	Magnetic field-assisted hydrothermal growth of chain-like nanostructure of magnetite. Chemical Physics Letters, 2005, 401, 374-379.	1.2	115
48	In Situ Oneâ€Pot Synthesis of MOF–Polydopamine Hybrid Nanogels with Enhanced Photothermal Effect for Targeted Cancer Therapy. Advanced Science, 2018, 5, 1800287.	5.6	115
49	Multifunctional Fe3O4@C@Ag hybrid nanoparticles as dual modal imaging probes and near-infrared light-responsive drug delivery platform. Biomaterials, 2013, 34, 571-581.	5.7	114
50	A Novel Approach for the in Situ Synthesis of Pt–Pd Nanoalloys Supported on Fe ₃ O ₄ @C Core–Shell Nanoparticles with Enhanced Catalytic Activity for Reduction Reactions. ACS Applied Materials & Interfaces, 2014, 6, 2671-2678.	4.0	113
51	Insights into the reduction of 4-nitrophenol to 4-aminophenol on catalysts. Chemical Physics Letters, 2017, 684, 148-152.	1.2	112
52	Fundamental magnetic parameters from pure synthetic greigite (Fe ₃ S ₄). Journal of Geophysical Research, 2008, 113, .	3.3	110
53	Nitrogen/oxygen co-doped mesoporous carbon octahedrons for high-performance potassium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 12317-12324.	5.2	110
54	Conversion of Chicken Feather Waste to N-Doped Carbon Nanotubes for the Catalytic Reduction of 4-Nitrophenol. Environmental Science & amp; Technology, 2014, 48, 10191-10197.	4.6	109

#	Article	IF	CITATIONS
55	Conversion of 5-hydroxymethylfurfural into 5-ethoxymethylfurfural and ethyl levulinate catalyzed by MOF-based heteropolyacid materials. Green Chemistry, 2016, 18, 5884-5889.	4.6	107
56	Core–Shell Metal-Organic Frameworks as Fe ²⁺ Suppliers for Fe ²⁺ -Mediated Cancer Therapy under Multimodality Imaging. Chemistry of Materials, 2017, 29, 3477-3489.	3.2	107
57	Magnetic-Field-Induced Formation of One-Dimensional Magnetite Nanochains. Langmuir, 2009, 25, 7135-7139.	1.6	105
58	Active and Durable Hydrogen Evolution Reaction Catalyst Derived from Pd-Doped Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2016, 8, 13378-13383.	4.0	103
59	A Flexible Sulfurâ€Enriched Nitrogen Doped Multichannel Hollow Carbon Nanofibers Film for High Performance Sodium Storage. Small, 2018, 14, e1802218.	5.2	103
60	Synthesis of MgFe2O4 nanocrystallites under mild conditions. Materials Chemistry and Physics, 2006, 97, 394-397.	2.0	102
61	Invisible photonic printing: computer designing graphics, UV printing and shown by a magnetic field. Scientific Reports, 2013, 3, 1484.	1.6	100
62	Synthesis and Assembly of Magnetite Nanocubes into Flux-Closure Rings. Journal of Physical Chemistry C, 2007, 111, 6998-7003.	1.5	98
63	A MOF-derived self-template strategy toward cobalt phosphide electrodes with ultralong cycle life and high capacity. Journal of Materials Chemistry A, 2017, 5, 10321-10327.	5.2	98
64	Freeâ€Standing Holey Ni(OH) ₂ Nanosheets with Enhanced Activity for Water Oxidation. Small, 2017, 13, 1700334.	5.2	97
65	Synthesis of carbon nanotubes by reduction of carbon dioxide with metallic lithium. Carbon, 2003, 41, 3063-3067.	5.4	96
66	Fe2O3 Nanoparticles Wrapped in Multi-walled Carbon Nanotubes With Enhanced Lithium Storage Capability. Scientific Reports, 2013, 3, 3392.	1.6	96
67	Size- and Solvent-Dependent Magnetically Responsive Optical Diffraction of Carbon-Encapsulated Superparamagnetic Colloidal Photonic Crystals. Journal of Physical Chemistry C, 2011, 115, 11427-11434.	1.5	94
68	MOF-derived self-assembled ZnO/Co ₃ O ₄ nanocomposite clusters as high-performance anodes for lithium-ion batteries. Dalton Transactions, 2015, 44, 16946-16952.	1.6	86
69	Pd–Fe3O4@C hybrid nanoparticles: preparation, characterization, and their high catalytic activity toward Suzuki coupling reactions. Journal of Materials Chemistry, 2012, 22, 22750.	6.7	85
70	Manganese hexacyanoferrate/MnO2 composite nanostructures as a cathode material for supercapacitors. Journal of Materials Chemistry A, 2013, 1, 2621.	5.2	85
71	Biodegradable Core-shell Dual-Metal-Organic-Frameworks Nanotheranostic Agent for Multiple Imaging Guided Combination Cancer Therapy. Theranostics, 2017, 7, 4605-4617.	4.6	85
72	Biomass waste inspired nitrogen-doped porous carbon materials as high-performance anode for lithium-ion batteries. Journal of Alloys and Compounds, 2017, 693, 1197-1204.	2.8	84

#	Article	IF	CITATIONS
73	Preparation of ultrafine powders of TiO2 by hydrothermal H2O2 oxidation starting from metallic Ti. Journal of Materials Chemistry, 1993, 3, 203.	6.7	83
74	Diamond Formation by Reduction of Carbon Dioxide at Low Temperatures. Journal of the American Chemical Society, 2003, 125, 9302-9303.	6.6	83
75	Preparation of porous MoO ₂ @C nano-octahedrons from a polyoxometalate-based metal–organic framework for highly reversible lithium storage. Journal of Materials Chemistry A, 2016, 4, 12434-12441.	5.2	83
76	Preparation and characterization of single-crystalline bismuth nanowires by a low-temperature solvothermal process. Chemical Physics Letters, 2003, 367, 141-144.	1.2	82
77	Synthesis and magnetic properties of Zn1â^'xMnxFe2O4 nanoparticles. Physica B: Condensed Matter, 2004, 349, 124-128.	1.3	81
78	Growth of magnetite nanorods along its easy-magnetization axis of [110]. Journal of Crystal Growth, 2004, 263, 616-619.	0.7	79
79	Improved performance of graphene doped with pyridinic N for Li-ion battery: a density functional theory model. Physical Chemistry Chemical Physics, 2013, 15, 12982.	1.3	79
80	Ultrafast Potassium Storage in F-Induced Ultra-High Edge-Defective Carbon Nanosheets. ACS Nano, 2021, 15, 10217-10227.	7.3	79
81	Synthesis of FeCo nanocrystals encapsulated in nitrogen-doped graphene layers for use as highly efficient catalysts for reduction reactions. Nanoscale, 2015, 7, 450-454.	2.8	78
82	Novel Metal Polyphenol Framework for MR Imaging-Guided Photothermal Therapy. ACS Applied Materials & Interfaces, 2018, 10, 3295-3304.	4.0	78
83	Foamlike Porous Spinel Mn _{<i>x</i>} Co _{3â[^]<i>x</i>} O ₄ Material Derived from Mn ₃ [Co(CN) ₆] ₂ â< <i>n</i> H ₂ O Nanocubes: A Highly Efficient Anode Material for Lithium Batteries. Chemistry - A European Journal, 2012, 18, 15049-15056	1.7	77
84	Fe ₃ O ₄ @carbon@zeolitic imidazolate framework-8 nanoparticles as multifunctional pH-responsive drug delivery vehicles for tumor therapy in vivo. Journal of Materials Chemistry B, 2015, 3, 9033-9042.	2.9	77
85	Dual-Layer-Structured Nickel Hexacyanoferrate/MnO ₂ Composite as a High-Energy Supercapacitive Material Based on the Complementarity and Interlayer Concentration Enhancement Effect. ACS Applied Materials & Interfaces, 2014, 6, 6196-6201.	4.0	76
86	Synthesis and Catalytic Properties of Nickelâ^'Silica Composite Hollow Nanospheres. Journal of Physical Chemistry B, 2004, 108, 6311-6314.	1.2	74
87	Artificial Heterogeneous Interphase Layer with Boosted Ion Affinity and Diffusion for Na/Kâ€Metal Batteries. Advanced Materials, 2022, 34, e2109439.	11.1	73
88	MAGNETIC NANOCHAINS: A REVIEW. Nano, 2011, 06, 1-17.	0.5	72
89	Soft magnetic nanoparticles of BaFe12O19fabricated under mild conditions. Journal of Physics Condensed Matter, 2003, 15, L335-L339.	0.7	71
90	Formation of one-dimensional nickel wires by chemical reduction of nickel ions under magnetic fields. Chemical Communications, 2007, , 2844.	2.2	71

#	Article	IF	CITATIONS
91	Carboxyl-functionalized nanoparticles with magnetic core and mesopore carbon shell as adsorbents for the removal of heavy metal ions from aqueous solution. Dalton Transactions, 2011, 40, 559-563.	1.6	71
92	Tuning the pâ€Orbital Electron Structure of sâ€Block Metal Ca Enables a Highâ€Performance Electrocatalyst for Oxygen Reduction. Advanced Materials, 2021, 33, e2107103.	11.1	71
93	Synthesis and Magnetic Properties of Single-Crystals of MnFe2O4 Nanorods. European Journal of Inorganic Chemistry, 2004, 2004, 1165-1168.	1.0	69
94	Synthesis of carbon-coated, porous and water-dispersive Fe3O4 nanocapsules and their excellent performance for heavy metal removal applications. Dalton Transactions, 2012, 41, 5854.	1.6	68
95	Probing the influence of different oxygenated groups on graphene oxide's catalytic performance. Journal of Materials Chemistry A, 2014, 2, 610-613.	5.2	68
96	Fe nanoparticle-functionalized multi-walled carbon nanotubes: one-pot synthesis and their applications in magnetic removal of heavy metal ions. Journal of Materials Chemistry, 2012, 22, 9230.	6.7	67
97	Visually readable and highly stable self-display photonic humidity sensor. Journal of Materials Chemistry, 2012, 22, 1021-1027.	6.7	66
98	Synthesis of sulfonic acid-functionalized Fe ₃ O ₄ @C nanoparticles as magnetically recyclable solid acid catalysts for acetalization reaction. Dalton Transactions, 2014, 43, 1220-1227.	1.6	65
99	Novel Mn ₃ [Co(CN) ₆] ₂ @SiO ₂ @Ag Core–Shell Nanocube: Enhanced Twoâ€Photon Fluorescence and Magnetic Resonance Dualâ€Modal Imagingâ€Guided Photothermal and Chemoâ€therapy. Small, 2015, 11, 5956-5967.	5.2	65
100	Electroless Deposition Metals on Poly(dimethylsiloxane) with Strong Adhesion As Flexible and Stretchable Conductive Materials. ACS Applied Materials & Interfaces, 2018, 10, 2075-2082.	4.0	65
101	Engineering the coordination environment enables molybdenum single-atom catalyst for efficient oxygen reduction reaction. Journal of Catalysis, 2020, 389, 150-156.	3.1	64
102	Prussian Blue Analogue Mn3[Co(CN)6]2·nH2O porous nanocubes: large-scale synthesis and their CO2 storage properties. Dalton Transactions, 2011, 40, 5557.	1.6	62
103	Facile synthesis of porous Mn2O3 hierarchical microspheres for lithium battery anode with improved lithium storage properties. Journal of Alloys and Compounds, 2013, 576, 86-92.	2.8	61
104	Selfâ€Additive Lowâ€Dimensional Ruddlesden–Popper Perovskite by the Incorporation of Glycine Hydrochloride for Highâ€Performance and Stable Solar Cells. Advanced Functional Materials, 2020, 30, 2000034.	7.8	61
105	Preparation of carbon spheres consisting of amorphous carbon cores and graphene shells. Carbon, 2004, 42, 229-232.	5.4	60
106	Magnetic properties improvement in Fe3O4 nanoparticles grown under magnetic fields. Journal of Crystal Growth, 2004, 266, 500-504.	0.7	60
107	The creation of extra storage capacity in nitrogen-doped porous carbon as high-stable potassium-ion battery anodes. Carbon, 2021, 178, 256-264.	5.4	60
108	High catalytic activity for CO oxidation of Co ₃ O ₄ nanoparticles in SiO ₂ nanocapsules. Journal of Materials Chemistry A, 2013, 1, 637-643.	5.2	59

#	Article	IF	CITATIONS
109	Room-temperature synthesis of Prussian blue analogue Co3[Co(CN)6]2 porous nanostructures and their CO2 storage properties. RSC Advances, 2011, 1, 1574.	1.7	58
110	Hydrothermal Synthesis and Characterization of Bi2Fe4O9Nanoparticles. Chemistry Letters, 2004, 33, 502-503.	0.7	57
111	Synthesis of carbon–Fe3O4 coaxial nanofibres by pyrolysis of ferrocene in supercritical carbon dioxide. Carbon, 2007, 45, 727-731.	5.4	57
112	Multifunctional mesoporous nanoparticles as pH-responsive Fe2+ reservoirs and artemisinin vehicles for synergistic inhibition of tumor growth. Biomaterials, 2014, 35, 6498-6507.	5.7	57
113	Morphology-Controllable Synthesis of Metal Organic Framework Cd ₃ [Co(CN) ₆] ₂ · <i>n</i> H ₂ 0 Nanostructures for Hydrogen Storage Applications. Crystal Growth and Design, 2012, 12, 2257-2264.	1.4	56
114	Study of Self-Assembly of Octahedral Magnetite under an External Magnetic Field. Journal of Physical Chemistry C, 2009, 113, 17301-17305.	1.5	54
115	Enhanced Oxygen Reduction Reactions in Fuel Cells on Hâ€Decorated and Bâ€Substituted Graphene. ChemPhysChem, 2013, 14, 514-519.	1.0	54
116	Experimental and theoretical investigations of nitro-group doped porous carbon as a high performance lithium-ion battery anode. Journal of Materials Chemistry A, 2015, 3, 18657-18666.	5.2	54
117	Enhanced CO oxidation on CeO ₂ /Co ₃ O ₄ nanojunctions derived from annealing of metal organic frameworks. Nanoscale, 2016, 8, 19761-19768.	2.8	54
118	Dual Graphiticâ€N Doping in a Sixâ€Membered Câ€Ring of Grapheneâ€Analogous Particles Enables an Efficient Electrocatalyst for the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2019, 58, 16973-16980.	7.2	54
119	Preparation of carbon micro-spheres by hydrothermal treatment of methylcellulose sol. Materials Letters, 2005, 59, 3738-3741.	1.3	52
120	pH-Responsive Iron Manganese Silicate Nanoparticles as <i>T</i> ₁ - <i>T</i> ₂ * Dual-Modal Imaging Probes for Tumor Diagnosis. ACS Applied Materials & Interfaces, 2015, 7, 5373-5383.	4.0	52
121	Synthesis and luminescence properties of hand-like α-Bi2O3 microcrystals. Materials Letters, 2008, 62, 1165-1168.	1.3	50
122	Magnetically separable Prussian blue analogue Mn3[Co(CN)6]2·nH2O porous nanocubes as excellent absorbents for heavy metal ions. Nanoscale, 2011, 3, 4270.	2.8	50
123	Tuning the nitrogen-doping configuration in carbon materials <i>via</i> sulfur doping for ultrastable potassium ion storage. Journal of Materials Chemistry A, 2021, 9, 16150-16159.	5.2	50
124	Hydrothermal epitaxy of highly oriented TiO2 thin films on silicon. Applied Physics Letters, 1995, 66, 1608-1610.	1.5	48
125	A way to obtain visible blue light emission in porous silicon. Applied Physics Letters, 2003, 82, 1018-1020.	1.5	48
126	The formation of legume-like structures of Co nanoparticles through a polymer-assisted magnetic-field-induced assembly. Nanotechnology, 2007, 18, 345301.	1.3	48

#	Article	IF	CITATIONS
127	Nanoporous PtFe Nanoparticles Supported on N-Doped Porous Carbon Sheets Derived from Metal–Organic Frameworks as Highly Efficient and Durable Oxygen Reduction Reaction Catalysts. ACS Applied Materials & Interfaces, 2017, 9, 32106-32113.	4.0	48
128	Magnetically controllable colloidal photonic crystals: unique features and intriguing applications. Journal of Materials Chemistry C, 2013, 1, 6013.	2.7	47
129	Incorporation of Cu–N _x cofactors into graphene encapsulated Co as biomimetic electrocatalysts for efficient oxygen reduction. Nanoscale, 2018, 10, 21076-21086.	2.8	47
130	Energetic Metal–Organic Frameworks Derived Highly Nitrogenâ€Doped Porous Carbon for Superior Potassium Storage. Small, 2020, 16, e2002771.	5.2	47
131	Constructing Graphiticâ€Nitrogenâ€Bonded Pentagons in Interlayerâ€Expanded Graphene Matrix toward Carbonâ€Based Electrocatalysts for Acidic Oxygen Reduction Reaction. Advanced Materials, 2021, 33, e2103133.	11.1	47
132	Formation of Nickel Dendritic Crystals with Peculiar Orientations by Magnetic-Induced Aggregation and Limited Diffusion. Crystal Growth and Design, 2008, 8, 2464-2468.	1.4	46
133	Low-Cost, Acid/Alkaline-Resistant, and Fluorine-Free Superhydrophobic Fabric Coating from Onionlike Carbon Microspheres Converted from Waste Polyethylene Terephthalate. Environmental Science & Technology, 2014, 48, 2928-2933.	4.6	46
134	Photo-Enhanced Singlet Oxygen Generation of Prussian Blue-Based Nanocatalyst for Augmented Photodynamic Therapy. IScience, 2018, 9, 14-26.	1.9	46
135	Metallic 1T phase MoS ₂ nanosheets decorated hollow cobalt sulfide polyhedra for high-performance lithium storage. Journal of Materials Chemistry A, 2018, 6, 12613-12622.	5.2	46
136	Improving electrocatalytic activity of iridium for hydrogen evolution at high current densities above 1000 mA cmâ^'2. Applied Catalysis B: Environmental, 2019, 258, 117965.	10.8	46
137	Synthesis of Necklace-like Magnetic Nanorings. Langmuir, 2010, 26, 5957-5962.	1.6	45
138	Lowâ€ŧemperature magnetic properties of greigite (Fe ₃ S ₄). Geochemistry, Geophysics, Geosystems, 2009, 10, .	1.0	44
139	Converting Poly(ethylene terephthalate) Waste into Carbon Microspheres in a Supercritical CO2System. Environmental Science & Technology, 2011, 45, 534-539.	4.6	44
140	Redox Catalysis Promoted Activation of Sulfur Redox Chemistry for Energy-Dense Flexible Solid-State Zn–S Battery. ACS Nano, 2022, 16, 7344-7351.	7.3	44
141	Modification of Porous Nâ€Doped Carbon with Sulfonic Acid toward High″CE/Capacity Anode Material for Potassium″on Batteries. Advanced Functional Materials, 2022, 32, .	7.8	44
142	Synthesis of octahedral magnetite microcrystals with high crystallinity and low coercive field. Journal of Crystal Growth, 2009, 311, 394-398.	0.7	43
143	Mn(<scp>ii</scp>) mediated degradation of artemisinin based on Fe ₃ O ₄ @MnSiO ₃ -FA nanospheres for cancer therapy in vivo. Nanoscale, 2015, 7, 12542-12551.	2.8	43
144	Atomically Dispersed Mn within Carbon Frameworks as High-Performance Oxygen Reduction Electrocatalysts for Zinc–Air Battery. ACS Sustainable Chemistry and Engineering, 2020, 8, 427-434.	3.2	43

#	Article	IF	CITATIONS
145	Synthesis of Novel Two-Phase Co@SiO ₂ Nanorattles with High Catalytic Activity. Inorganic Chemistry, 2014, 53, 9073-9079.	1.9	41
146	Controlled synthesis of Co ₃ O ₄ nanocubes under external magnetic fields and their magnetic properties. Dalton Transactions, 2011, 40, 597-601.	1.6	40
147	CoMn ₂ O ₄ hierarchical microspheres with high catalytic activity towards p-nitrophenol reduction. Dalton Transactions, 2014, 43, 13865.	1.6	40
148	Increase of Co 3d projected electronic density of states in AgCoO2 enabled an efficient electrocatalyst toward oxygen evolution reaction. Nano Energy, 2019, 57, 753-760.	8.2	40
149	Disappearing of the Verwey transition in magnetite nanoparticles synthesized under a magnetic field: implications for the origin of charge ordering. Chemical Physics Letters, 2004, 390, 55-58.	1.2	39
150	Improved surface-enhanced Raman scattering on micro-scale Au hollow spheres: Synthesis and application in detecting tetracycline. Analyst, The, 2011, 136, 2527.	1.7	39
151	High and stable catalytic activity of porous Ag/Co 3 O 4 nanocomposites derived from MOFs for CO oxidation. Applied Catalysis A: General, 2014, 487, 189-194.	2.2	39
152	Carboxyl and negative charge-functionalized superparamagnetic nanochains with amorphous carbon shell and magnetic core: synthesis and their application in removal of heavy metal ions. Nanoscale, 2011, 3, 4600.	2.8	38
153	Preparation of Î ³ -Fe2O3@C@MoO3 core/shell nanocomposites as magnetically recyclable catalysts for efficient and selective epoxidation of olefins. Dalton Transactions, 2014, 43, 6041.	1.6	38
154	Preparation of TiO2 powders with different morphologies by an oxidation-hydrothermal combination method. Materials Letters, 1995, 22, 77-80.	1.3	37
155	Hydrothermal formation of magnetic Ni–Cu alloy nanocrystallites at low temperatures. Nanotechnology, 2004, 15, 1054-1058.	1.3	37
156	Mn3[Co(CN)6]2@SiO2 Core-shell Nanocubes: Novel bimodal contrast agents for MRI and optical imaging. Scientific Reports, 2013, 3, 2647.	1.6	37
157	Universal Strategy for Homogeneously Doping Noble Metals into Cyano-Bridged Coordination Polymers. ACS Applied Materials & Interfaces, 2015, 7, 2088-2096.	4.0	37
158	Interface engineering of Ru–Co ₃ O ₄ nanocomposites for enhancing CO oxidation. Journal of Materials Chemistry A, 2018, 6, 11037-11043.	5.2	37
159	Edge-nitrogen enriched carbon nanosheets for potassium-ion battery anodes with an ultrastable cycling stability. Carbon, 2021, 184, 277-286.	5.4	37
160	Construction of flexible V3S4@CNF films as long-term stable anodes for sodium-ion batteries. Chemical Engineering Journal, 2021, 423, 130229.	6.6	37
161	A novel two-dimensional square grid cobalt complex: Synthesis, structure, luminescent and magnetic properties. Inorganic Chemistry Communication, 2007, 10, 1360-1364.	1.8	36
162	The positive influence of boron-doped graphyne on surface enhanced Raman scattering with pyridine as the probe molecule and oxygen reduction reaction in fuel cells. RSC Advances, 2013, 3, 4074.	1.7	36

#	Article	IF	CITATIONS
163	O species-decorated graphene shell encapsulating iridium–nickel alloy as an efficient electrocatalyst towards hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 15079-15088.	5.2	36
164	High apacity and Stable Sodium‣ulfur Battery Enabled by Confined Electrocatalytic Polysulfides Full Conversion. Advanced Functional Materials, 2021, 31, 2100666.	7.8	35
165	Synthesis of Superparamagnetic Colloidal Nanochains as Magnetic-Responsive Bragg Reflectors. Journal of Physical Chemistry C, 2010, 114, 19660-19666.	1.5	34
166	FexCo3â^'xO4 nanoporous particles stemmed from metal–organic frameworks Fe3[Co(CN)6]2: A highly efficient material for removal of organic dyes from water. Journal of Alloys and Compounds, 2013, 559, 57-63.	2.8	34
167	A facile synthesis of multifunctional ZnO/Ag sea urchin-like hybrids as highly sensitive substrates for surface-enhanced Raman detection. RSC Advances, 2013, 3, 11715.	1.7	34
168	Rapid Adsorption Enables Interface Engineering of PdMnCo Alloy/Nitrogen-Doped Carbon as Highly Efficient Electrocatalysts for Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 38419-38427.	4.0	34
169	Lewisâ€Basic EDTA as a Highly Active Molecular Electrocatalyst for CO ₂ Reduction to CH ₄ . Angewandte Chemie - International Edition, 2021, 60, 23002-23009.	7.2	33
170	Fabrication of ultrafine SnO2 thin films by the hydrothermal method. Thin Solid Films, 1995, 264, 25-27.	0.8	32
171	Formation of Co 3 O 4 hollow polyhedrons from metal-organic frameworks and their catalytic activity for CO oxidation. Materials Letters, 2016, 182, 214-217.	1.3	32
172	Tuning the Electronic Structure of Se via Constructing Rh-MoSe ₂ Nanocomposite to Generate High-Performance Electrocatalysis for Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 9137-9144.	3.2	32
173	Biomineralization-inspired nanozyme for single-wavelength laser activated photothermal-photodynamic synergistic treatment against hypoxic tumors. Nanoscale, 2020, 12, 4051-4060.	2.8	32
174	Hollow Cuprous Oxide@Nitrogenâ€Đoped Carbon Nanocapsules for Cascade Chemodynamic Therapy. Small, 2022, 18, e2107422.	5.2	32
175	Synthesis of Magnetite Nanorods through Reduction of Î ² -FeOOH. Chemistry Letters, 2005, 34, 636-637.	0.7	31
176	Reducing Reaction of Fe3O4in Nanoscopic Reactors of a-CNTs. Journal of Physical Chemistry B, 2007, 111, 1724-1728.	1.2	31
177	Experimental and Theoretical Investigations on the Magneticâ€Fieldâ€Induced Variation of Surface Energy of Co ₃ O ₄ Crystal Faces. Chemistry - A European Journal, 2010, 16, 12088-12090.	1.7	31
178	Preparation and biological characterization of hollow magnetic Fe3O4@C nanoparticles as drug carriers with high drug loading capability, pH-control drug release and MRI properties. Biomaterials Science, 2013, 1, 965.	2.6	31
179	Magnetic properties in BaFe12O19 nanoparticles prepared under a magnetic field. Journal of Magnetism and Magnetic Materials, 2004, 280, 281-286.	1.0	30
180	Synthesis of Large-Size Diamonds by Reduction of Dense Carbon Dioxide with Alkali Metals (K, Li). Journal of Physical Chemistry B, 2004, 108, 4239-4241.	1.2	30

#	Article	IF	CITATIONS
181	Formation of carbon micro-sphere chains by defluorination of PTFE in a magnesium and supercritical carbon dioxide system. Green Chemistry, 2005, 7, 733.	4.6	30
182	The positive influence of boron-doped graphene with pyridine as a probe molecule on SERS: a density functional theory study. Journal of Materials Chemistry, 2012, 22, 15336.	6.7	30
183	Yolk-type Au@Fe3O4@C nanospheres for drug delivery, MRI and two-photon fluorescence imaging. Dalton Transactions, 2013, 42, 9906.	1.6	30
184	ZnO/Co ₃ O ₄ Porous Nanocomposites Derived from MOFs: Roomâ€Temperature Ferromagnetism and High Catalytic Oxidation of CO. ChemPhysChem, 2013, 14, 3953-3959.	1.0	30
185	Nitrogen-Doped Graphene Quantum Dots as Metal-Free Photocatalysts for Near-Infrared Enhanced Reduction of 4-Nitrophenol. ACS Applied Nano Materials, 2019, 2, 7043-7050.	2.4	30
186	Selfâ€Assembled Singleâ€6ite Nanozyme for Tumorâ€6pecific Amplified Cascade Enzymatic Therapy. Angewandte Chemie, 2021, 133, 3038-3044.	1.6	30
187	Low temperature synthesis of carbon nanospheres by reducing supercritical carbon dioxide with bimetallic lithium and potassium. Carbon, 2006, 44, 1303-1307.	5.4	29
188	Magnetic structure of greigite (Fe ₃ S ₄) probed by neutron powder diffraction and polarized neutron diffraction. Journal of Geophysical Research, 2009, 114, .	3.3	29
189	Reusable photonic wordpad with water as ink prepared by radical polymerization. Journal of Materials Chemistry, 2011, 21, 13062.	6.7	29
190	One for Two: Conversion of Waste Chicken Feathers to Carbon Microspheres and (NH ₄)HCO ₃ . Environmental Science & Technology, 2014, 48, 6500-6507.	4.6	29
191	Metalâ€Free Catalytic Reduction of 4â€Nitrophenol by MOFsâ€Derived Nâ€Doped Carbon. ChemistrySelect, 2018, 3, 1108-1112.	0.7	29
192	Magnetic characteristics of synthetic pseudoâ€singleâ€domain and multiâ€domain greigite (Fe ₃ S ₄). Geophysical Research Letters, 2007, 34, .	1.5	28
193	A facile carboxylation of CNT/Fe3O4 composite nanofibers for biomedical applications. Materials Chemistry and Physics, 2009, 114, 33-36.	2.0	28
194	Core–Shell Structurized Fe ₃ O ₄ @C@MnO ₂ Nanoparticles as pH Responsive T ₁ -T ₂ * Dual-Modal Contrast Agents for Tumor Diagnosis. ACS Biomaterials Science and Engineering, 2018, 4, 3047-3054.	2.6	28
195	Cobalt Nanocrystals Encapsulated in Heteroatomâ€Rich Porous Carbons Derived from Conjugated Microporous Polymers for Efficient Electrocatalytic Hydrogen Evolution. Small, 2018, 14, e1803232.	5.2	27
196	Boosting Hydrazine Oxidation Reaction on CoP/Co Mott–Schottky Electrocatalyst through Engineering Active Sites. Journal of Physical Chemistry Letters, 2021, 12, 4849-4856.	2.1	27
197	Construction of NiS Nanosheets Anchored on the Inner Surface of Nitrogen-Doped Hollow Carbon Matrixes with Enhanced Sodium and Potassium Storage Performances. ACS Applied Energy Materials, 2021, 4, 662-670.	2.5	27
198	Optimizing the Interlayer Spacing of Heteroatom-Doped Carbon Nanofibers toward Ultrahigh Potassium-Storage Performances. ACS Applied Materials & Interfaces, 2022, 14, 9212-9221.	4.0	27

#	Article	IF	CITATIONS
199	Synthesis of Eu2O3 hollow submicrometer spheres through a sol–gel template approach. Materials Letters, 2007, 61, 4452-4455.	1.3	26
200	Synthesis and magnetic properties of iron oxide nanoparticles/C and α-Fe/iron oxide nanoparticles/C composites. Journal of Magnetism and Magnetic Materials, 2008, 320, 107-112.	1.0	26
201	Enhanced SERS of the complex substrate using Au supported on graphene with pyridine and R6G as the probe molecules. Chemical Physics Letters, 2013, 564, 54-59.	1.2	26
202	Facile Approach to Prepare Pd Nanoarray Catalysts within Porous Alumina Templates on Macroscopic Scales. ACS Applied Materials & Interfaces, 2013, 5, 12695-12700.	4.0	26
203	Experimental and Theoretical Studies on the Effects of Magnetic Fields on the Arrangement of Surface Spins and the Catalytic Activity of Pd Nanoparticles. ACS Applied Materials & Interfaces, 2015, 7, 6019-6024.	4.0	26
204	Boosting oxygen evolution reaction on graphene through engineering electronic structure. Carbon, 2020, 170, 414-420.	5.4	26
205	Formation of variously shaped carbon nanotubes in carbon dioxide–alkali metal (Li, Na) system. Carbon, 2005, 43, 1104-1108.	5.4	25
206	The effect of external magnetic fields on the catalytic activity of Pd nanoparticles in Suzuki cross-coupling reactions. Nanoscale, 2016, 8, 8355-8362.	2.8	25
207	Ultraâ€small Albumin Templated Gd/Ru Composite Nanodots for In Vivo Dual modal MR/Thermal Imaging Guided Photothermal Therapy. Advanced Healthcare Materials, 2018, 7, 1800322.	3.9	25
208	Coreâ^'Shell Cylindrical Magnetic Domains in Nickel Wires Prepared under Magnetic Fields. Journal of Physical Chemistry C, 2009, 113, 2710-2714.	1.5	24
209	Lithium Storage Properties of Porous Carbon Formed Through the Reaction of Supercritical Carbon Dioxide with Alkali Metals. Journal of the American Ceramic Society, 2011, 94, 3078-3083.	1.9	24
210	Rational design of a hollow porous structure for enhancing diffusion kinetics of K ions in edge-nitrogen doped carbon nanorods. Nano Research, 2022, 15, 8109-8117.	5.8	24
211	Hydrothermal preparation of highly oriented polycrystalline ZnO thin films. Materials Letters, 1995, 22, 93-95.	1.3	23
212	Synthesis of magnetosome chain-like structures. Nanotechnology, 2008, 19, 475603.	1.3	23
213	Bifunctional luminescent superparamagnetic nanocomposites of CdSe/CdS-Fe3O4 synthesized via a facile method. Journal of Materials Chemistry, 2012, 22, 8263.	6.7	23
214	Bimetallic Zeolitic Imidazolate Framework as an Intrinsic Two-Photon Fluorescence and pH-Responsive MR Imaging Agent. ACS Omega, 2018, 3, 9790-9797.	1.6	23
215	Growth of Conical Carbon Nanotubes by Chemical Reduction of MgCO3. Journal of Physical Chemistry B, 2005, 109, 10557-10560.	1.2	22
216	Synthesis of Polygonized Carbon Nanotubes Utilizing Inhomogeneous Catalyst Activity of Nonspherical Fe3O4Nanoparticles. Journal of Physical Chemistry B, 2006, 110, 16404-16407.	1.2	22

#	Article	IF	CITATIONS
217	Experimental and theoretical investigations on the negative influence of an applied magnetic field on SERS of Ag nanoparticles. Chemical Communications, 2011, 47, 11237.	2.2	22
218	Boosting the K ⁺ -adsorption capacity in edge-nitrogen doped hierarchically porous carbon spheres for ultrastable potassium ion battery anodes. Nanoscale, 2021, 13, 19634-19641.	2.8	22
219	Optimizing the nitrogen configuration in interlayer-expanded carbon materials <i>via</i> sulfur-bridged bonds toward remarkable energy storage performances. Journal of Materials Chemistry A, 2022, 10, 10033-10042.	5.2	22
220	MoS ₂ ultrathin nanosheets obtained under a high magnetic field for lithium storage with stable and high capacity. Nanoscale, 2015, 7, 10925-10930.	2.8	21
221	Cu Nanocluster-Loaded TiO ₂ Nanosheets for Highly Efficient Generation of CO-Free Hydrogen by Selective Photocatalytic Dehydrogenation of Methanol to Formaldehyde. ACS Applied Materials & Interfaces, 2021, 13, 18619-18626.	4.0	21
222	Simultaneous reversible tuning of H ⁺ and Zn ²⁺ coinsertion in MnO ₂ cathode for high-capacity aqueous Zn-ion battery. Nanoscale, 2022, 14, 6085-6093.	2.8	21
223	Photoluminescence in porous silicon obtained by hydrothermal etching. Physics Letters, Section A: General, Atomic and Solid State Physics, 1996, 220, 293-296.	0.9	20
224	Necklace-shaped assembly of single-crystal NiFe2O4 nanospheres under magnetic field. Materials Letters, 2005, 59, 2101-2103.	1.3	20
225	General solution-based route to V–VI semiconductors nanorods from hydrolysate. Journal of Nanoparticle Research, 2007, 9, 269-274.	0.8	20
226	Synthesis and characterization of bracelet-like magnetic nanorings consisting of Ag–Fe3O4 bi-component nanoparticles. Dalton Transactions, 2011, 40, 8622.	1.6	20
227	Regulating the sodium storage sites in nitrogen-doped carbon materials by sulfur-doping engineering for sodium ion batteries. Electrochimica Acta, 2022, 424, 140645.	2.6	20
228	The positive influence of boron-doped graphene for its supported Au clusters: enhancement of SERS and oxygen molecule adsorption. Physical Chemistry Chemical Physics, 2012, 14, 13564.	1.3	19
229	Vapochromic behavior of MOF for selective sensing of ethanol. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 194, 158-162.	2.0	19
230	Variations of Major Product Derived from Conversion of 5-Hydroxymethylfurfural over a Modified MOFs-Derived Carbon Material in Response to Reaction Conditions. Nanomaterials, 2018, 8, 492.	1.9	19
231	Atomically Dispersed Manganese Lewis Acid Sites Catalyze Electrohydrogenation of Nitrogen to Ammonia. CCS Chemistry, 2022, 4, 2115-2126.	4.6	19
232	<scp>RuNi</scp> Alloy Nanoparticles Encapsulated in <scp>Oxygenâ€Doped</scp> Carbon as Bifunctional Catalyst towards Hydrogen Electrocatalysis. Chinese Journal of Chemistry, 2021, 39, 3455-3461.	2.6	19
233	Growth of Large Diamond Crystals by Reduction of Magnesium Carbonate with Metallic Sodium. Angewandte Chemie - International Edition, 2003, 42, 4501-4503.	7.2	18
234	A Simple and Practical Method for the Preparation of Magnetite Nanowires. Chemistry Letters, 2007, 36, 840-841.	0.7	18

#	Article	IF	CITATIONS
235	Colloids of superparamagnetic shell: synthesis and self-assembly into 3D colloidal crystals with anomalous optical properties. CrystEngComm, 2011, 13, 5394.	1.3	18
236	High Catalytic Performance of Au/Bi ₂ O ₃ for Preferential Oxidation of CO in H ₂ . ACS Applied Materials & Interfaces, 2021, 13, 29532-29540.	4.0	18
237	<scp>MOFsâ€Derived Nâ€Doped Carbonâ€Encapsulated</scp> Metal/Alloy Electrocatalysts to Tune the Electronic Structure and Reactivity of Carbon Active Sites ^{â€} . Chinese Journal of Chemistry, 2021, 39, 2626-2637.	2.6	18
238	Low-temperature deposition of ultrafine rutile TiO2 thin films by the hydrothermal method. Physica Status Solidi A, 1996, 156, 381-385.	1.7	17
239	Preparation of ferromagnetic \hat{I}^3 - Fe2O3 nanocrystallites by oxidative co-decomposition of PEG 6000 and ferrocene. Solid State Communications, 2007, 141, 573-576.	0.9	17
240	Assembly of superparamagnetic colloidal nanoparticles into field-responsive purple Bragg reflectors. Dalton Transactions, 2011, 40, 4810.	1.6	17
241	The Influence of Nâ€doped Carbon Materials on Supported Pd: Enhanced Hydrogen Storage and Oxygen Reduction Performance. ChemPhysChem, 2014, 15, 344-350.	1.0	17
242	Magnetic field induced controllable self-assembly of maghemite nanocrystals: From 3D arrays to 1D nanochains. Applied Surface Science, 2015, 347, 202-207.	3.1	17
243	The Enhancement of the Catalytic Oxidation of CO on Ir/CeO ₂ Nanojunctions. Inorganic Chemistry, 2019, 58, 14238-14243.	1.9	17
244	Silver Nanoparticles Encapsulated in an N-Doped Porous Carbon Matrix as High-Active Catalysts toward Oxygen Reduction Reaction via Electron Transfer to Outer Graphene Shells. ACS Sustainable Chemistry and Engineering, 2019, 7, 16511-16519.	3.2	17
245	N and O multi-coordinated vanadium single atom with enhanced oxygen reduction activity. Journal of Colloid and Interface Science, 2021, 594, 466-473.	5.0	17
246	Strong and stable ultraviolet luminescence in porous silicon in situ passivated by manganese. Applied Physics Letters, 2000, 77, 854-856.	1.5	16
247	GAMMA-RAY IRRADIATION-INDUCED IMPROVEMENT OF HYDROGEN ADSORPTION IN MULTI-WALLED CARBON NANOTUBES. Nano, 2009, 04, 7-11.	0.5	16
248	One-pot facile synthesis and optical properties of porous La2O2CO3 hollow microspheres. Journal of Alloys and Compounds, 2011, 509, 744-747.	2.8	16
249	Structural engineering of sulfur-doped carbon encapsulated bismuth sulfide core-shell structure for enhanced potassium storage performance. Nano Research, 2021, 14, 3545-3551.	5.8	16
250	Ultraviolet light emission from porous silicon hydrothermally prepared. Physics Letters, Section A: General, Atomic and Solid State Physics, 1996, 224, 133-136.	0.9	15
251	Ferromagnetic resonance characterization of greigite (Fe ₃ S ₄), monoclinic pyrrhotite (Fe ₇ S ₈), and nonâ€interacting titanomagnetite (Fe _{3â€<i>x</i>} Ti _{<i>x</i>} O ₄). Geochemistry, Geophysics, Geosystems, 2012. 13	1.0	15
252	Enhanced Activity of CuCeO Catalysts for CO Oxidation: Influence of Cu ₂ O and the Dispersion of Cu ₂ O, CuO, and CeO ₂ . ChemPhysChem, 2015, 16, 2415-2423.	1.0	15

#	Article	IF	CITATIONS
253	A robust spring-like lamellar VO/C nanostructure for high-rate and long-life potassium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 23939-23946.	5.2	15
254	Photoluminescence in ultrafine zinc sulfide thin film. Applied Physics Letters, 1996, 68, 3582-3584.	1.5	14
255	High-density crystalline quantum dots in blue emitting porous silicon. Journal of Applied Physics, 1997, 81, 7970-7972.	1.1	14
256	Growth of Magnesium Carbonate Single Crystal in Supercritical Carbon Dioxideâ^'Molten Sodium System. Crystal Growth and Design, 2004, 4, 415-417.	1.4	14
257	Growth of dendritic bismuth microspheres by solution-phase process. Materials Letters, 2007, 61, 3037-3040.	1.3	14
258	Preparation of Plywood-like Fe3BO5 Nanorods by a Facile Hydrothermal Method at Low Temperature. Chemistry Letters, 2008, 37, 752-753.	0.7	14
259	Pd–Co ₃ [Co(CN) ₆] ₂ hybrid nanoparticles: preparation, characterization, and challenge for the Suzuki–Miyaura coupling of aryl chlorides under mild conditions. Dalton Transactions, 2016, 45, 539-544.	1.6	14
260	Variations of normal state resistivity and Cu2+ localized spin moment in the single crystal Bi2Sr2 CaCU2O8 + x. Physica C: Superconductivity and Its Applications, 1997, 279, 241-245.	0.6	13
261	The enhanced coercivity for the magnetite/silica nanocomposite at room temperature. Materials Research Bulletin, 2004, 39, 1875-1880.	2.7	13
262	Sonochemical preparation of bimetallic Co/Cu nanoparticles in aqueous solution. Materials Research Bulletin, 2005, 40, 1623-1629.	2.7	13
263	Chainlike assembly of magnetite coated with SiO2 nanostructures induced by an applied magnetic field. Materials Research Bulletin, 2008, 43, 1321-1326.	2.7	13
264	Advances and Prospects in Wheat Eyespot Research: Contributions from Genetics and Molecular Tools. Journal of Phytopathology, 2011, 159, 457-470.	0.5	13
265	Generation of Pd@Ni NTs from Polyethylene Wastes and Their Application in the Electrochemical Hydrogen Evolution Reaction. ChemistrySelect, 2018, 3, 5321-5325.	0.7	13
266	Synthesis of urchin-like nickel nanoparticles with enhanced rotating magnetic field-induced cell necrosis and tumor inhibition. Chemical Engineering Journal, 2020, 400, 125823.	6.6	13
267	Preparation of zinc sulfide thin films by the hydrothermal method. Thin Solid Films, 1996, 272, 1-3.	0.8	12
268	A general route to synthesize water-dispersive noble metal–iron oxide bifunctional hybrid nanoparticles. Dalton Transactions, 2012, 41, 346-350.	1.6	12
269	A highly active defect engineered Cl-doped carbon catalyst for the N ₂ reduction reaction. Journal of Materials Chemistry A, 2021, 9, 5807-5814.	5.2	12
270	One-Step Construction of V ₅ S ₈ Nanoparticles Embedded in Amorphous Carbon Nanorods for High-Capacity and Long-Life Potassium Ion Half/Full Batteries. ACS Applied Materials & Interfaces, 2021, 13, 54308-54314.	4.0	12

#	Article	IF	CITATIONS
271	An indium-induced-synthesis In _{0.17} Ru _{0.83} O ₂ nanoribbon as highly active electrocatalyst for oxygen evolution in acidic media at high current densities above 400 mA cm ^{â^2} . Journal of Materials Chemistry A, 2022, 10, 3722-3731.	5.2	12
272	The role of in the blue luminescence in hydrothermally prepared porous silicon. Journal of Physics Condensed Matter, 1997, 9, L151-L156.	0.7	11
273	Magnetic properties of assembled ferrite nanostructures induced by magnetic fields. Journal of Physics Condensed Matter, 2005, 17, 5095-5100.	0.7	11
274	Ni Hollow Nanospheres: Preparation and Catalytic Activity. Journal of Nanomaterials, 2006, 2006, 1-7.	1.5	11
275	Low temperature synthesis and photoluminescence of cubic silicon carbide. Journal Physics D: Applied Physics, 2006, 39, 1472-1476.	1.3	11
276	Magnetic Field Effects on the Formation and Properties of Nickel Nanostructures. European Journal of Inorganic Chemistry, 2009, 2009, 435-440.	1.0	11
277	Assembly of non-crystalline cobalt particles into crystalline tricobalt tetroxide nanowires under an external magnetic field. CrystEngComm, 2010, 12, 3262.	1.3	11
278	Enhancing the Capacitance of Battery-Type Hybrid Capacitors by Encapsulating MgO Nanoparticles in Porous Carbon as Reservoirs for OH [–] lons from Electrolytes. ACS Applied Materials & Interfaces, 2019, 11, 21567-21577.	4.0	11
279	Lewisâ€Basic EDTA as a Highly Active Molecular Electrocatalyst for CO 2 Reduction to CH 4. Angewandte Chemie, 2021, 133, 23184.	1.6	11
280	Stabilizing V ₂ O ₃ in carbon nanofiber flexible films for ultrastable potassium storage. Inorganic Chemistry Frontiers, 2022, 9, 1434-1445.	3.0	11
281	Magnetic Field-induced Increasing of the Reaction Rates Controlled by the Diffusion of Paramagnetic Gases. Chemical Engineering and Technology, 2004, 27, 1273-1276.	0.9	10
282	Early Mars may have had a methanol ocean. Icarus, 2006, 180, 88-92.	1.1	10
283	Synthesis of hexagonal tungsten carbide in tungsten–sodium and supercritical carbon dioxide system. Materials Chemistry and Physics, 2006, 95, 113-116.	2.0	10
284	Synthesis of 3C–SiC nanowires by reaction of poly(ethylene terephthalate) waste with SiO2 microspheres. Journal of Alloys and Compounds, 2013, 566, 212-216.	2.8	10
285	Turning Carbon Atoms into Highly Active Oxygen Reduction Reaction Electrocatalytic Sites in Nitrogen-Doped Graphene-Coated Co@Ag. ACS Sustainable Chemistry and Engineering, 2018, 6, 14033-14041.	3.2	10
286	Out-of-Plane Alignment of Conjugated Semiconducting Polymers by Horizontal Rotation in a High Magnetic Field. Journal of Physical Chemistry Letters, 2021, 12, 3476-3484.	2.1	10
287	Cage-Confinement Pyrolysis Strategy to Synthesize Hollow Carbon Nanocage-Coated Copper Phosphide for Stable and High-Capacity Potassium-Ion Storage. ACS Applied Materials & Interfaces, 2021, 13, 52697-52705.	4.0	10
288	Synthesis of hollow microspheres of nickel using spheres of metallic zinc as templates under mild conditions. Journal of Materials Science, 2005, 40, 4411-4413.	1.7	9

#	Article	IF	CITATIONS
289	Shape-controlled synthesis and self-assembly of hexagonal cobalt ultrathin nanoflakes. Materials Chemistry and Physics, 2009, 113, 675-679.	2.0	9
290	Theoretical Investigation on SERS of Pyridine Adsorbed on C _{<i>n</i>} Clusters Induced by Charge Transfer: A Hint that SERS Could be Applied on Many Materials. ChemPhysChem, 2012, 13, 1449-1453.	1.0	9
291	Electrocatalysis in Room Temperature Sodiumâ€Sulfur Batteries: Tunable Pathway of Sulfur Speciation. Small Methods, 2022, 6, e2200335.	4.6	9
292	Material synthesis: Microstructure and light emitting in porous silicon derived from hydrothermal etching. High Pressure Research, 2001, 20, 1-8.	0.4	8
293	A Novel Way for Preparing Cu Nanowires. Chemistry Letters, 2005, 34, 430-431.	0.7	8
294	RECENT DEVELOPMENT IN DIAMOND SYNTHESIS. International Journal of Modern Physics B, 2008, 22, 309-326.	1.0	8
295	Magnetic properties of nickel film formed under magnetic fields. Journal Physics D: Applied Physics, 2008, 41, 205011.	1.3	8
296	Reduction of Complex Precursor Cobalt Bis(4-pyridine carboxylate) Tetrahydrate under an External Magnetic Field. Journal of Physical Chemistry C, 2009, 113, 7123-7128.	1.5	8
297	Treatment of discarded oil in supercritical carbon dioxide for preparation of carbon microspheres. Journal of Material Cycles and Waste Management, 2011, 13, 298-304.	1.6	8
298	Bioinspired Microenvironment Responsive Nanoprodrug as an Efficient Hydrophobic Drug Self-Delivery System for Cancer Therapy. ACS Applied Materials & Interfaces, 2021, 13, 33926-33936.	4.0	8
299	RbCa ₂ Nb ₃ O ₁₀ from X-ray powder data. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, i44-i44.	0.2	8
300	Ultrasmall Cu Nanocrystals Dispersed in Nitrogen-Doped Carbon as Highly Efficient Catalysts for CO ₂ Electroreduction. ACS Applied Materials & Interfaces, 2022, 14, 17240-17248.	4.0	8
301	High-yield synthesis of single-crystal short Eu2O3 nanorods through a facile sol–gel template approach. Journal of Crystal Growth, 2007, 309, 192-196.	0.7	7
302	Morphogenesis of Branched Coaxial Nanorods Formed in Supercritical Carbon Dioxide. Journal of Physical Chemistry C, 2008, 112, 2337-2342.	1.5	7
303	Synthesis and Characterization of Cobalt-Carbon Core-Shell Microspheres in Supercritical Carbon Dioxide System. Chinese Journal of Chemical Physics, 2008, 21, 76-80.	0.6	7
304	SYNTHESIS OF PEG-ENCAPSULATED SUPERPARAMAGNETIC COLLOIDAL NANOCRYSTALS CLUSTERS. Nano, 2010, 05, 333-339.	0.5	7
305	A facile approach to prepare Ni, Co, and Fe nanoarrays inside a native porous alumina template via a redox reaction. RSC Advances, 2012, 2, 2250.	1.7	7
306	Change in reaction pathway of nickel(II) complex induced by magnetic fields. Materials Chemistry and Physics, 2012, 133, 541-546.	2.0	7

#	Article	IF	CITATIONS
307	Experimental investigations on the weakening effect of magnetic fields on surfaceâ€enhanced Raman scattering. Journal of Raman Spectroscopy, 2013, 44, 525-530.	1.2	7
308	Adhesionâ€Enhanced Flexible Conductive Metal Patterns on Polyimide Substrate Through Direct Writing Catalysts with Novel Surfaceâ€Modification Electroless Deposition. ChemistrySelect, 2018, 3, 7612-7618.	0.7	7
309	Dual Graphiticâ€N Doping in a Sixâ€Membered Câ€Ring of Grapheneâ€Analogous Particles Enables an Efficient Electrocatalyst for the Hydrogen Evolution Reaction. Angewandte Chemie, 2019, 131, 17129-17136.	1.6	7
310	RuP Nanoparticles Supported on N, O Codoped Porous Hollow Carbon for Efficient Hydrogen Oxidation Reaction. Advanced Materials Interfaces, 2022, 9, .	1.9	7
311	Blue light emitted from porous silicon obtained by hydrothermal etching. Journal of Physics Condensed Matter, 1996, 8, L753-L758.	0.7	6
312	Fabrication of colored CaCO3 compacts by hydrothermal hot-pressing method. Materials Research Innovations, 1998, 2, 45-48.	1.0	6
313	A novel approach for the synthesis of 6H-SiC at a low temperature of 460°C. Materials Letters, 2006, 60, 2855-2857.	1.3	6
314	Investigation on the magnetic and electrical properties of fluorine-doped magnetites. Journal Physics D: Applied Physics, 2012, 45, 335001.	1.3	6
315	Experimental and Theoretical Investigations on the Ferroelectricity of Graphene Oxides. Acta Chimica Sinica, 2013, 71, 381.	0.5	6
316	Redox catalysis-promoted fast iodine kinetics for polyiodide-free Na–I ₂ electrochemistry. Journal of Materials Chemistry A, 2022, 10, 11325-11331.	5.2	6
317	Transport properties in iron-passivated porous silicon. Applied Surface Science, 2002, 191, 218-222.	3.1	5
318	Magnetic field-induced formation of molecule-based magnetic material [Co1.5(N3)(OH)(L)]n with antiferromagnetic coupling. Journal of Crystal Growth, 2008, 310, 3788-3791.	0.7	5
319	Synthesis of SiO ₂ spheres with magnetic cores: Implications for the primary accretion in the solar nebula. Journal of Geophysical Research, 2010, 115, .	3.3	5
320	Solvent Vapor-Assisted Magnetic Manipulation of Molecular Orientation and Carrier Transport of Semiconducting Polymers. ACS Applied Materials & amp; Interfaces, 2020, 12, 29487-29496.	4.0	5
321	Hydrothermal deposition and characterization of ultrafine ZrO2 thin films. Scripta Materialia, 1996, 7, 467-471.	0.5	4
322	Silicon quantum dot superlattice and metallic conducting behaviour in porous silicon. Journal of Physics Condensed Matter, 1997, 9, L569-L572.	0.7	4
323	Preparation and Characterization of Porous Silicon Powder. Materials Research Bulletin, 1998, 33, 293-297.	2.7	4
324	REMOVAL OF CATIONIC DYES FROM AQUEOUS SOLUTION USING CARBON-ENCAPSULATED SUPERPARAMAGNETIC COLLOIDAL NANOPARTICLES AS ADSORBENT. Nano, 2013, 08, 1350006.	0.5	4

#	Article	IF	CITATIONS
325	Tuning the structure and properties of a multiferroic metal–organic-framework <i>via</i> growing under high magnetic fields. RSC Advances, 2018, 8, 13675-13678.	1.7	4
326	Water Splitting: Cobalt Nanocrystals Encapsulated in Heteroatom-Rich Porous Carbons Derived from Conjugated Microporous Polymers for Efficient Electrocatalytic Hydrogen Evolution (Small 42/2018). Small, 2018, 14, 1870193.	5.2	4
327	A case of magnetic field-induced change in final product. Solid State Communications, 2005, 136, 490-493.	0.9	3
328	Effect of a low magnetic field on crystallinity and magnetic susceptibility of molecular magnet {NBu4[FeCr(ox)3]}x (NBu4+=tetra(n-butyl) ammonium ion; ox2â^'=oxalate ion). Journal of Magnetism and Magnetic Materials, 2006, 307, 38-42.	1.0	3
329	Carbon based Nanostructures. , 2006, , 247-274.		3
330	Oneâ€step electroless synthesis and properties of copper film deposited on silicon substrate. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 1580-1584.	0.8	3
331	Product change of molecule-magnetic material synthesis induced by magnetic field in hydrothermal system. Journal of Crystal Growth, 2011, 329, 82-85.	0.7	3
332	Parameters optimization of low carbon low alloy steel annealing process. Acta Metallurgica Sinica (English Letters), 2013, 26, 122-130.	1.5	3
333	Defect-induced ferromagnetism in a S = 1/2 quasi-one-dimensional Heisenberg antiferromagnetic chain compound. Scientific Reports, 2021, 11, 14442.	1.6	3
334	Construction of <scp>Carbonâ€Coated</scp> Cobalt Sulfide Hybrid Networks <scp>Interâ€Connected</scp> by Carbon Nanotubes for <scp>Performanceâ€Enhanced Potassiumâ€lon</scp> Storage. Chinese Journal of Chemistry, 2022, 40, 1313-1320.	2.6	3
335	Synthesis and characterization of single-crystalline BaH2SiO4 nanowires. Chemical Physics Letters, 2003, 375, 167-170.	1.2	2
336	Reply to Comment on"Growth of Large Diamond Crystals by Reduction of Magnesium Carbonate with Metallic Sodium― Angewandte Chemie - International Edition, 2004, 43, 4700.	7.2	2
337	PREPARATION OF MAGNETIC COMPOSITE OF NiFe2O4@SiO2 AND THE ASSEMBLY OF THE COLLOID PARTICLES BY MAGNETIC FIELDS. International Journal of Modern Physics B, 2005, 19, 2053-2059.	1.0	2
338	Alignment of Fe3O4-Carbon Coaxial Nanofibres in a Polymer for Improving Microwave Absorption. , 2007, , .		2
339	Acceleration of Liquid–Solid Redox Reaction with a Magneto-Catalyzed Method. Journal of Physical Chemistry C, 2018, 122, 21543-21547.	1.5	2
340	Magnetochemistry and chemical synthesis. Chinese Physics B, 2019, 28, 037102.	0.7	2
341	2-(Pyrimidin-2-ylsulfanyl)acetic acid. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, 0652-0652.	0.2	2
342	Origin of the grain growth anisotropy in Titania. Materials Research Bulletin, 1994, 29, 1079-1083.	2.7	1

#	Article	IF	CITATIONS
343	Hydrothermal doping of cobalt and magnetic properties in gamma iron oxide thin films. Materials Letters, 1997, 31, 247-250.	1.3	1
344	Anisotropic resistivity and Cu2+ localized spin moment in Bi2Sr2CaCu2O8+x crystals. Physica C: Superconductivity and Its Applications, 1997, 282-287, 1159-1160.	0.6	1
345	Preparation and characterization of a new single crystal Bi2Sr1.5Pr2.5Cu2Oy. Journal of Crystal Growth, 1998, 186, 133-136.	0.7	1
346	STABLE PHOTOLUMINESCENCE IN LOW-TEMPERATURE ANNEALED POROUS SILICON. Modern Physics Letters B, 2001, 15, 1077-1085.	1.0	1
347	Carrier band-to-band recombination in Mn-passivated porous silicon. Journal of Physics Condensed Matter, 2001, 13, 5377-5385.	0.7	1
348	Irreversible quenching of luminescence in porous silicon. Journal of Luminescence, 2002, 99, 125-129.	1.5	1
349	ROOM TEMPERATURE SELF-ASSEMBLY GROWTH OF COBALT NANOWIRES UNDER MAGNETIC FIELDS. International Journal of Modern Physics B, 2005, 19, 2728-2733.	1.0	1
350	Supercritical carbon dioxide assisted growth of sodium tungsten bronze (Na x WO3) crystallites. Journal of Materials Science, 2006, 41, 285-288.	1.7	1
351	Tetraaquabis[4-(imidazol-1-yl)benzoato-κN3]nickel(II). Acta Crystallographica Section E: Structure Reports Online, 2007, 63, m1042-m1043.	0.2	1
352	4-[4-(Diethylamino)benzylideneamino]-4 <i>H</i> -1,2,4-triazole. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o980-o980.	0.2	1
353	Exploration of the Structures of the Magnetically Induced Self-Assembly Photonic Crystals in a Solidified Polymer Matrix. Advanced Materials Research, 0, 634-638, 2324-2331.	0.3	1
354	Occurrence of Long-Chain-Alkanes and Polycyclic Aromatic Hydrocarbons (PAHs) in the Thermal System of Carbonate and Sodium. Letters in Organic Chemistry, 2005, 2, 257-260.	0.2	1
355	Growth of Large Diamond Crystals by Reduction of Magnesium Carbonate with Metallic Sodium ChemInform, 2003, 34, no.	0.1	0
356	Synthesis and Magnetic Properties of Single-Crystals of MnFe2O4 Nanorods ChemInform, 2004, 35, no.	0.1	0
357	Synthesis of Large-Size Diamonds by Reduction of Dense Carbon Dioxide with Alkali Metals (K, Li) ChemInform, 2004, 35, no.	0.1	0
358	Synthesis and Catalytic Properties of Nickel—Silica Composite Hollow Nanospheres ChemInform, 2004, 35, no.	0.1	0
359	IMPROVEMENT OF COERCIVITY IN COBALT-DOPED ANATASE TIO2 NANOPARTICLES HYDROTHERMALLY PREPARED. International Journal of Modern Physics B, 2005, 19, 2550-2555.	1.0	0
360	FORMATION AND HARD MAGNETIC PROPERTIES OF A HEXAGONAL NETWORK OF NICKEL FERRITE NANOPARTICLES. Modern Physics Letters B, 2006, 20, 1645-1651.	1.0	0

#	Article	IF	CITATIONS
361	Dynamically Regulate and Control Complicated Auto Panel Uniform Forming. Advanced Materials Research, 0, 239-242, 1543-1551.	0.3	0
362	Photoluminescence distinction of lung adenocarcinoma cells A549 and squamous cells H520 using metallothionein expression in response to Cd-doped Mn3[Co(CN)6]2 nanocubes. RSC Advances, 2016, 6, 84810-84814.	1.7	0