Zhenda Lu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6997033/zhenda-lu-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

118	13,583	49	116
papers	citations	h-index	g-index
128 ext. papers	15,296 ext. citations	11.5 avg, IF	6.58 L-index

#	Paper	IF	Citations
118	Scalable hierarchical lithiophilic engineering of metal foam enables stable lithium metal batteries. <i>Chemical Engineering Journal</i> , 2022 , 435, 134643	14.7	5
117	Transferring Liquid Metal to form a Hybrid Solid Electrolyte via a Wettability-Tuning Technology for Lithium Metal Anodes <i>Advanced Materials</i> , 2022 , e2200181	24	4
116	Atomic resolution in situ observation on photon-induced reshaping and phase transitions of CsPbBr3 nanocube and quantum dot. <i>Applied Physics Letters</i> , 2021 , 119, 203103	3.4	
115	In-situ forming Sub-2 nm hydrous iron oxide particles in MOFs for deep-treatment and high anti-interference in arsenic removal. <i>Chemical Engineering Journal</i> , 2021 , 431, 133813	14.7	О
114	Automated pick-and-place of single nanoparticle using electrically controlled low-surface energy nanotweezer. <i>AIP Advances</i> , 2021 , 11, 035219	1.5	1
113	Sulfophobic and Vacancy Design Enables Self-Cleaning Electrodes for Efficient Desulfurization and Concurrent Hydrogen Evolution with Low Energy Consumption. <i>Advanced Functional Materials</i> , 2021 , 31, 2101922	15.6	10
112	Engineering Two-Dimensional Metal-Organic Framework on Molecular Basis for Fast Li Conduction. <i>Nano Letters</i> , 2021 , 21, 5805-5812	11.5	9
111	Ultrasonic activation of inert poly(tetrafluoroethylene) enables piezocatalytic generation of reactive oxygen species. <i>Nature Communications</i> , 2021 , 12, 3508	17.4	33
110	Unexpected Coulomb Interactions in Nonpolar Solvent for Highly Efficient Nanoxerography of Perovskite Quantum Dots. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 59-64	6.4	2
109	The Role of Polymer and Inorganic Coatings to Enhance Interparticle Connections Diagnosed by Techniques. <i>Nano Letters</i> , 2021 , 21, 1530-1537	11.5	3
108	Assembly of Colloidal Nanoparticles into Hollow Superstructures by Controlling Phase Separation in Emulsion Droplets. <i>Small Structures</i> , 2021 , 2, 2100005	8.7	4
107	Synthesis of monodispersed VO2@Au corellemishell submicroparticles and their switchable optical properties. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 11669-11673	7.1	1
106	Oxygen-Deficient Ferric Oxide as an Electrochemical Cathode Catalyst for High-Energy Lithium-Sulfur Batteries. <i>Small</i> , 2020 , 16, e2000870	11	26
105	Selective removal of nitrate via the synergistic effect of oxygen vacancies and plasmon-induced hot carriers. <i>Chemical Engineering Journal</i> , 2020 , 397, 125435	14.7	13
104	Self-Assembly of Perovskite CsPbBr3 Quantum Dots Driven by a Photo-Induced Alkynyl Homocoupling Reaction. <i>Angewandte Chemie</i> , 2020 , 132, 17360-17366	3.6	7
103	Self-Assembly of Perovskite CsPbBr Quantum Dots Driven by a Photo-Induced Alkynyl Homocoupling Reaction. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 17207-17213	16.4	6
102	In Situ Tuning of Defects and Phase Transition in Titanium Dioxide by Lithiothermic Reduction. <i>ACS Applied Materials & Discourt & Discourt Materials & Discourt Materials & Discourt & Di</i>	9.5	12

(2019-2020)

101	Porous gold layer coated silver nanoplates with efficient antimicrobial activity. <i>Colloids and Surfaces B: Biointerfaces</i> , 2020 , 186, 110727	6	7
100	High-resolution combinatorial patterning of functional nanoparticles. <i>Nature Communications</i> , 2020 , 11, 6002	17.4	11
99	Deterministic Assembly of Single Sub-20hm Functional Nanoparticles Using a Thermally Modified Template with a Scanning Nanoprobe. <i>Advanced Materials</i> , 2020 , 32, e2005979	24	5
98	Fabrication of Homogeneous Non-Noble Metal Nanoparticles within Metal©rganic Framework Nanosheets for Catalytic Reduction of 4-Nitrophenol. <i>Crystal Growth and Design</i> , 2020 , 20, 6217-6225	3.5	13
97	Gallium Carbenicillin Framework Coated Defect-Rich Hollow TiO2 as a Photocatalyzed Oxidative Stress Amplifier against Complex Infections. <i>Advanced Functional Materials</i> , 2020 , 30, 2004861	15.6	24
96	Three-Dimensional-Percolated Ceramic Nanoparticles along Natural-Cellulose-Derived Hierarchical Networks for High Li Conductivity and Mechanical Strength. <i>Nano Letters</i> , 2020 , 20, 7397-7404	11.5	12
95	A systematic study of the synthesis of cesium lead halide nanocrystals: does CsPbBr or CsPbBr form?. <i>Nanoscale</i> , 2019 , 11, 1784-1789	7.7	32
94	Highly luminescent CsPbBr3 nanorods synthesized by a ligand-regulated reaction at the waterBil interface. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 1854-1858	7.1	31
93	Patterned plasmonic gradient for high-precision biosensing using a smartphone reader. <i>Nanoscale</i> , 2019 , 11, 12471-12476	7.7	8
92	Boosting the cycling stability of LixSi alloy microparticles through electroless copper deposition. <i>Chemical Engineering Journal</i> , 2019 , 370, 1019-1026	14.7	12
91	Highly enhanced durability of a graphitic carbon layer decorated PtNi alloy electrocatalyst toward the oxygen reduction reaction. <i>Chemical Communications</i> , 2019 , 55, 5693-5696	5.8	26
90	Efficient plasmon-hot electron conversion in Ag-CsPbBr hybrid nanocrystals. <i>Nature Communications</i> , 2019 , 10, 1163	17.4	54
89	Fluorescence hydrogel array based on interfacial cation exchange amplification for highly sensitive microRNA detection. <i>Analytica Chimica Acta</i> , 2019 , 1080, 206-214	6.6	12
88	Epitaxial growth of gold on silver nanoplates for imaging-guided photothermal therapy. <i>Materials Science and Engineering C</i> , 2019 , 105, 110023	8.3	13
87	Li -Containing, Continuous Silica Nanofibers for High Li Conductivity in Composite Polymer Electrolyte. <i>Small</i> , 2019 , 15, e1902729	11	29
86	Arbitrary Gold Nanoparticle Arrays Fabricated through AFM Nanoxerography and Interfacial Seeded Growth. <i>ACS Applied Materials & Seeded Growth</i> 11, 38347-38352	9.5	2
85	Preventing Anion Exchange between Perovskite Nanocrystals by Confinement in Porous SiO Nanobeads. <i>ACS Omega</i> , 2019 , 4, 22209-22213	3.9	13
84	Understanding the role of conductive polymer in thermal lithiation and battery performance of Li-Sn alloy anode. <i>Energy Storage Materials</i> , 2019 , 20, 7-13	19.4	14

83	Mesoporous Ce-Ti-Zr ternary oxide millispheres for efficient catalytic ozonation in bubble column. <i>Chemical Engineering Journal</i> , 2018 , 338, 261-270	14.7	35
82	Tailoring a nanostructured plasmonic absorber for high efficiency surface-assisted laser desorption/ionization. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 3424-3429	3.6	1
81	Thermal Lithiated-TiO: A Robust and Electron-Conducting Protection Layer for Li-Si Alloy Anode. <i>ACS Applied Materials & Distriction (Materials & Distriction (Materials & Distriction) (Materials & Dis</i>	9.5	29
80	Ultrasensitive Detection of Bacterial Protein Toxins on Patterned Microarray via Surface Plasmon Resonance Imaging with Signal Amplification by Conjugate Nanoparticle Clusters. <i>ACS Sensors</i> , 2018 , 3, 1639-1646	9.2	16
79	Atomic Characterization of Byproduct Nanoparticles on Cesium Lead Halide Nanocrystals Using High-Resolution Scanning Transmission Electron Microscopy. <i>Crystals</i> , 2018 , 8, 2	2.3	19
78	Systematic Investigation of Prelithiated SiO2 Particles for High-Performance Anodes in Lithium-Ion Battery. <i>Applied Sciences (Switzerland)</i> , 2018 , 8, 1245	2.6	17
77	Enhancing Luminescence and Photostability of CsPbBr3 Nanocrystals via Surface Passivation with Silver Complex. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 12994-13000	3.8	55
76	Core-Shell Nanoparticle Coating as an Interfacial Layer for Dendrite-Free Lithium Metal Anodes. <i>ACS Central Science</i> , 2017 , 3, 135-140	16.8	140
75	Surface passivation of mixed-halide perovskite CsPb(BrI) nanocrystals by selective etching for improved stability. <i>Nanoscale</i> , 2017 , 9, 7391-7396	7.7	58
74	Decorating fiber nanotip with single perovskite quantum dot and other luminescent nanocrystals synthesized in oil-phase. <i>Nanotechnology</i> , 2017 , 28, 46LT02	3.4	1
73	Challenges and Recent Progress in the Development of Si Anodes for Lithium-Ion Battery. <i>Advanced Energy Materials</i> , 2017 , 7, 1700715	21.8	459
72	Highly Efficient Water Decontamination by Using Sub-10 nm FeOOH Confined within Millimeter-Sized Mesoporous Polystyrene Beads. <i>Environmental Science & Environmental Science </i>	10.3	55
71	Use of an intermediate solid-state electrode to enable efficient hydrogen production from dilute organic matter. <i>Nano Energy</i> , 2017 , 39, 499-505	17.1	6
70	Assembly of LiMnPO Nanoplates into Microclusters as a High-Performance Cathode in Lithium-Ion Batteries. <i>ACS Applied Materials & Distriction</i> (1997) 100	9.5	33
69	A new strategy to address the challenges of nanoparticles in practical water treatment: mesoporous nanocomposite beads via flash freezing. <i>Nanoscale</i> , 2017 , 9, 19154-19161	7.7	24
68	Broadband enhancement of photoluminance from colloidal metal halide perovskite nanocrystals on plasmonic nanostructured surfaces. <i>Scientific Reports</i> , 2017 , 7, 14695	4.9	3
67	High-Performance Lithium Metal Negative Electrode with a Soft and Flowable Polymer Coating. <i>ACS Energy Letters</i> , 2016 , 1, 1247-1255	20.1	218
66	Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. <i>Nature Energy</i> , 2016 , 1,	62.3	509

(2015-2016)

Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. <i>Nature Energy</i> , 2016 , 1,	62.3	1065
Direct Conversion of Perovskite Thin Films into Nanowires with Kinetic Control for Flexible Optoelectronic Devices. <i>Nano Letters</i> , 2016 , 16, 871-6	11.5	147
Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 2862-7	11.5	643
Metallurgically lithiated SiOx anode with high capacity and ambient air compatibility. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 7408-13	11.5	103
Free-Standing Graphene-Encapsulated Silicon Nanoparticle Aerogel as an Anode for Lithium Ion Batteries. <i>ChemNanoMat</i> , 2016 , 2, 671-674	3.5	22
Fine-tuning the metallic core-shell nanostructures for plasmonic perovskite solar cells. <i>Applied Physics Letters</i> , 2016 , 109, 183901	3.4	28
Water-assisted crystallization of mesoporous anatase TiO2 nanospheres. <i>Nanoscale</i> , 2016 , 8, 9113-7	7.7	15
Precise Perforation and Scalable Production of Si Particles from Low-Grade Sources for High-Performance Lithium Ion Battery Anodes. <i>Nano Letters</i> , 2016 , 16, 7210-7215	11.5	89
Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes. <i>ACS Nano</i> , 2015 , 9, 2540-7	16.7	372
Artificial Solid Electrolyte Interphase-Protected LixSi Nanoparticles: An Efficient and Stable Prelithiation Reagent for Lithium-Ion Batteries. <i>Journal of the American Chemical Society</i> , 2015 , 137, 83	7 <u>2⁶5</u> 4	232
A high tap density secondary silicon particle anode fabricated by scalable mechanical pressing for lithium-ion batteries. <i>Energy and Environmental Science</i> , 2015 , 8, 2371-2376	35.4	339
A Sulfur Cathode with Pomegranate-Like Cluster Structure. <i>Advanced Energy Materials</i> , 2015 , 5, 150021	121.8	108
Magnetic Field-Controlled Lithium Polysulfide Semiliquid Battery with Ferrofluidic Properties. <i>Nano Letters</i> , 2015 , 15, 7394-9	11.5	48
Nanopurification of silicon from 84% to 99.999% purity with a simple and scalable process. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 13473-7	11.5	46
Confined growth of CdSe quantum dots in colloidal mesoporous silica for multifunctional nanostructures. <i>Science China Materials</i> , 2015 , 58, 481-489	7.1	8
A versatile Rlick chemistryProute to size-restricted, robust, and functionalizable hydrophilic nanocrystals. <i>Small</i> , 2015 , 11, 1644-8	11	11
Self-Assembled TiO2 Nanorods as Electron Extraction Layer for High-Performance Inverted Polymer Solar Cells. <i>Chemistry of Materials</i> , 2015 , 27, 44-52	9.6	31
High-Areal-Capacity Silicon Electrodes with Low-Cost Silicon Particles Based on Spatial Control of Self-Healing Binder. <i>Advanced Energy Materials</i> , 2015 , 5, 1401826	21.8	166
	Nature Energy, 2016, 1, Direct Conversion of Perovskite Thin Films into Nanowires with Kinetic Control for Flexible Optoelectronic Devices. Nano Letters, 2016, 16, 871-6 Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2862-7 Metallurgically lithiated SiOx anode with high capacity and ambient air compatibility. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7408-13 Free-Standing Graphene-Encapsulated Silicon Nanoparticle Aerogel as an Anode for Lithium Ion Batteries. ChemNanoMat, 2016, 2, 671-674 Fine-tuning the metallic core-shell nanostructures for plasmonic perovskite solar cells. Applied Physics Letters, 2016, 109, 183901 Water-assisted crystallization of mesoporous anatase TiO2 nanospheres. Nanoscale, 2016, 8, 9113-7 Precise Perforation and Scalable Production of Si Particles from Low-Grade Sources for High-Performance Lithium Ion Battery Anodes. Nano Letters, 2016, 16, 7210-7215 Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes. ACS Nano, 2015, 9, 2540-7 Artificial Solid Electrolyte Interphase-Protected LixSi Nanoparticles: An Efficient and Stable Prelithiation Reagent for Lithium-Ion Batteries. Journal of the American Chemical Society, 2015, 137, 83 A high tap density secondary silicon particle anode fabricated by scalable mechanical pressing for lithium-ion batteries. Energy and Environmental Science, 2015, 8, 2371-2376 A Sulfur Cathode with Pomegranate-Like Cluster Structure. Advanced Energy Materials, 2015, 5, 150021 Magnetic Field-Controlled Lithium Polysulfide Semiliquid Battery with Ferrofluidic Properties. Nano Letters, 2015, 15, 7394-9 Nanopurification of silicon from 84% to 99.999% purity with a simple and scalable process. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13473	Nature Energy, 2016, 1, Direct Conversion of Perovskite Thin Films into Nanowires with Kinetic Control for Flexible Optoelectronic Devices. Nano Letters, 2016, 16, 871-6 Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2862-7 Metallurgically lithiated SiOx anode with high capacity and ambient air compatibility. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7408-13 Free-Standing Graphene-Encapsulated Silicon Nanoparticle Aerogel as an Anode for Lithium Ion Batteries. ChemNanoMat, 2016, 2, 671-674 Fine-tuning the metallic core-shell nanostructures for plasmonic perovskite solar cells. Applied Physics Letters, 2016, 109, 183901 Water-assisted crystallization of mesoporous anatase TiO2 nanospheres. Nanoscale, 2016, 8, 9113-7 Precise Perforation and Scalable Production of Si Particles from Low-Grade Sources for High-Performance Lithium Ion Battery Anodes. Nano Letters, 2016, 16, 7210-7215 11.5 Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes. ACS Nano, 2015, 9, 2540-7 Artificial Solid Electrolyte Interphase-Protected LixSi Nanoparticles: An Efficient and Stable Prelithiation Reagent for Lithium-Ion Batteries. Journal of the American Chemical Society, 2015, 137, 8372-54 A Sulfur Cathode with Pomegranate-Like Cluster Structure. Advanced Energy Materials, 2015, 5, 15002112.18 Magnetic Field-Controlled Lithium Polysulfide Semiliquid Battery with Ferrofluidic Properties. Nano Letters, 2015, 15, 7394-9 Nanopurification of silicon from 84% to 99.999% purity with a simple and scalable process. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13473-7 Letters, 2015, 15, 7394-9 Nanopurification of silicon from 84% to 99.999% purity with a simple and scalable process. Proceedings of the National Academy of

47	In situ observation of divergent phase transformations in individual sulfide nanocrystals. <i>Nano Letters</i> , 2015 , 15, 1264-71	11.5	86
46	A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. <i>Nature Nanotechnology</i> , 2014 , 9, 187-92	28.7	1804
45	A Three-Dimensionally Interconnected Carbon Nanotubellonducting Polymer Hydrogel Network for High-Performance Flexible Battery Electrodes. <i>Advanced Energy Materials</i> , 2014 , 4, 1400207	21.8	242
44	Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. <i>Nano Letters</i> , 2014 , 14, 6016-22	11.5	545
43	Dry-air-stable lithium silicide-lithium oxide core-shell nanoparticles as high-capacity prelithiation reagents. <i>Nature Communications</i> , 2014 , 5, 5088	17.4	203
42	Photocatalytic synthesis and photovoltaic application of Ag-TiO2 nanorod composites. <i>Nano Letters</i> , 2013 , 13, 5698-702	11.5	162
41	Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size. <i>Nanoscale</i> , 2013 , 5, 944-52	7.7	278
40	Crab shells as sustainable templates from nature for nanostructured battery electrodes. <i>Nano Letters</i> , 2013 , 13, 3385-90	11.5	185
39	Mesoporous titanate-based cation exchanger for efficient removal of metal cations. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 5097	13	24
38	Lanthanide upconversion within microstructured optical fibers: improved detection limits for sensing and the demonstration of a new tool for nanocrystal characterization. <i>Nanoscale</i> , 2012 , 4, 7448-	- ₹ 17	14
37	Colloidal nanoparticle clusters: functional materials by design. Chemical Society Reviews, 2012, 41, 6874	-§8 .5	319
36	Highly Stable Silver Nanoplates for Surface Plasmon Resonance Biosensing. <i>Angewandte Chemie</i> , 2012 , 124, 5727-5731	3.6	21
35	Highly stable silver nanoplates for surface plasmon resonance biosensing. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 5629-33	16.4	281
34	Templated synthesis of metal nanorods in silica nanotubes. <i>Journal of the American Chemical Society</i> , 2011 , 133, 19706-9	16.4	168
33	Assembly and photonic properties of superparamagnetic colloids in complex magnetic fields. <i>Langmuir</i> , 2011 , 27, 13444-50	4	32
32	Gram-scale synthesis of silica nanotubes with controlled aspect ratios by templating of nickel-hydrazine complex nanorods. <i>Langmuir</i> , 2011 , 27, 12201-8	4	77
31	Synthesis and thermochromic properties of vanadium dioxide colloidal particles. <i>Journal of Materials Chemistry</i> , 2011 , 21, 14776		49
30	Role of salt in the spontaneous assembly of charged gold nanoparticles in ethanol. <i>Langmuir</i> , 2011 , 27, 5282-9	4	91

29	Direct assembly of hydrophobic nanoparticles to multifunctional structures. <i>Nano Letters</i> , 2011 , 11, 340	4-11.3	91
28	Formation mechanism and size control in one-pot synthesis of mercapto-silica colloidal spheres. <i>Langmuir</i> , 2011 , 27, 3372-80	4	25
27	A systematic study of the synthesis of silver nanoplates: is citrate a "magic" reagent?. <i>Journal of the American Chemical Society</i> , 2011 , 133, 18931-9	16.4	563
26	Self-assembly and photocatalysis of mesoporous TiO2 nanocrystal clusters. <i>Nano Research</i> , 2011 , 4, 103	-114	126
25	An interesting molecular-assembly of Eyclodextrin pipelines with embedded hydrophilic nickel maleonitriledithiolate. <i>Dalton Transactions</i> , 2011 , 40, 11788-94	4.3	9
24	Porous monodisperse V2O5 microspheres as cathode materials for lithium-ion batteries. <i>Journal of Materials Chemistry</i> , 2011 , 21, 6365		176
23	One-pot synthesis and optical property of copper(I) sulfide nanodisks. <i>Inorganic Chemistry</i> , 2010 , 49, 6601-8	5.1	85
22	Mesoporous TiO(2) nanocrystal clusters for selective enrichment of phosphopeptides. <i>Analytical Chemistry</i> , 2010 , 82, 7249-58	7.8	108
21	Superparamagnetic nanocrystal clusters for enrichment of low-abundance peptides and proteins. <i>Chemical Communications</i> , 2010 , 46, 6174-6	5.8	26
20	Stable Bulky Particles Formed by TS-1 Zeolite Nanocrystals in the Presence of H2O2. <i>ChemCatChem</i> , 2010 , 2, 407-412	5.2	38
19	Magnetically recoverable core-shell nanocomposites with enhanced photocatalytic activity. <i>Chemistry - A European Journal</i> , 2010 , 16, 6243-50	4.8	285
18	Self-Assembled TiO2 Nanocrystal Clusters for Selective Enrichment of Intact Phosphorylated Proteins. <i>Angewandte Chemie</i> , 2010 , 122, 1906-1910	3.6	26
17	Self-assembled TiO2 nanocrystal clusters for selective enrichment of intact phosphorylated proteins. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 1862-6	16.4	119
16	Rewritable Photonic Paper with Hygroscopic Salt Solution as Ink. <i>Advanced Materials</i> , 2009 , 21, 4259-42	624	204
15	Reconstruction of Silver Nanoplates by UV Irradiation: Tailored Optical Properties and Enhanced Stability. <i>Angewandte Chemie</i> , 2009 , 121, 3568-3571	3.6	54
14	Reconstruction of silver nanoplates by UV irradiation: tailored optical properties and enhanced stability. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 3516-9	16.4	219
13	Rattle-type silica colloidal particles prepared by a surface-protected etching process. <i>Nano Research</i> , 2009 , 2, 583-591	10	164
12	Magnetochromatic microspheres: rotating photonic crystals. <i>Journal of the American Chemical Society</i> , 2009 , 131, 15687-94	16.4	214

11	Self-assembly and tunable plasmonic property of gold nanoparticles on mercapto-silica microspheres. <i>Journal of Materials Chemistry</i> , 2009 , 19, 4597		41
10	Shape- and Size-Controlled Synthesis of Calcium Molybdate Doughnut-Shaped Microstructures. Journal of Physical Chemistry C, 2009 , 113, 16414-16423	3.8	65
9	An inclusion complex of Etyclodextrin with mnt anion (mnt = maleonitriledithiolate) studied by induced circular dichroism. <i>Journal of Inclusion Phenomena and Macrocyclic Chemistry</i> , 2008 , 61, 101-106	;	5
8	Syntheses, Structures, and Physical Properties of Three Novel Metal©rganic Frameworks Constructed from Aromatic Polycarboxylate Acids and Flexible Imidazole-Based Synthons. <i>Crystal Growth and Design</i> , 2007 , 7, 93-99	3.5	328
7	Syntheses, Structures, and Photoluminescent and Magnetic Studies of Metal Drganic Frameworks Assembled with 5-Sulfosalicylic Acid and 1,4-Bis (imidazol-1-ylmethyl)-benzene. <i>Crystal Growth and Design</i> , 2007 , 7, 268-274	3.5	75
6	A novel 2D herringbone-like zinc coordination polymer built from helical motif: Hydrothermal synthesis, structure and properties. <i>Inorganic Chemistry Communication</i> , 2007 , 10, 74-76	3.1	20
5	A di(thio-1,2-dicyane ethylenylthio)ethane-tethered Etyclodextrin dimer as a molecular carrier of ferrocene in DMF solution. <i>Journal of Inclusion Phenomena and Macrocyclic Chemistry</i> , 2007 , 59, 357-361		2
4	Syntheses and Structures of Four d10 Metal@rganic Frameworks Assembled with Aromatic Polycarboxylate and bix [bix = 1,4-Bis(imidazol-1-ylmethyl)benzene]. <i>Crystal Growth and Design</i> , 2006 , 6, 530-537	3.5	256
3	Two types of novel layer framework structures assembled from 5-sulfosalicylic acid and lanthanide ions. <i>CrystEngComm</i> , 2006 , 8, 847	3.3	55
2	New metallocene-bridged cyclodextrin dimer: A stable derivative of the antitumor drug titanocene dichloride and its potent cytotoxity against human breast cancer (MCF-7) cells. <i>Journal of Organometallic Chemistry</i> , 2006 , 691, 5895-5899	2.3	8
1	Lithiated Hybrid Polymer/Inorganic PAA/MnO2 Protection Layer for High-Performance Tin Oxide Alloy Anode. ACS Applied Energy Materials,	6.1	2