

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6996576/publications.pdf Version: 2024-02-01

Χιι Ηου

#	Article	IF	CITATIONS
1	Biomimetic smart nanopores and nanochannels. Chemical Society Reviews, 2011, 40, 2385.	38.1	632
2	Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour. Nature, 2015, 519, 70-73.	27.8	394
3	A Biomimetic Potassium Responsive Nanochannel: G-Quadruplex DNA Conformational Switching in a Synthetic Nanopore. Journal of the American Chemical Society, 2009, 131, 7800-7805.	13.7	316
4	Gating of Single Synthetic Nanopores by Proton-Driven DNA Molecular Motors. Journal of the American Chemical Society, 2008, 130, 8345-8350.	13.7	295
5	Bioinspired Artificial Single Ion Pump. Journal of the American Chemical Society, 2013, 135, 16102-16110.	13.7	254
6	Smart Gating Multiâ€Scale Pore/Channelâ€Based Membranes. Advanced Materials, 2016, 28, 7049-7064.	21.0	242
7	Enantioselective Recognition in Biomimetic Single Artificial Nanochannels. Journal of the American Chemical Society, 2011, 133, 7644-7647.	13.7	239
8	Interplay between materials and microfluidics. Nature Reviews Materials, 2017, 2, .	48.7	236
9	Building Bioâ€Inspired Artificial Functional Nanochannels: From Symmetric to Asymmetric Modification. Angewandte Chemie - International Edition, 2012, 51, 5296-5307.	13.8	228
10	A Biomimetic Asymmetric Responsive Single Nanochannel. Journal of the American Chemical Society, 2010, 132, 11736-11742.	13.7	227
11	Learning from Nature: Building Bio-Inspired Smart Nanochannels. ACS Nano, 2009, 3, 3339-3342.	14.6	215
12	A pHâ€Gating Ionic Transport Nanodevice: Asymmetric Chemical Modification of Single Nanochannels. Advanced Materials, 2010, 22, 2440-2443.	21.0	203
13	Digitally Tunable Microfluidic Bioprinting of Multilayered Cannular Tissues. Advanced Materials, 2018, 30, e1706913.	21.0	199
14	Stability of Surface-Immobilized Lubricant Interfaces under Flow. Chemistry of Materials, 2015, 27, 1792-1800.	6.7	181
15	Current Rectification in Temperatureâ€Responsive Single Nanopores. ChemPhysChem, 2010, 11, 859-864.	2.1	174
16	Light and pH Cooperative Nanofluidic Diode Using a Spiropyranâ€Functionalized Single Nanochannel. Advanced Materials, 2012, 24, 2424-2428.	21.0	158
17	A biomimetic zinc activated ion channel. Chemical Communications, 2010, 46, 1682.	4.1	138
18	Fine-grain induced outstanding energy storage performance in novel Bi _{0.5} K _{0.5} TiO ₃ –Ba(Mg _{1/3} Nb _{2/3})O _{3<!--<br-->ceramics <i>via</i> a hot-pressing strategy. Journal of Materials Chemistry C, 2019, 7, 12127-12138.}	sub\$25	119

#	Article	IF	CITATIONS
19	Interface Design of Nanochannels for Energy Utilization. ACS Nano, 2018, 12, 908-911.	14.6	118
20	Structure development of carbon-based solar-driven water evaporation systems. Science Bulletin, 2021, 66, 1472-1483.	9.0	118
21	Dynamic Curvature Nanochannelâ€Based Membrane with Anomalous Ionic Transport Behaviors and Reversible Rectification Switch. Advanced Materials, 2019, 31, e1805130.	21.0	114
22	Fatigueâ€Free Aurivillius Phase Ferroelectric Thin Films with Ultrahigh Energy Storage Performance. Advanced Energy Materials, 2020, 10, 2001536.	19.5	114
23	Bioâ€inspired Photoelectric Conversion Based on Smartâ€Gating Nanochannels. Advanced Functional Materials, 2010, 20, 2636-2642.	14.9	113
24	Anomalies of Ionic/Molecular Transport in Nano and Sub-Nano Confinement. Nano Letters, 2020, 20, 6937-6946.	9.1	112
25	Energy storage properties of bismuth ferrite based ternary relaxor ferroelectric ceramics through a viscous polymer process. Chemical Engineering Journal, 2021, 412, 127555.	12.7	111
26	Bioinspired Smart Gating of Nanochannels Toward Photoelectric onversion Systems. Advanced Materials, 2010, 22, 1021-1024.	21.0	104
27	Structure-design strategy of 0–3 type (Bi0.32Sr0.42Na0.20)TiO3/MgO composite to boost energy storage density, efficiency and charge-discharge performance. Journal of the European Ceramic Society, 2019, 39, 2889-2898.	5.7	100
28	Fabrication of Stable Single Nanochannels with Controllable Ionic Rectification. Small, 2010, 6, 361-365.	10.0	97
29	Liquid gating elastomeric porous system with dynamically controllable gas/liquid transport. Science Advances, 2018, 4, eaao6724.	10.3	96
30	Tannic acid modified single nanopore with multivalent metal ions recognition and ultra-trace level detection. Nano Today, 2020, 33, 100868.	11.9	96
31	Bioinspired nanofluidic iontronics. Science, 2021, 373, 628-629.	12.6	96
32	A highly stretchable and robust non-fluorinated superhydrophobic surface. Journal of Materials Chemistry A, 2017, 5, 16273-16280.	10.3	89
33	Liquid-based porous membranes. Chemical Society Reviews, 2020, 49, 7907-7928.	38.1	89
34	Nonvolatile ferroelectric field-effect transistors. Nature Communications, 2020, 11, 2811.	12.8	87
35	Synthetic Asymmetricâ€&haped Nanodevices with Symmetric pHâ€Gating Characteristics. Advanced Functional Materials, 2015, 25, 1102-1110.	14.9	83
36	Bioinspired Smart Gate-Location-Controllable Single Nanochannels: Experiment and Theoretical Simulation. ACS Nano, 2015, 9, 12264-12273.	14.6	82

#	Article	IF	CITATIONS
37	Single-Droplet Multiplex Bioassay on a Robust and Stretchable Extreme Wetting Substrate through Vacuum-Based Droplet Manipulation. ACS Nano, 2018, 12, 932-941.	14.6	82
38	Identifying the Structural Evolution of the Sodium Ion Battery Na ₂ FePO ₄ F Cathode. Angewandte Chemie - International Edition, 2018, 57, 11918-11923.	13.8	79
39	Nanostructured Fibrous Membranes with Rose Spike-Like Architecture. Nano Letters, 2017, 17, 6235-6240.	9.1	72
40	Bioinspired Ionâ€Transport Properties of Solidâ€State Single Nanochannels and Their Applications in Sensing. ChemPhysChem, 2012, 13, 2455-2470.	2.1	69
41	Analysis of reaction pathways for n-pentane cracking over zeolites to produce light olefins. Chemical Engineering Journal, 2017, 307, 372-381.	12.7	68
42	Bio-inspired Smart Single Asymmetric Hourglass Nanochannels for Continuous Shape and Ion Transport Control. Small, 2015, 11, 786-791.	10.0	67
43	Chemiresistive nanosensors with convex/concave structures. Nano Today, 2018, 20, 84-100.	11.9	63
44	Exploiting Na ₂ MnPO ₄ F as a high-capacity and well-reversible cathode material for Na-ion batteries. RSC Advances, 2014, 4, 40985-40993.	3.6	57
45	Ultrafast Nanofiltration through Large-Area Single-Layered Graphene Membranes. ACS Applied Materials & Interfaces, 2017, 9, 9239-9244.	8.0	54
46	Nanofluidic Diode Based on Branched Alumina Nanochannels with Tunable Ionic Rectification. ACS Applied Materials & Interfaces, 2013, 5, 7931-7936.	8.0	52
47	Liquid gating membrane. National Science Review, 2020, 7, 9-11.	9.5	52
48	Biomimetic ionic rectifier systems: Asymmetric modification of single nanochannels by ion sputtering technology. Journal of Electroanalytical Chemistry, 2011, 656, 231-236.	3.8	51
49	Synergistic effects of second metals on performance of (Co, Ag, Cu)-doped Pd/Al2O3 catalysts for 2-ethyl-anthraquinone hydrogenation. Journal of Catalysis, 2017, 347, 79-88.	6.2	51
50	Dynamic air/liquid pockets for guiding microscale flow. Nature Communications, 2018, 9, 733.	12.8	51
51	Creating polar antivortex in PbTiO3/SrTiO3 superlattice. Nature Communications, 2021, 12, 2054.	12.8	50
52	Layer-by-layer removal of insulating few-layer mica flakes for asymmetric ultra-thin nanopore fabrication. Nano Research, 2012, 5, 99-108.	10.4	49
53	Reaction pathways of n-pentane cracking on the fresh and regenerated Sr, Zr and La-loaded ZSM-5 zeolites. Chemical Engineering Journal, 2018, 349, 297-308.	12.7	49
54	Two dimensional nanomaterialâ€based separation membranes. Electrophoresis, 2019, 40, 2029-2040.	2.4	47

#	Article	IF	CITATIONS
55	Recent progress in bio-inspired electrospun materials. Composites Communications, 2019, 11, 12-20.	6.3	46
56	Light-regulated ion transport through artificial ion channels based on TiO2 nanotubular arrays. Chemical Communications, 2012, 48, 5901.	4.1	45
57	Promotion on light olefins production through modulating the reaction pathways for n -pentane catalytic cracking over ZSM-5 based catalysts. Applied Catalysis A: General, 2017, 543, 51-60.	4.3	45
58	Synthesis and performance of pillared HZSM-5 nanosheet zeolites for n-decane catalytic cracking to produce light olefins. Applied Catalysis A: General, 2019, 572, 24-33.	4.3	43
59	Effects of regeneration of ZSM-5 based catalysts on light olefins production in n-pentane catalytic cracking. Chemical Engineering Journal, 2017, 321, 572-583.	12.7	42
60	Continuous water-water hydrogen bonding network across the rim of carbon nanotubes facilitating water transport for desalination. Nano Research, 2021, 14, 2171-2178.	10.4	40
61	Roles of the free radical and carbenium ion mechanisms in pentane cracking to produce light olefins. Journal of Analytical and Applied Pyrolysis, 2019, 138, 270-280.	5.5	39
62	Synchronized electromechanical integration recording of cardiomyocytes. Biosensors and Bioelectronics, 2018, 117, 354-365.	10.1	38
63	Tunable Ionic Transport Control inside a Bioâ€Inspired Constructive Biâ€Channel Nanofluidic Device. Small, 2014, 10, 793-801.	10.0	37
64	Design of Porous Membranes by Liquid Gating Technology. Accounts of Materials Research, 2021, 2, 407-419.	11.7	37
65	Tunable Microscale Porous Systems with Dynamic Liquid Interfaces. Small, 2018, 14, e1703283.	10.0	36
66	Bioinspired liquid gating membrane-based catheter with anticoagulation and positionally drug release properties. Science Advances, 2020, 6, .	10.3	36
67	Soft interface design for electrokinetic energy conversion. Soft Matter, 2020, 16, 2915-2927.	2.7	36
68	SO 4 2â^' /TiO 2 promotion on HZSM-5 for catalytic cracking of paraffin. Applied Catalysis A: General, 2017, 537, 12-23.	4.3	34
69	The frequency-response behaviour of flexible piezoelectric devices for detecting the magnitude and loading rate of stimuli. Journal of Materials Chemistry C, 2021, 9, 584-594.	5.5	34
70	Liquidâ€Based Adaptive Structural Materials. Advanced Materials, 2021, 33, e2005664.	21.0	34
71	Surface Defect Engineering on Perovskite Oxides as Efficient Bifunctional Electrocatalysts for Water Splitting. ACS Applied Materials & Interfaces, 2021, 13, 42852-42860.	8.0	34
72	Thermoresponsive Mobile Interfaces with Switchable Wettability, Optical Properties, and Penetrability. ACS Applied Materials & amp; Interfaces, 2017, 9, 35483-35491.	8.0	33

#	Article	IF	CITATIONS
73	Visual Chemical Detection Mechanism by a Liquid Gating System with Dipoleâ€Induced Interfacial Molecular Reconfiguration. Angewandte Chemie - International Edition, 2019, 58, 3967-3971.	13.8	33
74	Light-responsive and corrosion-resistant gas valve with non-thermal effective liquid-gating positional flow control. Light: Science and Applications, 2021, 10, 127.	16.6	33
75	Hydrophilic carbon nanotube membrane enhanced interfacial evaporation for desalination. Chinese Chemical Letters, 2022, 33, 2155-2158.	9.0	33
76	Copper Phosphate as a Cathode Material for Rechargeable Li Batteries and Its Electrochemical Reaction Mechanism. Chemistry of Materials, 2015, 27, 5736-5744.	6.7	32
77	Bioinspired Universal Flexible Elastomerâ€Based Microchannels. Small, 2018, 14, e1702170.	10.0	31
78	Ultrafast Response and Programmable Locomotion of Liquid/Vapor/Light-Driven Soft Multifunctional Actuators. ACS Nano, 2022, 16, 2672-2681.	14.6	31
79	Tuning surface wettability through supramolecular interactions. Soft Matter, 2011, 7, 1638.	2.7	30
80	Catalytic Cracking of JP-10 over HZSM-5 Nanosheets. Energy & Fuels, 2017, 31, 11987-11994.	5.1	30
81	Inner Surface Design of Functional Microchannels for Microscale Flow Control. Small, 2020, 16, e1905318.	10.0	30
82	Metallic Liquid Gating Membranes. ACS Nano, 2020, 14, 2465-2474.	14.6	30
83	Ultrahigh Energy Storage Performance of Flexible BMTâ€Based Thin Film Capacitors. Small, 2022, 18, e2106209.	10.0	30
84	Mobile Liquid Gating Membrane System for Smart Piston and Valve Applications. Industrial & Engineering Chemistry Research, 2019, 58, 11976-11984.	3.7	29
85	Bioinspired approaches for medical devices. Chinese Chemical Letters, 2017, 28, 1131-1134.	9.0	28
86	Synthesis and assembly of extended quintulene. Nature Communications, 2020, 11, 3976.	12.8	28
87	Significant Enhancement of the Visible Light Photocatalytic Properties in 3D BiFeO3/Graphene Composites. Nanomaterials, 2019, 9, 65.	4.1	27
88	Substantially improved energy storage capability of ferroelectric thin films for application in high-temperature capacitors. Journal of Materials Chemistry A, 2021, 9, 9281-9290.	10.3	27
89	Catalytic cracking of n-pentane over CLD modified HZSM-5 zeolites. RSC Advances, 2016, 6, 54580-54588.	3.6	26
90	Reconfiguring confined magnetic colloids with tunable fluid transport behavior. National Science Review, 2021, 8, nwaa301.	9.5	25

#	Article	IF	CITATIONS
91	Flexible lead-free film capacitor based on BiMg0.5Ti0.5O3-SrTiO3 for high-performance energy storage. Chemical Engineering Journal, 2022, 445, 136728.	12.7	25
92	Performance analysis of solid-state nanopore chemical sensor. Sensors and Actuators B: Chemical, 2019, 286, 315-320.	7.8	24
93	Highly stretchable and reliable graphene oxide-reinforced liquid gating membranes for tunable gas/liquid transport. Microsystems and Nanoengineering, 2020, 6, 43.	7.0	24
94	Liquid Gating Meniscusâ€Shaped Deformable Magnetoelastic Membranes with Selfâ€Driven Regulation of Gas/Liquid Release. Advanced Materials, 2022, 34, e2107327.	21.0	24
95	Antibacterial evaporator based on reduced graphene oxide/polypyrrole aerogel for solar-driven desalination. Nano Research, 2023, 16, 4219-4224.	10.4	24
96	Advances in Multi-Scale Pores and Channels Systems. Small, 2018, 14, 1800908.	10.0	23
97	Identifying the Structural Evolution of the Sodium Ion Battery Na ₂ FePO ₄ F Cathode. Angewandte Chemie, 2018, 130, 12094-12099.	2.0	22
98	Host-guest liquid gating mechanism with specific recognition interface behavior for universal quantitative chemical detection. Nature Communications, 2022, 13, 1906.	12.8	22
99	Assembly of F0F1-ATPase into solid state nanoporous membrane. Chemical Communications, 2011, 47, 3102.	4.1	21
100	Fast recovery of BrÃ,nsted acid sites lost during high-temperature calcination in HZSM-5. Microporous and Mesoporous Materials, 2017, 243, 176-185.	4.4	20
101	Building Magnetoresponsive Composite Elastomers for Bionic Locomotion Applications. Journal of Bionic Engineering, 2020, 17, 405-420.	5.0	20
102	A Tough Reversible Biomimetic Transparent Adhesive Tape with Pressure-Sensitive and Wet-Cleaning Properties. ACS Nano, 2021, 15, 19194-19201.	14.6	20
103	Superiority of ZrO2 surface enrichment on ZSM-5 zeolites in n-pentane catalytic cracking to produce light olefins. Microporous and Mesoporous Materials, 2019, 276, 41-51.	4.4	19
104	Liquid gating technology. Pure and Applied Chemistry, 2021, 93, 1353-1370.	1.9	17
105	Performance prediction of magnetorheological fluidâ€based liquid gating membrane by kriging machine learning method. , 2022, 1, 157-169.		17
106	Self-powered smart patch promotes skin nerve regeneration and sensation restoration by delivering biological-electrical signals in program. Biomaterials, 2022, 283, 121413.	11.4	17
107	Giant negative electrocaloric effect induced by domain transition in the strained ferroelectric thin film. Journal of Physics Condensed Matter, 2018, 30, 465401.	1.8	16
108	An efficient strategy for reliability-based multidisciplinary design optimization of twin-web disk with non-probabilistic model. Applied Mathematical Modelling, 2020, 82, 546-572.	4.2	16

#	Article	IF	CITATIONS
109	Flexible Polymer Ultra-Fine Fiber with Extreme Toughness. ACS Applied Materials & Interfaces, 2018, 10, 14276-14280.	8.0	15
110	Fabrication of the Hierarchical HZSM-5 Membrane with Tunable Mesoporosity for Catalytic Cracking of n-Dodecane. Catalysts, 2019, 9, 155.	3.5	15
111	Size-Controlled Polarization Retention and Wall Current in Lithium Niobate Single-Crystal Memories. ACS Applied Materials & Interfaces, 2021, 13, 16641-16649.	8.0	15
112	Effect of Grain Size on the Electrocaloric Properties of Polycrystalline Ferroelectrics. Physical Review Applied, 2021, 15, .	3.8	15
113	Catalytic cracking of binary hydrocarbons of n-dodecane and iso-dodecane under supercritical conditions. Journal of Analytical and Applied Pyrolysis, 2015, 113, 133-136.	5.5	14
114	Effect of geometric configuration on the electrocaloric properties of nanoscale ferroelectric materials. Journal of Applied Physics, 2018, 123, .	2.5	14
115	Roles of Alkenes and Coke Formation in the Deactivation of ZSM-5 Zeolites During n-Pentane Catalytic Cracking. Catalysis Letters, 2020, 150, 2716-2725.	2.6	14
116	Efficient oil–water separation coating with robust superhydrophobicity and high transparency. Scientific Reports, 2022, 12, 2187.	3.3	14
117	Dynamic and reversible electrowetting with low voltage on the dimethicone infused carbon nanotube array in air. Chinese Chemical Letters, 2020, 31, 1914-1918.	9.0	13
118	Photothermally induced liquid gate with navigation control of the fluid transport. Fundamental Research, 2021, 1, 800-806.	3.3	13
119	Controllable Liquid-Liquid Printing with Defect-free, Corrosion-Resistance, Unrestricted Wetting Condition. IScience, 2019, 19, 93-100.	4.1	12
120	Photochemical effect driven fluid behavior control in microscale pores and channels. Chinese Chemical Letters, 2022, 33, 3650-3656.	9.0	12
121	Application of machine learning to process simulation of n-pentane cracking to produce ethylene and propene. Chinese Journal of Chemical Engineering, 2020, 28, 1832-1839.	3.5	11
122	Phase field modeling of dielectric breakdown of ferroelectric polymers subjected to mechanical and electrical loadings. International Journal of Solids and Structures, 2021, 217-218, 123-133.	2.7	11
123	Carbon Dioxide Chemically Responsive Switchable Gas Valves with Protonationâ€Induced Liquid Gating Selfâ€Adaptive Systems. Angewandte Chemie - International Edition, 2022, 61, .	13.8	11
124	Ultrahigh efficient emulsification with drag-reducing liquid gating interfacial behavior. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	11
125	Bio-inspired Asymmetric Design and Building of Biomimetic Smart Single Nanochannels. Springer Theses, 2013, , .	0.1	10
126	Polymer hydrogel confined palladium nanoparticles as recyclable catalysts for Suzuki and Heck cross-coupling reactions. Chinese Chemical Letters, 2020, 31, 1630-1634.	9.0	10

#	Article	IF	CITATIONS
127	Catalytic confinement effects in nanochannels: from biological synthesis to chemical engineering. Nanoscale Advances, 2022, 4, 1517-1526.	4.6	10
128	Oil-polluted water purification via the carbon-nanotubes-doped organohydrogel platform. Nano Research, 2022, 15, 5653-5662.	10.4	10
129	Electrocaloric effect enhancement in compositionally graded ferroelectric thin films driven by a needle-to-vortex domain structure transition. Journal Physics D: Applied Physics, 2021, 54, 255307.	2.8	9
130	Catalytic Cracking of Endothermic Fuels over Meso-HZSM-5/MCM-41 Coatings. Energy & Fuels, 2019, 33, 12696-12703.	5.1	8
131	Visual Chemical Detection Mechanism by a Liquid Gating System with Dipoleâ€Induced Interfacial Molecular Reconfiguration. Angewandte Chemie, 2019, 131, 4007-4011.	2.0	8
132	Fabrication and catalytic performance of meso-ZSM-5 zeolite encapsulated ferric oxide nanoparticles for phenol hydroxylation. Frontiers of Chemical Science and Engineering, 2021, 15, 643-653.	4.4	8
133	Surfaceâ€Bound Domain Penetration and Large Wall Current. Advanced Electronic Materials, 2021, 7, 2000720.	5.1	8
134	Bioinspired carbon nanotube-based materials. Materials Advances, 2022, 3, 3070-3088.	5.4	8
135	Development and application of bio-inspired microfluidics. International Journal of Modern Physics B, 2018, 32, 1840013.	2.0	6
136	Phase-field simulations on the electrocaloric properties of ferroelectric nanocylinders with the consideration of surface polarization effect. Journal of Applied Physics, 2019, 125, .	2.5	6
137	Negative/Positive Electrocaloric Effect in Single-Layer Pb(Zr <i>â,"</i> Ti _{1–<i>x</i>})Oâ,ƒ Thin Films for Solid-State Cooling Device. IEEE Transactions on Electron Devices, 2020, 67, 1769-1775.	3.0	6
138	Electrically driven motion, destruction, and chirality change of polar vortices in oxide superlattices. Science China: Physics, Mechanics and Astronomy, 2022, 65, 1.	5.1	6
139	Analysis of <i>n</i> -hexane, 1-hexene, cyclohexane and cyclohexene catalytic cracking over HZSM-5 zeolites: effects of molecular structure. Reaction Chemistry and Engineering, 2022, 7, 1762-1778.	3.7	6
140	A simple and effective strategy to enhance the stability and solid–liquid interfacial interaction of an emulsion by the interfacial dilational rheological properties. Soft Matter, 2020, 16, 5650-5658.	2.7	5
141	Liquidâ€Based Adaptive Structural Materials (Adv. Mater. 50/2021). Advanced Materials, 2021, 33, .	21.0	5
142	Bioinspired Photo-Responsive Liquid Gating Membrane. Biomimetics, 2022, 7, 47.	3.3	5
143	Bioinspired interfacial design for gravity-independent fluid transport control. Giant, 2022, 10, 100100.	5.1	5
144	Direct and indirect methods based on effective Hamilton for electrocaloric effect of BaTiO3 nanoparticle. Journal of Physics Condensed Matter, 2019, 31, 255402.	1.8	4

#	Article	IF	CITATIONS
145	Large electrostrain induced by reversible domain switching in ordered ferroelectric nanostructures with optimized geometric configurations. Nanotechnology, 2020, 31, 335714.	2.6	4
146	In-Plane Ferroelectric Domain Wall Memory with Embedded Electrodes on LiNbO ₃ Thin Films. ACS Applied Materials & Interfaces, 2021, 13, 33291-33299.	8.0	4
147	Roles of ethanol in coke formation and HZSM-5 deactivation during <i>n</i> -heptane catalytic cracking. New Journal of Chemistry, 2022, 46, 3916-3924.	2.8	4
148	Energy saving thermal adaptive liquid gating system. Innovation(China), 2022, 3, 100231.	9.1	4
149	Smart Gating Membranes: Smart Gating Multi-Scale Pore/Channel-Based Membranes (Adv. Mater.) Tj ETQq1 1 0.	.784314 r 21.0	gBJ /Overloc
150	Different defect morphologies in polyethylene crystal induced by surface physicochemical properties. Chinese Chemical Letters, 2020, 31, 1640-1643.	9.0	3
151	One-Step Exfoliation/Etching Method to Produce Chitosan-Stabilized Holey Graphene Nanosheets for Superior DNA Adsorption. ACS Applied Bio Materials, 2020, 3, 8542-8550.	4.6	3
152	Enhanced Phaseâ€Change Heat Transfer by Surface Wettability Control. ChemSusChem, 2022, 15, e202102531.	6.8	3
153	Microfluidic Bioprinting: Digitally Tunable Microfluidic Bioprinting of Multilayered Cannular Tissues (Adv. Mater. 43/2018). Advanced Materials, 2018, 30, 1870322.	21.0	2
154	A Rigidity/Flexibility Compatible Strategy to Improve the Stability and Durability of Flexible Electrochemical Sensor Based on a Polydimethylsiloxane Membrane Supported Prussian Blue@Carbon Nanotube Array. Electroanalysis, 2022, 34, 655-658.	2.9	2
155	Self-Oscillating Liquid Gating Membranes with Periodic Gas Transport. Membranes, 2022, 12, 642.	3.0	2
156	Progress in bio-inspired porous membranes. Chinese Science Bulletin, 2021, 66, 1220-1232.	0.7	1
157	Liquid Gating Meniscusâ€Shaped Deformable Magnetoelastic Membranes with Selfâ€Driven Regulation of Gas/Liquid Release (Adv. Mater. 3/2022). Advanced Materials, 2022, 34, .	21.0	1
158	Materials Science at Xiamen University: A Special Issue Dedicated to the 100th Anniversary of Xiamen University. Advanced Materials, 2021, 33, e2102756.	21.0	1
159	Ultrasensitive and Selective Mercury(II) Ion Detection with a Glass Nanopore. , 2019, , .		0
160	The Effect of Grain Size on Magnetoelectric Effect in Ferroelectric-Ferromagnetic Composite. , 2019, , .		0
161	Porosity-Tunable Structures with "Fossilized―Bubbles. ACS Applied Polymer Materials, 2020, 2, 497-504.	4.4	0
162	Asymmetric pH-Gating Symmetric Hour-Glass Shaped Single Nanochannel. Springer Theses, 2013, , 83-94.	0.1	0

#	Article	IF	CITATIONS
163	Asymmetric Conical Shaped Single Composite Nanochannel Materials. Springer Theses, 2013, , 113-127.	0.1	Ο
164	Asymmetric Temperature/pH Dual-Responsive Symmetric Hour-Glass Shaped Single Nanochannel. Springer Theses, 2013, , 95-111.	0.1	0
165	Ions Responsive Asymmetric Conical Shaped Single Nanochannel. Springer Theses, 2013, , 61-81.	0.1	Ο
166	Carbon Dioxide Chemically Responsive Switchable Gas Valves with Protonationâ€Induced Liquid Gating Selfâ€Adaptive Systems. Angewandte Chemie, 2022, 134, .	2.0	0