Shiliang Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6996550/publications.pdf

Version: 2024-02-01

567281 713466 21 613 15 21 citations h-index g-index papers 21 21 21 624 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Intense and broadband mid-infrared emission by nano-crystallization of rareâ€earth doped oxyfluoride glass-ceramic. Journal of Alloys and Compounds, 2022, 900, 163413.	5.5	11
2	Intense continuousâ€wave laser and modeâ€locked pulse operation from Yb ³⁺ â€doped oxyfluoride glass–ceramic fibers. Journal of the American Ceramic Society, 2022, 105, 5203-5212.	3.8	4
3	Enhanced CW Lasing and Qâ€Switched Pulse Generation Enabled by Tm 3+ â€Doped Glass Ceramic Fibers. Advanced Optical Materials, 2021, 9, 2001774.	7.3	16
4	Three-Dimensional Laser-Assisted Patterning of Blue-Emissive Metal Halide Perovskite Nanocrystals inside a Glass with Switchable Photoluminescence. ACS Nano, 2020, 14, 3150-3158.	14.6	102
5	Emission Color Manipulation in Transparent Nanocrystalsâ€nâ€Glass Composites Fabricated by Solutionâ€Combustion Process. Advanced Optical Materials, 2020, 8, 1901696.	7.3	11
6	Enhanced 2µm Midâ€Infrared Laser Output from Tm 3+ â€Activated Glass Ceramic Microcavities. Laser and Photonics Reviews, 2020, 14, 1900396.	8.7	21
7	(INVITED) Hybrid glass optical fibers-novel fiber materials for optoelectronic application. Optical Materials: X, 2020, 6, 100051.	0.8	13
8	Microlaser Output from Rareâ€Earth Ionâ€Doped Nanocrystalâ€inâ€Glass Microcavities. Advanced Optical Materials, 2019, 7, 1900197.	7.3	34
9	Weakening thermal quenching to enhance luminescence of Er ³⁺ doped <i> 2</i> 2 3€NaYF ₄ nanocrystals via acidâ€treatment. Journal of the American Ceramic Society, 2019, 102, 6027-6037.	3.8	12
10	Enhanced single-mode fiber laser emission by nano-crystallization of oxyfluoride glass-ceramic cores. Journal of Materials Chemistry C, 2019, 7, 5155-5162.	5.5	31
11	Engineering Tunable Broadband Nearâ€Infrared Emission in Transparent Rareâ€Earth Doped Nanocrystalsâ€inâ€Glass Composites via a Bottomâ€Up Strategy. Advanced Optical Materials, 2019, 7, 1801482.	7.3	46
12	Novel Er ³⁺ /Ho ³⁺ â€codoped glassâ€ceramic fibers for broadband tunable midâ€infrared fiber lasers. Journal of the American Ceramic Society, 2018, 101, 3956-3967.	3.8	27
13	Tailorable Upconversion White Light Emission from Pr ³⁺ Singleâ€Doped Glass Ceramics via Simultaneous Dualâ€Lasers Excitation. Advanced Optical Materials, 2018, 6, 1700787.	7.3	51
14	The effect of alkali metal ions on crystallization characteristics and luminescent properties of transparent Er3+-doped fluorosilicate glass-ceramics. Journal of Non-Crystalline Solids, 2018, 496, 6-12.	3.1	8
15	A novel wide temperature range and multi-mode optical thermometer based on bi-functional nanocrystal-doped glass ceramics. Journal of Materials Chemistry C, 2018, 6, 9932-9940.	5.5	48
16	Spectroscopic properties in Er3+-doped germanotellurite glasses and glass ceramics for mid-infrared laser materials. Scientific Reports, 2017, 7, 43186.	3.3	22
17	Precisely controllable fabrication of Er ³⁺ -doped glass ceramic fibers: novel mid-infrared fiber laser materials. Journal of Materials Chemistry C, 2017, 5, 4549-4556.	5.5	52
18	Controllable fabrication of novel all solid-state PbS quantum dot-doped glass fibers with tunable broadband near-infrared emission. Journal of Materials Chemistry C, 2017, 5, 7927-7934.	5.5	33

SHILIANG KANG

#	Article	IF	CITATIONS
19	Fast–Slow Red Upconversion Fluorescence Modulation from Ho ³⁺ â€Doped Glass Ceramics upon Twoâ€Wavelength Excitation. Advanced Optical Materials, 2017, 5, 1600554.	7.3	23
20	Topoâ€Chemical Tailoring of Tellurium Quantum Dot Precipitation from Supercooled Polyphosphates for Broadband Optical Amplification. Advanced Optical Materials, 2016, 4, 1624-1634.	7.3	33
21	Regulating Mid-infrared to Visible Fluorescence in Monodispersed Er3+-doped La2O2S (La2O2SO4) Nanocrystals by Phase Modulation. Scientific Reports, 2016, 6, 37141.	3.3	15