Stephan C Neuhauss

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6996343/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Loss of glutamate transporter <i>eaat2a</i> leads to aberrant neuronal excitability, recurrent epileptic seizures, and basal hypoactivity. Glia, 2022, 70, 196-214.	2.5	20
2	Cover Image, Volume 70, Issue 1. Glia, 2022, 70, C1.	2.5	0
3	Spatial proteomics finds CD155 and Endophilin-A1 as mediators of growth and invasion in medulloblastoma. Life Science Alliance, 2022, 5, e202201380.	1.3	5
4	Loss of the Bardet-Biedl protein Bbs1 alters photoreceptor outer segment protein and lipid composition. Nature Communications, 2022, 13, 1282.	5.8	20
5	Loss of <i>slc39a14</i> causes simultaneous manganese hypersensitivity and deficiency in zebrafish. DMM Disease Models and Mechanisms, 2022, 15, .	1.2	4
6	Biochemistry and physiology of zebrafish photoreceptors. Pflugers Archiv European Journal of Physiology, 2021, 473, 1569-1585.	1.3	19
7	Antisense oligonucleotide-based treatment of retinitis pigmentosa caused by USH2A exon 13 mutations. Molecular Therapy, 2021, 29, 2441-2455.	3.7	75
8	Circadian regulation of vertebrate cone photoreceptor function. ELife, 2021, 10, .	2.8	8
9	DNA template strand segregation in developing zebrafish. Cell Chemical Biology, 2021, 28, 1638-1647.e4.	2.5	4
10	Disturbed retinoid metabolism upon loss of rlbp1a impairs cone function and leads to subretinal lipid deposits and photoreceptor degeneration in the zebrafish retina. ELife, 2021, 10, .	2.8	5
11	Selective Gene Loss of Visual and Olfactory Guanylyl Cyclase Genes Following the Two Rounds of Vertebrate-Specific Whole-Genome Duplications. Genome Biology and Evolution, 2020, 12, 2153-2167.	1.1	4
12	Dysfunction of the ciliary ARMC9/TOGARAM1 protein module causes Joubert syndrome. Journal of Clinical Investigation, 2020, 130, 4423-4439.	3.9	43
13	A New Zebrafish Model for CACNA2D4-Dysfunction. , 2019, 60, 5124.		11
14	Differential expression of PKCα and -β in the zebrafish retina. Histochemistry and Cell Biology, 2019, 151, 521-530.	0.8	9
15	Phylogeny and distribution of protein kinase C variants in the zebrafish. Journal of Comparative Neurology, 2018, 526, 1097-1109.	0.9	8
16	Usherin defects lead to early-onset retinal dysfunction in zebrafish. Experimental Eye Research, 2018, 173, 148-159.	1.2	53
17	Sensory Biology: How to Structure a Tailor-Made Retina. Current Biology, 2018, 28, R737-R739.	1.8	1
18	Olfaction: How Fish Catch a Whiff. Current Biology, 2017, 27, R57-R58.	1.8	3

2

STEPHAN C NEUHAUSS

#	Article	IF	CITATIONS
19	Genetic approaches to retinal research in zebrafish. Journal of Neurogenetics, 2017, 31, 70-87.	0.6	15
20	Comparative transcriptomic analysis identifies evolutionarily conserved gene products in the vertebrate renal distal convoluted tubule. Pflugers Archiv European Journal of Physiology, 2017, 469, 859-867.	1.3	5
21	Loss-of-function of the ciliopathy protein Cc2d2a disorganizes the vesicle fusion machinery at the periciliary membrane and indirectly affects Rab8-trafficking in zebrafish photoreceptors. PLoS Genetics, 2017, 13, e1007150.	1.5	26
22	Guidelines for morpholino use in zebrafish. PLoS Genetics, 2017, 13, e1007000.	1.5	255
23	Shaping of Signal Transmission at the Photoreceptor Synapse by EAAT2 Glutamate Transporters. ENeuro, 2017, 4, ENEURO.0339-16.2017.	0.9	18
24	mglur6b:EGFPTransgenic zebrafish suggest novel functions of metabotropic glutamate signaling in retina and other brain regions. Journal of Comparative Neurology, 2016, 524, Spc1-Spc1.	0.9	0
25	<i>mglur6b:EGFP</i> Transgenic zebrafish suggest novel functions of metabotropic glutamate signaling in retina and other brain regions. Journal of Comparative Neurology, 2016, 524, 2363-2378.	0.9	5
26	Thyroid disruption in zebrafish (Danio rerio) larvae: Different molecular response patterns lead to impaired eye development and visual functions. Aquatic Toxicology, 2016, 172, 44-55.	1.9	94
27	pigkMutation underliesmachobehavior and affects Rohon-Beard cell excitability. Journal of Neurophysiology, 2015, 114, 1146-1157.	0.9	11
28	The Ciliopathy Protein CC2D2A Associates with NINL and Functions in RAB8-MICAL3-Regulated Vesicle Trafficking. PLoS Genetics, 2015, 11, e1005575.	1.5	64
29	Recoverin depletion accelerates cone photoresponse recovery. Open Biology, 2015, 5, 150086.	1.5	35
30	Eumetazoan Cryptochrome Phylogeny and Evolution. Genome Biology and Evolution, 2015, 7, 601-619.	1.1	35
31	miRâ€181a/b control the assembly of visual circuitry by regulating retinal axon specification and growth. Developmental Neurobiology, 2015, 75, 1252-1267.	1.5	22
32	MAP4-Dependent Regulation of Microtubule Formation Affects Centrosome, Cilia, and Golgi Architecture as a Central Mechanism in Growth Regulation. Human Mutation, 2015, 36, 87-97.	1.1	21
33	MiR-204 is responsible for inherited retinal dystrophy associated with ocular coloboma. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3236-45.	3.3	90
34	The Rho-GTPase binding protein IQGAP2 is required for the glomerular filtration barrier. Kidney International, 2015, 88, 1047-1056.	2.6	17
35	Zebrafish Models for the Mechanosensory Hair Cell Dysfunction in Usher Syndrome 3 Reveal That Clarin-1 Is an Essential Hair Bundle Protein. Journal of Neuroscience, 2015, 35, 10188-10201.	1.7	39
36	Proper migration and axon outgrowth of zebrafish cranial motoneuron subpopulations require the cell adhesion molecule MDGA2A. Biology Open, 2015, 4, 146-154.	0.6	10

STEPHAN C NEUHAUSS

#	Article	IF	CITATIONS
37	Evaluation of zebrafish as a model to study the pathogenesis of the opportunistic pathogen <i>Cronobacter turicensis</i> . Emerging Microbes and Infections, 2015, 4, 1-9.	3.0	31
38	Sunscreen for Fish: Co-Option of UV Light Protection for Camouflage. PLoS ONE, 2014, 9, e87372.	1.1	38
39	Individual Larvae of the Zebrafish MutantbelladonnaDisplay Multiple Infantile Nystagmus-Like Waveforms that Are Influenced by Viewing Conditions. , 2014, 55, 3971.		2
40	Megalencephalic leukoencephalopathy with subcortical cysts protein 1 regulates glial surface localization of GLIALCAM from fish to humans. Human Molecular Genetics, 2014, 23, 5069-5086.	1.4	34
41	Mutations in CSPP1 Cause Primary Cilia Abnormalities and Joubert Syndrome with or without Jeune Asphyxiating Thoracic Dystrophy. American Journal of Human Genetics, 2014, 94, 62-72.	2.6	104
42	Velocity storage mechanism in zebrafish larvae. Journal of Physiology, 2014, 592, 203-214.	1.3	17
43	Myosin VIIA is a Marker for the Cone Accessory Outer Segment in Zebrafish. Anatomical Record, 2014, 297, 1777-1784.	0.8	15
44	Whole-genome duplication in teleost fishes and its evolutionary consequences. Molecular Genetics and Genomics, 2014, 289, 1045-1060.	1.0	650
45	Phylogeny and expression divergence of metabotropic glutamate receptor genes in the brain of zebrafish (<i>Danio rerio</i>). Journal of Comparative Neurology, 2013, 521, 1533-1560.	0.9	36
46	Phylogeny and expression of canonical transient receptor potential (TRPC) genes in developing zebrafish. Developmental Dynamics, 2013, 242, 1427-1441.	0.8	15
47	<scp>S</scp> lc45a2 and <scp>V</scp> â€ <scp>ATP</scp> ase are regulators of melanosomal p <scp>H</scp> homeostasis in zebrafish, providing a mechanism for human pigment evolution and disease. Pigment Cell and Melanoma Research, 2013, 26, 205-217.	1.5	115
48	Reverse genetics tools in zebrafish: A forward dive into endocrinology. General and Comparative Endocrinology, 2013, 188, 303-308.	0.8	4
49	Phylogenetic analysis and expression of zebrafish transient receptor potential melastatin family genes. Developmental Dynamics, 2013, 242, 1236-1249.	0.8	36
50	Towards a Comprehensive Catalog of Zebrafish Behavior 1.0 and Beyond. Zebrafish, 2013, 10, 70-86.	0.5	795
51	Automated visual choice discrimination learning in zebrafish (<i>Danio rerio</i>). Journal of Integrative Neuroscience, 2012, 11, 73-85.	0.8	41
52	Severity of Infantile Nystagmus Syndrome-Like Ocular Motor Phenotype Is Linked to the Extent of the Underlying Optic Nerve Projection Defect in Zebrafish <i>belladonna</i> Mutant. Journal of Neuroscience, 2012, 32, 18079-18086.	1.7	16
53	Light Perception: More Than Meets the Eyes. Current Biology, 2012, 22, R912-R914.	1.8	8
54	Novel Expression Patterns of Metabotropic Glutamate Receptor 6 in the Zebrafish Nervous System. PLoS ONE, 2012, 7, e35256.	1.1	27

4

STEPHAN C NEUHAUSS

#	Article	IF	CITATIONS
55	The visual system of zebrafish and its use to model human ocular Diseases. Developmental Neurobiology, 2012, 72, 302-327.	1.5	156
56	Analysis of Optokinetic Response in Zebrafish by Computer-Based Eye Tracking. Methods in Molecular Biology, 2012, 935, 139-160.	0.4	21
57	Application of zebrafish oculomotor behavior to model human disorders. Reviews in the Neurosciences, 2011, 22, 5-16.	1.4	33
58	Parallel visual cycles in the zebrafish retina. Progress in Retinal and Eye Research, 2010, 29, 476-486.	7.3	37
59	Visual acuity in larval zebrafish: behavior and histology. Frontiers in Zoology, 2010, 7, 8.	0.9	80
60	Excitatory amino acid transporters in the zebrafish. Brain Research Bulletin, 2010, 83, 202-206.	1.4	8
61	Nomenclature of glutamate transporters in zebrafish and other vertebrates. Brain Research Bulletin, 2010, 83, 297.	1.4	4
62	Funduscopy in Adult Zebrafish and Its Application to Isolate Mutant Strains with Ocular Defects. PLoS ONE, 2010, 5, e15427.	1.1	11
63	Mutations in the Tight-Junction Gene Claudin 19 (CLDN19) Are Associated with Renal Magnesium Wasting, Renal Failure, and Severe Ocular Involvement. American Journal of Human Genetics, 2006, 79, 949-957.	2.6	446
64	Visual Behavior in Zebrafish. Zebrafish, 2006, 3, 191-201.	0.5	155
65	Behavioral genetic approaches to visual system development and function in zebrafish. Journal of Neurobiology, 2003, 54, 148-160.	3.7	196
66	Genetic Disorders of Vision Revealed by a Behavioral Screen of 400 Essential Loci in Zebrafish. Journal of Neuroscience, 1999, 19, 8603-8615.	1.7	374
67	A radiation hybrid map of the zebrafish genome. Nature Genetics, 1999, 23, 86-89.	9.4	259
68	A microsatellite genetic linkage map for zebrafish (Danio rerio). Nature Genetics, 1998, 18, 338-343.	9.4	333
69	A behavioral screen for isolating zebrafish mutants with visual system defects Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 10545-10549	3.3	429