
Lucia Fuchslueger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6996321/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vertical profiles of leaf photosynthesis and leaf traits and soil nutrients in two tropical rainforests in French Guiana before and after a 3-year nitrogen and phosphorus addition experiment. Earth System Science Data, 2022, 14, 5-18.	9.9	6
2	Negative priming of soil organic matter following long-term in situ warming of sub-arctic soils. Geoderma, 2022, 410, 115652.	5.1	10
3	Plant phosphorusâ€use and â€acquisition strategies in Amazonia. New Phytologist, 2022, 234, 1126-1143.	7.3	40
4	Long-term warming reduced microbial biomass but increased recent plant-derived C in microbes of a subarctic grassland. Soil Biology and Biochemistry, 2022, 167, 108590.	8.8	12
5	Rapid responses of root traits and productivity to phosphorus and cation additions in a tropical lowland forest in Amazonia. New Phytologist, 2021, 230, 116-128.	7.3	50
6	Comparable canopy and soil free-living nitrogen fixation rates in a lowland tropical forest. Science of the Total Environment, 2021, 754, 142202.	8.0	10
7	Impact of Nutrient Additions on Freeâ€Living Nitrogen Fixation in Litter and Soil of Two Frenchâ€Guianese Lowland Tropical Forests. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG006023.	3.0	4
8	Editorial: Exchanges at the Root-Soil Interface: Resource Trading in the Rhizosphere That Drives Ecosystem Functioning. Frontiers in Forests and Global Change, 2021, 4, .	2.3	0
9	Ecological memory of recurrent drought modifies soil processes via changes in soil microbial community. Nature Communications, 2021, 12, 5308.	12.8	108
10	Litter inputs and phosphatase activity affect the temporal variability of organic phosphorus in a tropical forest soil in the Central Amazon. Plant and Soil, 2021, 469, 423-441.	3.7	15
11	Fine roots stimulate nutrient release during early stages of leaf litter decomposition in a Central Amazon rainforest. Plant and Soil, 2021, 469, 287-303.	3.7	21
12	Tree Species and Epiphyte Taxa Determine the "Metabolomic niche―of Canopy Suspended Soils in a Species-Rich Lowland Tropical Rainforest. Metabolites, 2021, 11, 718.	2.9	2
13	Tradeoffs and Synergies in Tropical Forest Root Traits and Dynamics for Nutrient and Water Acquisition: Field and Modeling Advances. Frontiers in Forests and Global Change, 2021, 4, .	2.3	13
14	Multiple phosphorus acquisition strategies adopted by fine roots in low-fertility soils in Central Amazonia. Plant and Soil, 2020, 450, 49-63.	3.7	60
15	The handbook for standardized field and laboratory measurements in terrestrial climate change experiments and observational studies (ClimEx). Methods in Ecology and Evolution, 2020, 11, 22-37.	5.2	68
16	Microbial carbon limitation: The need for integrating microorganisms into our understanding of ecosystem carbon cycling. Global Change Biology, 2020, 26, 1953-1961.	9.5	239
17	A systemic overreaction to years versus decades of warming in a subarctic grassland ecosystem. Nature Ecology and Evolution, 2020, 4, 101-108.	7.8	33
18	Fineâ€root dynamics vary with soil depth and precipitation in a lowâ€nutrient tropical forest in the Central Amazonia. Plant-Environment Interactions, 2020, 1, 3-16.	1.5	34

LUCIA FUCHSLUEGER

#	Article	IF	CITATIONS
19	Climatic and edaphic controls over tropical forest diversity and vegetation carbon storage. Scientific Reports, 2020, 10, 5066.	3.3	55
20	Amazon forest response to CO2 fertilization dependent on plant phosphorus acquisition. Nature Geoscience, 2019, 12, 736-741.	12.9	177
21	Microbial carbon and nitrogen cycling responses to drought and temperature in differently managed mountain grasslands. Soil Biology and Biochemistry, 2019, 135, 144-153.	8.8	51
22	Coupled carbon and nitrogen losses in response to seven years of chronic warming in subarctic soils. Soil Biology and Biochemistry, 2019, 134, 152-161.	8.8	25
23	Links among warming, carbon and microbial dynamics mediated by soil mineral weathering. Nature Geoscience, 2018, 11, 589-593.	12.9	116
24	Amazon Forest Ecosystem Responses to Elevated Atmospheric CO2 and Alterations in Nutrient Availability: Filling the Gaps with Model-Experiment Integration. Frontiers in Earth Science, 2016, 4, .	1.8	20
25	Drought history affects grassland plant and microbial carbon turnover during and after a subsequent drought event. Journal of Ecology, 2016, 104, 1453-1465.	4.0	94
26	Summer drought alters carbon allocation to roots and root respiration in mountain grassland. New Phytologist, 2015, 205, 1117-1127.	7.3	199
27	Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation. New Phytologist, 2015, 205, 1537-1551.	7.3	370
28	Effects of drought on nitrogen turnover and abundances of ammonia-oxidizers in mountain grassland. Biogeosciences, 2014, 11, 6003-6015.	3.3	51
29	Effects of Soil Organic Matter Properties and Microbial Community Composition on Enzyme Activities in Cryoturbated Arctic Soils. PLoS ONE, 2014, 9, e94076.	2.5	90
30	Experimental drought reduces the transfer of recently fixed plant carbon to soil microbes and alters the bacterial community composition in a mountain meadow. New Phytologist, 2014, 201, 916-927.	7.3	261
31	Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling. Nature Communications, 2014, 5, 3694.	12.8	594
32	Fungal and bacterial utilization of organic substrates depends on substrate complexity and N availability. FEMS Microbiology Ecology, 2014, 87, 142-152.	2.7	108
33	Seasonal variation in functional properties of microbial communities in beech forest soil. Soil Biology and Biochemistry, 2013, 60, 95-104.	8.8	131
34	Stoichiometric controls of nitrogen and phosphorus cycling in decomposing beech leaf litter. Ecology, 2012, 93, 770-782.	3.2	228
35	A field method to store samples from temperate mountain grassland soils for analysis of phospholipid fatty acids. Soil Biology and Biochemistry, 2012, 51, 81-83.	8.8	31
36	Microbial processes and community composition in the rhizosphere of European beech–ÂThe influence of plant C exudates. Soil Biology and Biochemistry, 2011, 43, 551-558.	8.8	170

#	Article	IF	CITATIONS
37	Plants control the seasonal dynamics of microbial N cycling in a beech forest soil by belowground C allocation. Ecology, 2011, 92, 1036-1051.	3.2	118
38	Plants control the seasonal dynamics of microbial N cycling in a beech forest soil by belowground C allocation. Ecology, 2011, 92, 1036-1051.	3.2	19
39	Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil. New Phytologist, 2010, 187, 843-858.	7.3	337