List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6996241/publications.pdf Version: 2024-02-01

		11235	17373
220	19,186	73	126
papers	citations	h-index	g-index
210	210	210	
319	319	319	7564
all docs	docs citations	times ranked	citing authors

ALLAN F HERRISON

#	Article	IF	CITATIONS
1	Neuroendocrine control of gonadotropinâ€releasing hormone: Pulsatile and surge modes of secretion. Journal of Neuroendocrinology, 2022, 34, e13094.	1.2	50
2	Innervation of GnRH Neuron Distal Projections and Activation by Kisspeptin in a New GnRH-Cre Rat Model. Endocrinology, 2021, 162, .	1.4	14
3	Highly redundant neuropeptide volume co-transmission underlying episodic activation of the GnRH neuron dendron. ELife, 2021, 10, .	2.8	38
4	Impact of chronic variable stress on neuroendocrine hypothalamus and pituitary in male and female C57BL/6J mice. Journal of Neuroendocrinology, 2021, 33, e12972.	1.2	18
5	Reformulation of PULSAR for Analysis of Pulsatile LH Secretion and a Revised Model of Estrogen-Negative Feedback in Mice. Endocrinology, 2021, 162, .	1.4	14
6	The dendron and episodic neuropeptide release. Journal of Neuroendocrinology, 2021, 33, e13024.	1.2	15
7	Morphological assessment of GABA and glutamate inputs to GnRH neurons in intact female mice using expansion microscopy. Journal of Neuroendocrinology, 2021, 33, e13021.	1.2	3
8	Indirect Suppression of Pulsatile LH Secretion by CRH Neurons in the Female Mouse. Endocrinology, 2021, 162, .	1.4	20
9	Activation of a Classic Hunger Circuit Slows Luteinizing Hormone Pulsatility. Neuroendocrinology, 2020, 110, 671-687.	1.2	27
10	Neural Determinants of Pulsatile Luteinizing Hormone Secretion in Male Mice. Endocrinology, 2020, 161, .	1.4	28
11	A simple model of estrous cycle negative and positive feedback regulation of GnRH secretion. Frontiers in Neuroendocrinology, 2020, 57, 100837.	2.5	60
12	Direct inhibition of arcuate kisspeptin neurones by neuropeptide Y in the male and female mouse. Journal of Neuroendocrinology, 2020, 32, e12849.	1.2	24
13	Different dendritic domains of the GnRH neuron underlie the pulse and surge modes of GnRH secretion in female mice. ELife, 2020, 9, .	2.8	44
14	Genetic Deletion of Esr1 in the Mouse Preoptic Area Disrupts the LH Surge and Estrous Cyclicity. Endocrinology, 2019, 160, 1821-1829.	1.4	18
15	GnRH Pulse Generator Activity Across the Estrous Cycle of Female Mice. Endocrinology, 2019, 160, 1480-1491.	1.4	82
16	Activation of arcuate nucleus GABA neurons promotes luteinizing hormone secretion and reproductive dysfunction: Implications for polycystic ovary syndrome. EBioMedicine, 2019, 44, 582-596.	2.7	57
17	Characterization of GnRH Pulse Generator Activity in Male Mice Using GCaMP Fiber Photometry. Endocrinology, 2019, 160, 557-567.	1.4	56
18	SUN-LB083 Functional Role of Arcuate Nucleus NPY/AgRP Neurons in the GnRH Circuit Regulating LH Secretion. Journal of the Endocrine Society, 2019, 3, .	0.1	1

#	Article	lF	CITATIONS
19	The 3rd World Conference on Kisspeptin, "Kisspeptin 2017: Brain and Beyond― Unresolved questions, challenges and future directions for the field. Journal of Neuroendocrinology, 2018, 30, e12600.	1.2	12
20	Altered aspects of anxiety-related behavior in kisspeptin receptor-deleted male mice. Scientific Reports, 2018, 8, 2794.	1.6	17
21	Female sexual behavior in mice is controlled by kisspeptin neurons. Nature Communications, 2018, 9, 400.	5.8	116
22	Sex―and sub regionâ€dependent modulation of arcuate kisspeptin neurones by vasopressin and vasoactive intestinal peptide. Journal of Neuroendocrinology, 2018, 30, e12660.	1.2	29
23	Gonadotropin-Releasing Hormone Neurons. , 2018, , .		Ο
24	Optical Approaches for Interrogating Neural Circuits Controlling Hormone Secretion. Endocrinology, 2018, 159, 3822-3833.	1.4	12
25	The Gonadotropin-Releasing Hormone Pulse Generator. Endocrinology, 2018, 159, 3723-3736.	1.4	162
26	PACAP neurons in the ventral premammillary nucleus regulate reproductive function in the female mouse. ELife, 2018, 7, .	2.8	64
27	Synaptic Innervation of the GnRH Neuron Distal Dendron in Female Mice. Endocrinology, 2018, 159, 3200-3208.	1.4	31
28	Dominant Neuropeptide Cotransmission in Kisspeptin-GABA Regulation of GnRH Neuron Firing Driving Ovulation. Journal of Neuroscience, 2018, 38, 6310-6322.	1.7	72
29	Spike and Neuropeptide-Dependent Mechanisms Control GnRH Neuron Nerve Terminal Ca ²⁺ over Diverse Time Scales. Journal of Neuroscience, 2017, 37, 3342-3351.	1.7	45
30	Definition of the hypothalamic GnRH pulse generator in mice. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10216-E10223.	3.3	267
31	Dynamics of GnRH Neuron Ionotropic GABA and Glutamate Synaptic Receptors Are Unchanged during Estrogen Positive and Negative Feedback in Female Mice. ENeuro, 2017, 4, ENEURO.0259-17.2017.	0.9	18
32	Kisspeptin Regulation of Neuronal Activity throughout the Central Nervous System. Endocrinology and Metabolism, 2016, 31, 193.	1.3	48
33	Defining a novel leptin–melanocortin–kisspeptin pathway involved in the metabolic control of puberty. Molecular Metabolism, 2016, 5, 844-857.	3.0	123
34	Pulse and Surge Profiles of Luteinizing Hormone Secretion in the Mouse. Endocrinology, 2016, 157, 4794-4802.	1.4	137
35	Vasoactive Intestinal Peptide Excites GnRH Neurons in Male and Female Mice. Endocrinology, 2016, 157, 3621-3630.	1.4	39
36	Control of puberty onset and fertility by gonadotropin-releasing hormone neurons. Nature Reviews Endocrinology, 2016, 12, 452-466.	4.3	335

#	Article	IF	CITATIONS
37	Novel role for anti-Müllerian hormone in the regulation of GnRH neuron excitability and hormone secretion. Nature Communications, 2016, 7, 10055.	5.8	284
38	Hypothalamic control of the male neonatal testosterone surge. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150115.	1.8	85
39	Multitasking in Gonadotropin-Releasing Hormone Neuron Dendrites. Neuroendocrinology, 2015, 102, 1-7.	1.2	26
40	Physiology of the Adult Gonadotropin-Releasing Hormone Neuronal Network. , 2015, , 399-467.		88
41	Kisspeptin Regulation of Arcuate Neuron Excitability in Kisspeptin Receptor Knockout Mice. Endocrinology, 2015, 156, 1815-1827.	1.4	29
42	Expression of ESR1 in Glutamatergic and GABAergic Neurons Is Essential for Normal Puberty Onset, Estrogen Feedback, and Fertility in Female Mice. Journal of Neuroscience, 2015, 35, 14533-14543.	1.7	78
43	Conditional Viral Tract Tracing Delineates the Projections of the Distinct Kisspeptin Neuron Populations to Gonadotropin-Releasing Hormone (GnRH) Neurons in the Mouse. Endocrinology, 2015, 156, 2582-2594.	1.4	144
44	Morphological Characterization of the Action Potential Initiation Segment in GnRH Neuron Dendrites and Axons of Male Mice. Endocrinology, 2015, 156, 4174-4186.	1.4	20
45	Selective optogenetic activation of arcuate kisspeptin neurons generates pulsatile luteinizing hormone secretion. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13109-13114.	3.3	146
46	Estrogen Permits Vasopressin Signaling in Preoptic Kisspeptin Neurons in the Female Mouse. Journal of Neuroscience, 2015, 35, 6881-6892.	1.7	70
47	Electrical properties of kisspeptin neurons and their regulation of GnRH neurons. Frontiers in Neuroendocrinology, 2015, 36, 15-27.	2.5	51
48	Optogenetic activation of GnRH neurons reveals minimal requirements for pulsatile luteinizing hormone secretion. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18387-18392.	3.3	66
49	Estrogen-Negative Feedback and Estrous Cyclicity Are Critically Dependent Upon Estrogen Receptor-α Expression in the Arcuate Nucleus of Adult Female Mice. Endocrinology, 2014, 155, 2986-2995.	1.4	54
50	Serotonin Acts Through 5-HT1 and 5-HT2 Receptors to Exert Biphasic Actions on GnRH Neuron Excitability in the Mouse. Endocrinology, 2014, 155, 513-524.	1.4	36
51	RF9 Excitation of GnRH Neurons Is Dependent Upon Kiss1r in the Adult Male and Female Mouse. Endocrinology, 2014, 155, 4915-4924.	1.4	27
52	Effects of Neuron-Specific Estrogen Receptor (ER) α and ERβ Deletion on the Acute Estrogen Negative Feedback Mechanism in Adult Female Mice. Endocrinology, 2014, 155, 1418-1427.	1.4	45
53	Non-classical effects of estradiol on cAMP responsive element binding protein phosphorylation in gonadotropin-releasing hormone neurons: Mechanisms and role. Frontiers in Neuroendocrinology, 2014, 35, 31-41.	2.5	15
54	Sexual Differentiation of the Brain Requires Perinatal Kisspeptin-GnRH Neuron Signaling. Journal of Neuroscience, 2014, 34, 15297-15305.	1.7	54

#	Article	IF	CITATIONS
55	Gonadal steroid neuromodulation of developing and mature hypothalamic neuronal networks. Current Opinion in Neurobiology, 2014, 29, 96-102.	2.0	17
56	Kisspeptin-Gpr54 Signaling at the GnRH Neuron Is Necessary for Negative Feedback Regulation of Luteinizing Hormone Secretion in Female Mice. Neuroendocrinology, 2014, 100, 191-197.	1.2	21
57	Immunohistochemical Evidence for the Presence of Various Kisspeptin Isoforms in the Mammalian Brain. Journal of Neuroendocrinology, 2013, 25, 839-851.	1.2	27
58	Regulation of Electrical Bursting in a Spatiotemporal Model of a GnRH Neuron. Bulletin of Mathematical Biology, 2013, 75, 1941-1960.	0.9	11
59	Dependence of fertility on kisspeptin–Gpr54 signaling at the GnRH neuron. Nature Communications, 2013, 4, 2492.	5.8	173
60	<i>In Vivo</i> Recordings of GnRH Neuron Firing Reveal Heterogeneity and Dependence upon GABA _A Receptor Signaling. Journal of Neuroscience, 2013, 33, 9394-9401.	1.7	65
61	Estrous Cycle Plasticity in the Hyperpolarization-Activated Current Ih Is Mediated by Circulating 17Â-Estradiol in Preoptic Area Kisspeptin Neurons. Journal of Neuroscience, 2013, 33, 10828-10839.	1.7	53
62	Neurokinin B Activates Arcuate Kisspeptin Neurons Through Multiple Tachykinin Receptors in the Male Mouse. Endocrinology, 2013, 154, 2750-2760.	1.4	134
63	Dopamine Regulation of Gonadotropin-Releasing Hormone Neuron Excitability in Male and Female Mice. Endocrinology, 2013, 154, 340-350.	1.4	80
64	GnRH Neurons Elaborate a Long-Range Projection with Shared Axonal and Dendritic Functions. Journal of Neuroscience, 2013, 33, 12689-12697.	1.7	141
65	Spontaneous Kisspeptin Neuron Firing in the Adult Mouse Reveals Marked Sex and Brain Region Differences but No Support for a Direct Role in Negative Feedback. Endocrinology, 2012, 153, 5384-5393.	1.4	84
66	Direct Regulation of GnRH Neuron Excitability by Arcuate Nucleus POMC and NPY Neuron Neuropeptides in Female Mice. Endocrinology, 2012, 153, 5587-5599.	1.4	145
67	The Role of cAMP Response Element-Binding Protein in Estrogen Negative Feedback Control of Gonadotropin-Releasing Hormone Neurons. Journal of Neuroscience, 2012, 32, 11309-11317.	1.7	26
68	Initiation and Propagation of Action Potentials in Gonadotropin-Releasing Hormone Neuron Dendrites. Journal of Neuroscience, 2012, 32, 151-158.	1.7	40
69	Activityâ€Dependent Modulation of Gonadotrophinâ€Releasing Hormone Neurone Activity by Acute Oestradiol. Journal of Neuroendocrinology, 2012, 24, 1296-1303.	1.2	9
70	GnRH Neuron Firing and Response to GABA in Vitro Depend on Acute Brain Slice Thickness and Orientation. Endocrinology, 2012, 153, 3758-3769.	1.4	34
71	Burst Firing in Gonadotrophinâ€Releasing Hormone Neurones does not Require Ionotrophic <scp>GABA</scp> or Glutamate Receptor Activation. Journal of Neuroendocrinology, 2012, 24, 1476-1483.	1.2	15
72	Estradiol Acts Directly and Indirectly on Multiple Signaling Pathways to Phosphorylate cAMP-Response Element Binding Protein in GnRH Neurons. Endocrinology, 2012, 153, 3792-3803.	1.4	26

#	Article	IF	CITATIONS
73	Milestones on Steroids and the Nervous System: 10 Years of Basic and Translational Research. Journal of Neuroendocrinology, 2012, 24, 1-15.	1.2	39
74	Roles for Oestrogen Receptor β in Adult Brain Function. Journal of Neuroendocrinology, 2012, 24, 160-173.	1.2	85
75	Understanding calcium homeostasis in postnatal gonadotropin-releasing hormone neurons using cell-specific Pericam transgenics. Cell Calcium, 2012, 51, 267-276.	1.1	18
76	Gonadal Steroid Induction of Kisspeptin Peptide Expression in the Rostral Periventricular Area of the Third Ventricle During Postnatal Development in the Male Mouse. Journal of Neuroendocrinology, 2012, 24, 907-915.	1.2	33
77	Dual Phenotype Kisspeptin-Dopamine Neurones of the Rostral Periventricular Area of the Third Ventricle Project to Gonadotrophin-Releasing Hormone Neurones. Journal of Neuroendocrinology, 2011, 23, 293-301.	1.2	89
78	Depolarising and Hyperpolarising Actions of GABAA Receptor Activation on Gonadotrophin-Releasing Hormone Neurones: Towards an Emerging Consensus. Journal of Neuroendocrinology, 2011, 23, 557-569.	1.2	209
79	Journal of Neuroendocrinology Impact Factor Reaches 4.65! Who Cares?. Journal of Neuroendocrinology, 2011, 23, 861-862.	1.2	1
80	Kisspeptin neurons coâ€express metâ€enkephalin and galanin in the rostral periventricular region of the female mouse hypothalamus. Journal of Comparative Neurology, 2011, 519, 3456-3469.	0.9	63
81	A mathematical model of adult GnRH neurons in mouse brain and its bifurcation analysis. Journal of Theoretical Biology, 2011, 276, 22-34.	0.8	30
82	Estrous Cycle- and Sex-Dependent Changes in Pre- and Postsynaptic GABABControl of GnRH Neuron Excitability. Endocrinology, 2011, 152, 4856-4864.	1.4	34
83	Gap Junctions between Neuronal Inputs But Not Gonadotropin-Releasing Hormone Neurons Control Estrous Cycles in the Mouse. Endocrinology, 2011, 152, 2290-2301.	1.4	41
84	Dendritic Spine Plasticity in Gonadatropin-Releasing Hormone (GnRH) Neurons Activated at the Time of the Preovulatory Surge. Endocrinology, 2011, 152, 4906-4914.	1.4	43
85	Gonadotropin-Releasing Hormone Neurons Extend Complex Highly Branched Dendritic Trees Outside the Blood-Brain Barrier. Endocrinology, 2011, 152, 3832-3841.	1.4	106
86	Projections of Arcuate Nucleus and Rostral Periventricular Kisspeptin Neurons in the Adult Female Mouse Brain. Endocrinology, 2011, 152, 2387-2399.	1.4	139
87	Tonic Extrasynaptic GABAA Receptor Currents Control Gonadotropin-Releasing Hormone Neuron Excitability in the Mouse. Endocrinology, 2011, 152, 1551-1561.	1.4	42
88	Differential Changes in Responses of Hypothalamic and Brainstem Neuronal Populations to Prolactin During Lactation in the Mouse. Biology of Reproduction, 2011, 84, 826-836.	1.2	53
89	Frequency-Dependent Recruitment of Fast Amino Acid and Slow Neuropeptide Neurotransmitter Release Controls Gonadotropin-Releasing Hormone Neuron Excitability. Journal of Neuroscience, 2011, 31, 2421-2430.	1.7	108
90	Glutamate regulation of GnRH neuron excitability. Brain Research, 2010, 1364, 35-43.	1.1	95

#	Article	IF	CITATIONS
91	Calcium dynamics in gonadotropin-releasing hormone neurons. Frontiers in Neuroendocrinology, 2010, 31, 259-269.	2.5	34
92	Distribution of prolactinâ€responsive neurons in the mouse forebrain. Journal of Comparative Neurology, 2010, 518, 92-102.	0.9	143
93	Gonadotrophinâ€Releasing Hormone (GnRH) Exerts Stimulatory Effects on GnRH Neurones in Intact Adult Male and Female Mice. Journal of Neuroendocrinology, 2010, 22, 188-195.	1.2	24
94	Two Slow Calcium-Activated Afterhyperpolarization Currents Control Burst Firing Dynamics in Gonadotropin-Releasing Hormone Neurons. Journal of Neuroscience, 2010, 30, 6214-6224.	1.7	87
95	γ-Aminobutyric Acid and Glutamate Differentially Regulate Intracellular Calcium Concentrations in Mouse Gonadotropin-Releasing Hormone Neurons. Endocrinology, 2010, 151, 262-270.	1.4	42
96	Distribution and Postnatal Development of Gpr54 Gene Expression in Mouse Brain and Gonadotropin-Releasing Hormone Neurons. Endocrinology, 2010, 151, 312-321.	1.4	266
97	Somatostatin Inhibition of Gonadotropin-Releasing Hormone Neurons in Female and Male Mice. Endocrinology, 2010, 151, 3258-3266.	1.4	28
98	Electrical and Morphological Characteristics of Anteroventral Periventricular Nucleus Kisspeptin and Other Neurons in the Female Mouse. Endocrinology, 2010, 151, 2223-2232.	1.4	61
99	Knockdown of GABAA Receptor Signaling in GnRH Neurons Has Minimal Effects upon Fertility. Endocrinology, 2010, 151, 4428-4436.	1.4	51
100	Neurobiological mechanisms underlying kisspeptin activation of gonadotropin-releasing hormone (GnRH) neurons at puberty. Molecular and Cellular Endocrinology, 2010, 324, 45-50.	1.6	104
101	Enhanced c-Fos expression in superior colliculus, paraventricular thalamus and septum during learning of cue-reward association. Neuroscience, 2010, 168, 706-714.	1.1	47
102	Dendro-dendritic bundling and shared synapses between gonadotropin-releasing hormone neurons. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10835-10840.	3.3	121
103	Postnatal Development of an Estradiol-Kisspeptin Positive Feedback Mechanism Implicated in Puberty Onset. Endocrinology, 2009, 150, 3214-3220.	1.4	199
104	RFamide-Related Peptide-3, a Mammalian Gonadotropin-Inhibitory Hormone Ortholog, Regulates Gonadotropin-Releasing Hormone Neuron Firing in the Mouse. Endocrinology, 2009, 150, 2799-2804.	1.4	269
105	Leptin Indirectly Regulates Gonadotropin-Releasing Hormone Neuronal Function. Endocrinology, 2009, 150, 2805-2812.	1.4	324
106	Anatomical location of mature GnRH neurons corresponds with their birthdate in the developing mouse. Developmental Dynamics, 2009, 238, 524-531.	0.8	34
107	Oestrogen, Kisspeptin, GPR54 and the Preâ€Ovulatory Luteinising Hormone Surge. Journal of Neuroendocrinology, 2009, 21, 305-311.	1.2	137
108	Distribution of Kisspeptin Neurones in the Adult Female Mouse Brain. Journal of Neuroendocrinology, 2009, 21, 673-682.	1.2	271

#	Article	IF	CITATIONS
109	Rapid actions of oestrogen on gonadotropinâ€releasing hormone neurons; from fantasy to physiology?. Journal of Physiology, 2009, 587, 5025-5030.	1.3	40
110	Cells Expressing RFamide-Related Peptide-1/3, the Mammalian Gonadotropin-Inhibitory Hormone Orthologs, Are Not Hypophysiotropic Neuroendocrine Neurons in the Rat. Endocrinology, 2009, 150, 1413-1420.	1.4	168
111	Estrogen positive feedback to gonadotropin-releasing hormone (GnRH) neurons in the rodent: The case for the rostral periventricular area of the third ventricle (RP3V). Brain Research Reviews, 2008, 57, 277-287.	9.1	301
112	Kisspeptin–GPR54 Signaling Is Essential for Preovulatory Gonadotropin-Releasing Hormone Neuron Activation and the Luteinizing Hormone Surge. Journal of Neuroscience, 2008, 28, 8691-8697.	1.7	410
113	Nonclassical Estrogen Modulation of Presynaptic GABA Terminals Modulates Calcium Dynamics in Gonadotropin-Releasing Hormone Neurons. Endocrinology, 2008, 149, 5335-5344.	1.4	72
114	Kisspeptin Excites Gonadotropin-Releasing Hormone Neurons through a Phospholipase C/Calcium-Dependent Pathway Regulating Multiple Ion Channels. Endocrinology, 2008, 149, 4605-4614.	1.4	231
115	Dendritic Action Potential Initiation in Hypothalamic Gonadotropin-Releasing Hormone Neurons. Endocrinology, 2008, 149, 3355-3360.	1.4	53
116	Small-Conductance Calcium-Activated Potassium Channels Control Excitability and Firing Dynamics in Gonadotropin-Releasing Hormone (GnRH) Neurons. Endocrinology, 2008, 149, 3598-3604.	1.4	59
117	Gonadotropin-Releasing Hormone Neuron Requirements for Puberty, Ovulation, and Fertility. Endocrinology, 2008, 149, 597-604.	1.4	195
118	Norepinephrine Suppresses Gonadotropin-Releasing Hormone Neuron Excitability in the Adult Mouse. Endocrinology, 2008, 149, 1129-1135.	1.4	47
119	Oestrogen Modulation of Noradrenaline Neurotransmission. Novartis Foundation Symposium, 2008, 230, 74-93.	1.2	38
120	Definition of Brainstem Afferents to Gonadotropin-Releasing Hormone Neurons in the Mouse Using Conditional Viral Tract Tracing. Endocrinology, 2007, 148, 5884-5890.	1.4	73
121	Cell Type-Specific Expression of a Genetically Encoded Calcium Indicator Reveals Intrinsic Calcium Oscillations in Adult Gonadotropin-Releasing Hormone Neurons. Journal of Neuroscience, 2007, 27, 860-867.	1.7	61
122	Genetics of Puberty. Hormone Research in Paediatrics, 2007, 68, 75-79.	0.8	34
123	Prolactin Regulation of Gonadotropin-Releasing Hormone Neurons to Suppress Luteinizing Hormone Secretion in Mice. Endocrinology, 2007, 148, 4344-4351.	1.4	122
124	Development of GABA and glutamate signaling at the GnRH neuron in relation to puberty. Molecular and Cellular Endocrinology, 2006, 254-255, 32-38.	1.6	98
125	Definition of Estrogen Receptor Pathway Critical for Estrogen Positive Feedback to Gonadotropin-Releasing Hormone Neurons and Fertility. Neuron, 2006, 52, 271-280.	3.8	503
126	Physiology of the Gonadotropin-Releasing Hormone Neuronal Network. , 2006, , 1415-1482.		103

#	Article	IF	CITATIONS
127	Postnatal Remodeling of Dendritic Structure and Spine Density in Gonadotropin-Releasing Hormone Neurons. Endocrinology, 2006, 147, 3652-3661.	1.4	127
128	Postnatal Development of Kisspeptin Neurons in Mouse Hypothalamus; Sexual Dimorphism and Projections to Gonadotropin-Releasing Hormone Neurons. Endocrinology, 2006, 147, 5817-5825.	1.4	716
129	Disruption of Ephrin Signaling Associates with Disordered Axophilic Migration of the Gonadotropin-Releasing Hormone Neurons. Journal of Neuroscience, 2005, 25, 3142-3150.	1.7	53
130	Biocytin Filling of Adult Gonadotropin-Releasing Hormone Neuronsin SituReveals Extensive, Spiny, Dendritic Processes. Endocrinology, 2005, 146, 1163-1169.	1.4	125
131	Expression of mRNAs Encoding Receptors That Mediate Stress Signals in Gonadotropin-Releasing Hormone Neurons of the Mouse. Neuroendocrinology, 2005, 82, 320-328.	1.2	83
132	Major sex differences in non-genomic estrogen actions on intracellular signaling in mouse brain in vivo. Neuroscience, 2005, 131, 945-951.	1.1	70
133	Profiling neurotransmitter receptor expression in mouse gonadotropin-releasing hormone neurons using green fluorescent protein-promoter transgenics and microarrays. Neuroscience, 2005, 132, 703-712.	1.1	153
134	Activation of Gonadotropin-Releasing Hormone Neurons by Kisspeptin as a Neuroendocrine Switch for the Onset of Puberty. Journal of Neuroscience, 2005, 25, 11349-11356.	1.7	873
135	Critical in Vivo Roles for Classical Estrogen Receptors in Rapid Estrogen Actions on Intracellular Signaling in Mouse Brain. Endocrinology, 2004, 145, 3055-3061.	1.4	191
136	Endogenous GABA Release Inhibits the Firing of Adult Gonadotropin-Releasing Hormone Neurons. Endocrinology, 2004, 145, 495-499.	1.4	137
137	Sex Differences in Estrogen-Dependent Transcription of Gonadotropin-Releasing Hormone (GnRH) Gene Revealed in GnRH Transgenic Mice. Endocrinology, 2003, 144, 3351-3358.	1.4	23
138	Critical Role for Estrogen Receptor alpha in Negative Feedback Regulation of Gonadotropin-Releasing Hormone mRNA Expression in the Female Mouse. Neuroendocrinology, 2003, 78, 204-209.	1.2	108
139	Estrogen Receptor β Mediates Rapid Estrogen Actions on Gonadotropin-Releasing Hormone Neurons <i>In Vivo</i> . Journal of Neuroscience, 2003, 23, 5771-5777.	1.7	202
140	Gonadotropin-Releasing Hormone Neuron. , 2003, , 171-177.		5
141	Effect of GABA on GnRH Neurons Switches from Depolarization to Hyperpolarization at Puberty in the Female Mouse. Endocrinology, 2002, 143, 1459-1466.	1.4	157
142	Hypothalamic Somatostatin and Growth Hormone-Releasing Hormone mRNA Expression Depend upon GABA _A Receptor Expression in the Developing Mouse. Neuroendocrinology, 2002, 76, 93-98.	1.2	3
143	Sex differences in the regulation of tyrosine hydroxylase gene transcription by estrogen in the locus coeruleus of TH9-LacZ transgenic mice. Molecular Brain Research, 2002, 104, 220-226.	2.5	58
144	Projections of the sexually dimorphic calcitonin gene-related peptide neurons of the preoptic area determined by retrograde tracing in the female rat. Journal of Comparative Neurology, 2002, 445, 336-346.	0.9	5

#	Article	IF	CITATIONS
145	Profiling γ-Aminobutyric Acid (GABA _A) Receptor Subunit mRNA Expression in Postnatal Gonadotropin-Releasing Hormone (GnRH) Neurons of the Male Mouse with Single Cell RT-PCR. Neuroendocrinology, 2001, 74, 300-308.	1.2	54
146	Molecular and cellular properties of GnRH neurons revealed through transgenics in the mouse. Molecular and Cellular Endocrinology, 2001, 185, 185-194.	1.6	56
147	Heterogeneity in the Basic Membrane Properties of Postnatal Gonadotropin-Releasing Hormone Neurons in the Mouse. Journal of Neuroscience, 2001, 21, 1067-1075.	1.7	98
148	Differing, Spatially Restricted Roles of Ionotropic Glutamate Receptors in Regulating the Migration of GnRH Neurons during Embryogenesis. Journal of Neuroscience, 2001, 21, 934-943.	1.7	75
149	Regulation of Gonadotropin-Releasing Hormone (GnRH) Gene Expression during GnRH Neuron Migration in the Mouse. Neuroendocrinology, 2001, 73, 149-156.	1.2	30
150	New Evidence for Estrogen Receptors in Gonadotropin-Releasing Hormone Neurons. Frontiers in Neuroendocrinology, 2001, 22, 292-308.	2.5	233
151	Sexually Dimorphic Effects of Testosterone on Preoptic Area Calcitonin Gene-Related Peptide mRNA Expression Depend upon Neuron Location and Differential Estrogen and Androgen Receptor Activation. Endocrinology, 2001, 142, 3397-3404.	1.4	7
152	Chapter 2 Physiological roles for the neurosteroid allopregnanolone in the modulation of brain function during pregnancy and parturition. Progress in Brain Research, 2001, 133, 39-47.	0.9	41
153	Direct Regulation of Postnatal GnRH Neurons by the Progesterone Derivative Allopregnanolone in the Mouse. Endocrinology, 2001, 142, 4448-4453.	1.4	43
154	Progesterone regulation of GABAAreceptor plasticity in adult rat supraoptic nucleus. European Journal of Neuroscience, 2000, 12, 1617-1623.	1.2	35
155	Role of the GABAAreceptor γ2 subunit in the development of gonadotropin-releasing hormone neurons in vivo. European Journal of Neuroscience, 2000, 12, 3488-3496.	1.2	22
156	Late postnatal reorganization of GABAAreceptor signalling in native GnRH neurons. European Journal of Neuroscience, 2000, 12, 3497-3504.	1.2	127
157	Identification of Neurokinin B-Expressing Neurons as an Highly Estrogen-Receptive, Sexually Dimorphic Cell Group in the Ovine Arcuate Nucleus**This work was supported by the United Kingdom Biotechnology and Biological Sciences Research Council (to J.E.R. and A.E.H.) and a European Community Marie Curie Research Training Grant (to M.L.G.) Endocrinology, 2000, 141, 4218-4225.	1.4	124
158	Long-term plasticity of postsynaptic GABAA-receptor function in the adult brain: insights from the oxytocin neurone. Trends in Neurosciences, 2000, 23, 190-195.	4.2	95
159	Promoter Transgenics Reveal Multiple Gonadotropin-Releasing Hormone-I-Expressing Cell Populations of Different Embryological Origin in Mouse Brain. Journal of Neuroscience, 1999, 19, 5955-5966.	1.7	127
160	Sexually Dimorphic Ontogeny of GABAergic Influences on Periventricular Somatostatin Neurons. Neuroendocrinology, 1999, 70, 384-391.	1.2	14
161	Localization of Estrogen-Receptive Neurons Projecting to the GnRH Neuron-Containing Rostral Preoptic Area of the Ewe. Neuroendocrinology, 1999, 70, 228-236.	1.2	52
162	Detection of Estrogen Receptor α and β Messenger Ribonucleic Acids in Adult Gonadotropin-Releasing Hormone Neurons1. Endocrinology, 1999, 140, 5195-5201.	1.4	193

#	Article	IF	CITATIONS
163	Transgenics Identify Distal 5′- and 3′-Sequences Specifying Gonadotropin-Releasing Hormone Expression in Adult Mice. Molecular Endocrinology, 1999, 13, 2203-2211.	3.7	39
164	Fluctuating Estrogen and Progesterone Receptor Expression in Brainstem Norepinephrine Neurons through the Rat Estrous Cycle*. Endocrinology, 1999, 140, 3255-3263.	1.4	143
165	Correlation of Hypothalamic Somatostatin mRNA Expression and Peptide Content with Secretion: Sexual Dimorphism and Differential Regulation by Gonadal Factors. Journal of Neuroendocrinology, 1999, 11, 27-33.	1.2	25
166	Ontogeny and Sexual Differentiation of Somatostatin Biosynthesis and Secretion in the Hypothalamic Periventricularâ€Median Eminence Pathway. Journal of Neuroendocrinology, 1999, 11, 35-42.	1.2	12
167	Identification and characterization of estrogen receptor ?-containing neurons projecting to the vicinity of the gonadotropin-releasing hormone perikarya in the rostral preoptic area of the rat. , 1999, 411, 346-358.		164
168	Developmental sex differences in amino acid neurotransmitter levels in hypothalamic and limbic areas of rat brain. Neuroscience, 1999, 90, 1471-1482.	1.1	86
169	Multimodal Influence of Estrogen upon Gonadotropin-Releasing Hormone Neurons. Endocrine Reviews, 1998, 19, 302-330.	8.9	527
170	Gonadotropin-Releasing Hormone Messenger Ribonucleic Acid Expression Changes before the Onset of the Estradiol-Induced Luteinizing Hormone Surge in the Ewe1. Endocrinology, 1998, 139, 57-64.	1.4	35
171	Estrogen-Dependent Ontogeny of Sex Differences in Somatostatin Neurons of the Hypothalamic Periventricular Nucleus*. Endocrinology, 1998, 139, 1420-1428.	1.4	25
172	Estrogen Receptor Expression in Brainstem Noradrenergic Neurons of the Sheep. Neuroendocrinology, 1998, 67, 392-402.	1.2	48
173	Profile of Monoamine and Excitatory Amino Acid Release in Rat Supraoptic Nucleus over Parturition. Endocrinology, 1997, 138, 33-40.	1.4	61
174	Effects of Photoperiod on Estrogen Receptor, Tyrosine Hydroxylase, Neuropeptide Y, and β-Endorphin Immunoreactivity in the Ewe Hypothalamus. Endocrinology, 1997, 138, 2585-2595.	1.4	132
175	Regulation of preoptic area gonadotrophin-releasing hormone (GnRH) mRNA expression by gonadal steroids in the long-term gonadectomized male rat. Molecular Brain Research, 1997, 47, 125-133.	2.5	51
176	Differential expression of estrogen receptor and neuropeptide Y by brainstem A1 and A2 noradrenaline neurons. Neuroscience, 1997, 76, 517-529.	1.1	98
177	Up-regulation of nitric oxide synthase messenger RNA in an integrated forebrain circuit involved in oxytocin secretion. Neuroscience, 1997, 77, 37-48.	1.1	50
178	Identification of estrogen receptor-containing neurons projecting to the rat supraoptic nucleus. Neuroscience, 1997, 78, 215-228.	1.1	95
179	Estrogen Regulation of GABA Transmission in Rat Preoptic Area. Brain Research Bulletin, 1997, 44, 321-326.	1.4	141
180	Differential Expression of Estrogen Receptor &agr and &bgr Immunoreactivity by Oxytocin Neurons of Rat Paraventricular Nucleus. Journal of Neuroendocrinology, 1997, 9, 803-806.	1.2	118

#	Article	IF	CITATIONS
181	In vivo regulation of specific GABAA receptor subunit messenger rnas by increased gaba concentrations in rat brain. Neuroscience, 1996, 71, 661-670.	1.1	43
182	Calbindin-D28k mRNA expression in magnocellular hypothalamic neurons of female rats during parturition, lactation and following dehydration. Molecular Brain Research, 1996, 42, 279-286.	2.5	5
183	Plasticity in GABA _A Receptor Subunit mRNA Expression by Hypothalamic Magnocellular Neurons in the Adult Rat. Journal of Neuroscience, 1996, 16, 4872-4880.	1.7	84
184	Effects of Central GABA _B Receptor Modulation upon the Milk Ejection Reflex in the Rat. Neuroendocrinology, 1996, 63, 368-376.	1.2	19
185	Localization of neuronal nitric oxide synthase-immunoreactivity within sub-populations of noradrenergic A1 and A2 neurons in the rat. Brain Research, 1996, 732, 247-252.	1.1	57
186	Sexually dimorphic expression of calcitonin gene-related peptide (CGRP) immunoreactivity by rat mediobasal hypothalamic neurons. , 1996, 367, 444-453.		12
187	Relationship of Neuronal Nitric Oxide Synthase Immunoreactivity to GnRH Neurons in the Ovariectomized and Intact Female Rat. Journal of Neuroendocrinology, 1996, 8, 73-82.	1.2	269
188	Androgen Receptor-Immunoreactive Cells in Ram Hypothalamus: Distribution and Co-Localization Patterns with Gonadotropin-Releasing Hormone, Somatostatin and Tyrosine Hydroxylase. Neuroendocrinology, 1996, 63, 120-131.	1.2	80
189	Sexually dimorphic expression of calcitonin gene-related peptide (CGRP) immunoreactivity by rat mediobasal hypothalamic neurons. , 1996, 367, 444.		1
190	Increased Fos Expression in Preoptic Calcitonin Gene-Related Peptide (CGRP) Neurones following Mating but not the Luteinizing Hormone Surge in Female Rats. Journal of Neuroendocrinology, 1995, 7, 377-385.	1.2	13
191	Sexually Dimorphic Expression of Androgen Receptor Immunoreactivity by Somatostatin Neurones in Rat Hypothalamic Periventricular Nucleus and Bed Nucleus of the Stria Terminalis. Journal of Neuroendocrinology, 1995, 7, 543-553.	1.2	63
192	Changing patterns of Fos expression in brainstem catecholaminergic neurons during the rat oestrous cycle. Brain Research, 1995, 672, 68-76.	1.1	46
193	Distribution of Estrogen Receptor-Immunoreactive Cells in Monkey Hypothalamus: Relationship to Neurones Containing Luteinizing Hormone-Releasing Hormone and Tyrosine Hydroxylase. Neuroendocrinology, 1995, 61, 1-10.	1.2	81
194	Sexually dimorphic expression of calcitonin gene-related peptide (CGRP) mRNA in rat medial preoptic nucleus. Molecular Brain Research, 1995, 34, 143-148.	2.5	17
195	Differential cellular localisation of oestrogen receptor immunoreactivity and oxytocin rnRNA and immunoreactivity in the rat preoptic area. Neuroscience Letters, 1995, 200, 89-92.	1.0	4
196	Oestrogenic activity of an environmentally persistent alkylphenol in the reproductive tract but not the brain of rodents. Journal of Steroid Biochemistry and Molecular Biology, 1995, 54, 7-9.	1.2	64
197	Immunocytochemical Evidence for Oestrogen Receptors within GABA Neurones Located in the Perinuclear Zone of the Supraoptic Nucleus and GABAA Receptor ?2/?3Subunits on Supraoptic Oxytocin Neurones. Journal of Neuroendocrinology, 1994, 6, 5-11.	1.2	67
198	Somatostatin-Immunoreactive Neurones in the Hypothalamic Ventromedial Nucleus Possess Oestrogen Receptors in the Male and Female Rat. Journal of Neuroendocrinology, 1994, 6, 323-328.	1.2	33

#	Article	IF	CITATIONS
199	Analysis of brainstem A1 and A2 noradrenergic inputs to the preoptic area using microdialysis in the rat. Brain Research, 1994, 636, 227-232.	1.1	40
200	Expression of GABAA receptor α2 sub-unit mRNA by periventricular somatostatin neurones in the rat hypothalamus. Neuroscience Letters, 1994, 173, 9-13.	1.0	15
201	Characterization of Tritiated Noradrenaline Release from the Rat Preoptic Area with Microdialysis In Vivo. Journal of Neurochemistry, 1993, 60, 1806-1815.	2.1	9
202	Calcitonin gene-related peptide (CGRP): immunocytochemical identification of a neuropeptide synthesised by ventral paraventricular magnocellular neurones in the sheep. Brain Research, 1993, 611, 147-151.	1.1	7
203	Perinatal and adult factors responsible for the sexually dimorphic calcitonin gene-related peptide-containing cell population in the rat preoptic area. Neuroscience, 1993, 54, 991-999.	1.1	20
204	Distribution of Estrogen Receptor-Immunoreactive Cells in the Preoptic Area of the Ewe: Co-Localization with Glutamic Acid Decarboxylase but Not Luteinizing Hormone-Releasing Hormone. Neuroendocrinology, 1993, 57, 751-759.	1.2	213
205	Expression of glutamic acid decarboxylase messenger RNA in rat medial preoptic area neurones during the oestrous cycle and after ovariectomy. Molecular Brain Research, 1992, 14, 310-316.	2.5	58
206	Localization of oestrogen receptors in preoptic neurons containing neurotensin but not tyrosine hydroxylase, cholecystokinin or luteinizing hormone-releasing hormone in the male and female rat. Neuroscience, 1992, 50, 283-298.	1.1	256
207	Identification of a sexually dimorphic neural population immunoreactive for calcitonin gene-related peptide (CGRP) in the rat medial preoptic area. Brain Research, 1992, 591, 289-295.	1.1	32
208	Immunocytochemical Identification of Oestrogen Receptors in Preoptic Neurones Containing Calcitonin Gene-Related Peptide in the Male and Female Rat. Neuroendocrinology, 1992, 56, 761-764.	1.2	52
209	Immunocytochemical Identification of Oestrogen Receptors in the Ovine Pars Tuberalis: Localization Within Gonadotrophs. Journal of Neuroendocrinology, 1992, 4, 659-662.	1.2	11
210	Acute Action of Oestrogen on Medial Preoptic Gamma-Aminobutyric Acid Neurons: Correlation with Oestrogen Negative Feedback on Luteinizing Hormone Secretion. Journal of Neuroendocrinology, 1991, 3, 101-106.	1.2	51
211	Neurotensin-Immunoreactive Neurons in the Rat Medial Preoptic Area are Oestrogen-Receptive. Journal of Neuroendocrinology, 1991, 3, 587-589.	1.2	29
212	Role of medial preoptic GABA neurones in regulating luteinising hormone secretion in the ovariectomised rat. Experimental Brain Research, 1991, 87, 345-52.	0.7	62
213	Oestrogen Modulation of Excitatory Al Noradrenergic Input to Rat Medial Preoptic Gamma Aminobutyric Acid Neurones Demonstrated by Microdialysis. Neuroendocrinology, 1990, 52, 161-168.	1.2	70
214	Endogenous Release of ?-Aminobutyric Acid from the Medial Preoptic Area Measured by Microdialysis in the Anaesthetised Rat. Journal of Neurochemistry, 1990, 55, 1617-1623.	2.1	39
215	Oestrogen and noradrenaline modulate endogenous GABA release from slices of the rat medial preoptic area. Brain Research, 1989, 486, 195-200.	1.1	37
216	Neurotensin excites neurons in the arcuate nucleus of the rat hypothalamus in vitro. Brain Research, 1986, 364, 391-395.	1.1	19

#	Article	IF	CITATIONS
217	Inhibitory action of adrenocorticotrophin on rat arcuate neurons in vitro. Brain Research, 1985, 327, 375-378.	1.1	1
218	LH-RH in picomole concentrations evokes excitation and inhibition of rat arcuate neurones in vitro. Neuroscience Letters, 1984, 46, 311-315.	1.0	23
219	Effects of Photoperiod on Estrogen Receptor, Tyrosine Hydroxylase, Neuropeptide Y, and β-Endorphin Immunoreactivity in the Ewe Hypothalamus. , 0, .		37
220	Gonadotropin-Releasing Hormone Messenger Ribonucleic Acid Expression Changes before the Onset of the Estradiol-Induced Luteinizing Hormone Surge in the Ewe. , 0, .		9