Allan E Herbison

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6996241/publications.pdf

Version: 2024-02-01

224 19,186 74
papers citations h-index

319 319 319 6941 all docs docs citations times ranked citing authors

127

g-index

#	Article	IF	Citations
1	Activation of Gonadotropin-Releasing Hormone Neurons by Kisspeptin as a Neuroendocrine Switch for the Onset of Puberty. Journal of Neuroscience, 2005, 25, 11349-11356.	3 . 6	873
2	Postnatal Development of Kisspeptin Neurons in Mouse Hypothalamus; Sexual Dimorphism and Projections to Gonadotropin-Releasing Hormone Neurons. Endocrinology, 2006, 147, 5817-5825.	2.8	716
3	Multimodal Influence of Estrogen upon Gonadotropin-Releasing Hormone Neurons. Endocrine Reviews, 1998, 19, 302-330.	20.1	527
4	Definition of Estrogen Receptor Pathway Critical for Estrogen Positive Feedback to Gonadotropin-Releasing Hormone Neurons and Fertility. Neuron, 2006, 52, 271-280.	8.1	503
5	Kisspeptin–GPR54 Signaling Is Essential for Preovulatory Gonadotropin-Releasing Hormone Neuron Activation and the Luteinizing Hormone Surge. Journal of Neuroscience, 2008, 28, 8691-8697.	3.6	410
6	Control of puberty onset and fertility by gonadotropin-releasing hormone neurons. Nature Reviews Endocrinology, 2016, 12, 452-466.	9.6	335
7	Leptin Indirectly Regulates Gonadotropin-Releasing Hormone Neuronal Function. Endocrinology, 2009, 150, 2805-2812.	2.8	324
8	Estrogen positive feedback to gonadotropin-releasing hormone (GnRH) neurons in the rodent: The case for the rostral periventricular area of the third ventricle (RP3V). Brain Research Reviews, 2008, 57, 277-287.	9.0	301
9	Novel role for anti-MÃ 1 /allerian hormone in the regulation of GnRH neuron excitability and hormone secretion. Nature Communications, 2016, 7, 10055.	12.8	284
10	Distribution of Kisspeptin Neurones in the Adult Female Mouse Brain. Journal of Neuroendocrinology, 2009, 21, 673-682.	2.6	271
11	Relationship of Neuronal Nitric Oxide Synthase Immunoreactivity to GnRH Neurons in the Ovariectomized and Intact Female Rat. Journal of Neuroendocrinology, 1996, 8, 73-82.	2.6	269
12	RFamide-Related Peptide-3, a Mammalian Gonadotropin-Inhibitory Hormone Ortholog, Regulates Gonadotropin-Releasing Hormone Neuron Firing in the Mouse. Endocrinology, 2009, 150, 2799-2804.	2.8	269
13	Definition of the hypothalamic GnRH pulse generator in mice. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10216-E10223.	7.1	267
14	Distribution and Postnatal Development of Gpr54 Gene Expression in Mouse Brain and Gonadotropin-Releasing Hormone Neurons. Endocrinology, 2010, 151, 312-321.	2.8	266
15	Localization of oestrogen receptors in preoptic neurons containing neurotensin but not tyrosine hydroxylase, cholecystokinin or luteinizing hormone-releasing hormone in the male and female rat. Neuroscience, 1992, 50, 283-298.	2.3	256
16	New Evidence for Estrogen Receptors in Gonadotropin-Releasing Hormone Neurons. Frontiers in Neuroendocrinology, 2001, 22, 292-308.	5.2	233
17	Kisspeptin Excites Gonadotropin-Releasing Hormone Neurons through a Phospholipase C/Calcium-Dependent Pathway Regulating Multiple Ion Channels. Endocrinology, 2008, 149, 4605-4614.	2.8	231
18	Distribution of Estrogen Receptor-Immunoreactive Cells in the Preoptic Area of the Ewe: Co-Localization with Glutamic Acid Decarboxylase but Not Luteinizing Hormone-Releasing Hormone. Neuroendocrinology, 1993, 57, 751-759.	2.5	213

#	Article	IF	Citations
19	Depolarising and Hyperpolarising Actions of GABAA Receptor Activation on Gonadotrophin-Releasing Hormone Neurones: Towards an Emerging Consensus. Journal of Neuroendocrinology, 2011, 23, 557-569.	2.6	209
20	Estrogen Receptor \hat{l}^2 Mediates Rapid Estrogen Actions on Gonadotropin-Releasing Hormone Neurons < i>In Vivo < /i>. Journal of Neuroscience, 2003, 23, 5771-5777.	3.6	202
21	Postnatal Development of an Estradiol-Kisspeptin Positive Feedback Mechanism Implicated in Puberty Onset. Endocrinology, 2009, 150, 3214-3220.	2.8	199
22	Gonadotropin-Releasing Hormone Neuron Requirements for Puberty, Ovulation, and Fertility. Endocrinology, 2008, 149, 597-604.	2.8	195
23	Detection of Estrogen Receptor \hat{l}_{\pm} and \hat{l}^{2} Messenger Ribonucleic Acids in Adult Gonadotropin-Releasing Hormone Neurons1. Endocrinology, 1999, 140, 5195-5201.	2.8	193
24	Critical in Vivo Roles for Classical Estrogen Receptors in Rapid Estrogen Actions on Intracellular Signaling in Mouse Brain. Endocrinology, 2004, 145, 3055-3061.	2.8	191
25	Dependence of fertility on kisspeptin–Gpr54 signaling at the GnRH neuron. Nature Communications, 2013, 4, 2492.	12.8	173
26	Cells Expressing RFamide-Related Peptide-1/3, the Mammalian Gonadotropin-Inhibitory Hormone Orthologs, Are Not Hypophysiotropic Neuroendocrine Neurons in the Rat. Endocrinology, 2009, 150, 1413-1420.	2.8	168
27	Identification and characterization of estrogen receptor ?-containing neurons projecting to the vicinity of the gonadotropin-releasing hormone perikarya in the rostral preoptic area of the rat. Journal of Comparative Neurology, 1999, 411, 346-358.	1.6	164
28	The Gonadotropin-Releasing Hormone Pulse Generator. Endocrinology, 2018, 159, 3723-3736.	2.8	162
29	Effect of GABA on GnRH Neurons Switches from Depolarization to Hyperpolarization at Puberty in the Female Mouse. Endocrinology, 2002, 143, 1459-1466.	2.8	157
30	Profiling neurotransmitter receptor expression in mouse gonadotropin-releasing hormone neurons using green fluorescent protein-promoter transgenics and microarrays. Neuroscience, 2005, 132, 703-712.	2.3	153
31	Selective optogenetic activation of arcuate kisspeptin neurons generates pulsatile luteinizing hormone secretion. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13109-13114.	7.1	146
32	Direct Regulation of GnRH Neuron Excitability by Arcuate Nucleus POMC and NPY Neuron Neuropeptides in Female Mice. Endocrinology, 2012, 153, 5587-5599.	2.8	145
33	Conditional Viral Tract Tracing Delineates the Projections of the Distinct Kisspeptin Neuron Populations to Gonadotropin-Releasing Hormone (GnRH) Neurons in the Mouse. Endocrinology, 2015, 156, 2582-2594.	2.8	144
34	Fluctuating Estrogen and Progesterone Receptor Expression in Brainstem Norepinephrine Neurons through the Rat Estrous Cycle*. Endocrinology, 1999, 140, 3255-3263.	2.8	143
35	Distribution of prolactinâ€responsive neurons in the mouse forebrain. Journal of Comparative Neurology, 2010, 518, 92-102.	1.6	143
36	Estrogen Regulation of GABA Transmission in Rat Preoptic Area. Brain Research Bulletin, 1997, 44, 321-326.	3.0	141

#	Article	IF	CITATIONS
37	GnRH Neurons Elaborate a Long-Range Projection with Shared Axonal and Dendritic Functions. Journal of Neuroscience, 2013, 33, 12689-12697.	3.6	141
38	Projections of Arcuate Nucleus and Rostral Periventricular Kisspeptin Neurons in the Adult Female Mouse Brain. Endocrinology, 2011, 152, 2387-2399.	2.8	139
39	Endogenous GABA Release Inhibits the Firing of Adult Gonadotropin-Releasing Hormone Neurons. Endocrinology, 2004, 145, 495-499.	2.8	137
40	Oestrogen, Kisspeptin, GPR54 and the Preâ€Ovulatory Luteinising Hormone Surge. Journal of Neuroendocrinology, 2009, 21, 305-311.	2.6	137
41	Pulse and Surge Profiles of Luteinizing Hormone Secretion in the Mouse. Endocrinology, 2016, 157, 4794-4802.	2.8	137
42	Neurokinin B Activates Arcuate Kisspeptin Neurons Through Multiple Tachykinin Receptors in the Male Mouse. Endocrinology, 2013, 154, 2750-2760.	2.8	134
43	Effects of Photoperiod on Estrogen Receptor, Tyrosine Hydroxylase, Neuropeptide Y, and \hat{l}^2 -Endorphin Immunoreactivity in the Ewe Hypothalamus. Endocrinology, 1997, 138, 2585-2595.	2.8	132
44	Promoter Transgenics Reveal Multiple Gonadotropin-Releasing Hormone-I-Expressing Cell Populations of Different Embryological Origin in Mouse Brain. Journal of Neuroscience, 1999, 19, 5955-5966.	3.6	127
45	Late postnatal reorganization of GABAAreceptor signalling in native GnRH neurons. European Journal of Neuroscience, 2000, 12, 3497-3504.	2.6	127
46	Postnatal Remodeling of Dendritic Structure and Spine Density in Gonadotropin-Releasing Hormone Neurons. Endocrinology, 2006, 147, 3652-3661.	2.8	127
47	Biocytin Filling of Adult Gonadotropin-Releasing Hormone Neuronsin SituReveals Extensive, Spiny, Dendritic Processes. Endocrinology, 2005, 146, 1163-1169.	2.8	125
48	Identification of Neurokinin B-Expressing Neurons as an Highly Estrogen-Receptive, Sexually Dimorphic Cell Group in the Ovine Arcuate Nucleus**This work was supported by the United Kingdom Biotechnology and Biological Sciences Research Council (to J.E.R. and A.E.H.) and a European Community Marie Curie Research Training Grant (to M.L.G.) Endocrinology, 2000, 141, 4218-4225.	2.8	124
49	Defining a novel leptin–melanocortin–kisspeptin pathway involved in the metabolic control of puberty. Molecular Metabolism, 2016, 5, 844-857.	6.5	123
50	Prolactin Regulation of Gonadotropin-Releasing Hormone Neurons to Suppress Luteinizing Hormone Secretion in Mice. Endocrinology, 2007, 148, 4344-4351.	2.8	122
51	Dendro-dendritic bundling and shared synapses between gonadotropin-releasing hormone neurons. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10835-10840.	7.1	121
52	Differential Expression of Estrogen Receptor & Sagr; and & Sagr; Immunoreactivity by Oxytocin Neurons of Rat Paraventricular Nucleus. Journal of Neuroendocrinology, 1997, 9, 803-806.	2.6	118
53	Female sexual behavior in mice is controlled by kisspeptin neurons. Nature Communications, 2018, 9, 400.	12.8	116
54	Critical Role for Estrogen Receptor alpha in Negative Feedback Regulation of Gonadotropin-Releasing Hormone mRNA Expression in the Female Mouse. Neuroendocrinology, 2003, 78, 204-209.	2.5	108

#	Article	IF	Citations
55	Frequency-Dependent Recruitment of Fast Amino Acid and Slow Neuropeptide Neurotransmitter Release Controls Gonadotropin-Releasing Hormone Neuron Excitability. Journal of Neuroscience, 2011, 31, 2421-2430.	3.6	108
56	Gonadotropin-Releasing Hormone Neurons Extend Complex Highly Branched Dendritic Trees Outside the Blood-Brain Barrier. Endocrinology, 2011, 152, 3832-3841.	2.8	106
57	Neurobiological mechanisms underlying kisspeptin activation of gonadotropin-releasing hormone (GnRH) neurons at puberty. Molecular and Cellular Endocrinology, 2010, 324, 45-50.	3.2	104
58	Physiology of the Gonadotropin-Releasing Hormone Neuronal Network., 2006,, 1415-1482.		103
59	Differential expression of estrogen receptor and neuropeptide Y by brainstem A1 and A2 noradrenaline neurons. Neuroscience, 1997, 76, 517-529.	2.3	98
60	Heterogeneity in the Basic Membrane Properties of Postnatal Gonadotropin-Releasing Hormone Neurons in the Mouse. Journal of Neuroscience, 2001, 21, 1067-1075.	3.6	98
61	Development of GABA and glutamate signaling at the GnRH neuron in relation to puberty. Molecular and Cellular Endocrinology, 2006, 254-255, 32-38.	3.2	98
62	Identification of estrogen receptor-containing neurons projecting to the rat supraoptic nucleus. Neuroscience, 1997, 78, 215-228.	2.3	95
63	Long-term plasticity of postsynaptic GABAA-receptor function in the adult brain: insights from the oxytocin neurone. Trends in Neurosciences, 2000, 23, 190-195.	8.6	95
64	Glutamate regulation of GnRH neuron excitability. Brain Research, 2010, 1364, 35-43.	2.2	95
65	Dual Phenotype Kisspeptin-Dopamine Neurones of the Rostral Periventricular Area of the Third Ventricle Project to Gonadotrophin-Releasing Hormone Neurones. Journal of Neuroendocrinology, 2011, 23, 293-301.	2.6	89
66	Physiology of the Adult Gonadotropin-Releasing Hormone Neuronal Network., 2015,, 399-467.		88
67	Two Slow Calcium-Activated Afterhyperpolarization Currents Control Burst Firing Dynamics in Gonadotropin-Releasing Hormone Neurons. Journal of Neuroscience, 2010, 30, 6214-6224.	3.6	87
68	Developmental sex differences in amino acid neurotransmitter levels in hypothalamic and limbic areas of rat brain. Neuroscience, 1999, 90, 1471-1482.	2.3	86
69	Roles for Oestrogen Receptor \hat{l}^2 in Adult Brain Function. Journal of Neuroendocrinology, 2012, 24, 160-173.	2.6	85
70	Hypothalamic control of the male neonatal testosterone surge. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150115.	4.0	85
71	Plasticity in GABA _A Receptor Subunit mRNA Expression by Hypothalamic Magnocellular Neurons in the Adult Rat. Journal of Neuroscience, 1996, 16, 4872-4880.	3.6	84
72	Spontaneous Kisspeptin Neuron Firing in the Adult Mouse Reveals Marked Sex and Brain Region Differences but No Support for a Direct Role in Negative Feedback. Endocrinology, 2012, 153, 5384-5393.	2.8	84

#	Article	IF	CITATIONS
73	Expression of mRNAs Encoding Receptors That Mediate Stress Signals in Gonadotropin-Releasing Hormone Neurons of the Mouse. Neuroendocrinology, 2005, 82, 320-328.	2.5	83
74	GnRH Pulse Generator Activity Across the Estrous Cycle of Female Mice. Endocrinology, 2019, 160, 1480-1491.	2.8	82
75	Distribution of Estrogen Receptor-Immunoreactive Cells in Monkey Hypothalamus: Relationship to Neurones Containing Luteinizing Hormone-Releasing Hormone and Tyrosine Hydroxylase. Neuroendocrinology, 1995, 61, 1-10.	2.5	81
76	Androgen Receptor-Immunoreactive Cells in Ram Hypothalamus: Distribution and Co-Localization Patterns with Gonadotropin-Releasing Hormone, Somatostatin and Tyrosine Hydroxylase. Neuroendocrinology, 1996, 63, 120-131.	2.5	80
77	Dopamine Regulation of Gonadotropin-Releasing Hormone Neuron Excitability in Male and Female Mice. Endocrinology, 2013, 154, 340-350.	2.8	80
78	Expression of ESR1 in Glutamatergic and GABAergic Neurons Is Essential for Normal Puberty Onset, Estrogen Feedback, and Fertility in Female Mice. Journal of Neuroscience, 2015, 35, 14533-14543.	3.6	78
79	Differing, Spatially Restricted Roles of Ionotropic Glutamate Receptors in Regulating the Migration of GnRH Neurons during Embryogenesis. Journal of Neuroscience, 2001, 21, 934-943.	3.6	75
80	Detection of Estrogen Receptor and Messenger Ribonucleic Acids in Adult Gonadotropin-Releasing Hormone Neurons. Endocrinology, 1999, 140, 5195-5201.	2.8	74
81	Definition of Brainstem Afferents to Gonadotropin-Releasing Hormone Neurons in the Mouse Using Conditional Viral Tract Tracing. Endocrinology, 2007, 148, 5884-5890.	2.8	73
82	Nonclassical Estrogen Modulation of Presynaptic GABA Terminals Modulates Calcium Dynamics in Gonadotropin-Releasing Hormone Neurons. Endocrinology, 2008, 149, 5335-5344.	2.8	72
83	Dominant Neuropeptide Cotransmission in Kisspeptin-GABA Regulation of GnRH Neuron Firing Driving Ovulation. Journal of Neuroscience, 2018, 38, 6310-6322.	3.6	72
84	Oestrogen Modulation of Excitatory Al Noradrenergic Input to Rat Medial Preoptic Gamma Aminobutyric Acid Neurones Demonstrated by Microdialysis. Neuroendocrinology, 1990, 52, 161-168.	2.5	70
85	Major sex differences in non-genomic estrogen actions on intracellular signaling in mouse brain in vivo. Neuroscience, 2005, 131, 945-951.	2.3	70
86	Estrogen Permits Vasopressin Signaling in Preoptic Kisspeptin Neurons in the Female Mouse. Journal of Neuroscience, 2015, 35, 6881-6892.	3.6	70
87	Immunocytochemical Evidence for Oestrogen Receptors within GABA Neurones Located in the Perinuclear Zone of the Supraoptic Nucleus and GABAA Receptor \hat{l}^2 _{2} \hat{l}^2 _{3} Subunits on Supraoptic Oxytocin Neurones. Journal of Neuroendocrinology, 1994, 6, 5-11.	2.6	67
88	Optogenetic activation of GnRH neurons reveals minimal requirements for pulsatile luteinizing hormone secretion. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18387-18392.	7.1	66
89	<i>In Vivo</i> Recordings of GnRH Neuron Firing Reveal Heterogeneity and Dependence upon GABA _A Receptor Signaling. Journal of Neuroscience, 2013, 33, 9394-9401.	3.6	65
90	Oestrogenic activity of an environmentally persistent alkylphenol in the reproductive tract but not the brain of rodents. Journal of Steroid Biochemistry and Molecular Biology, 1995, 54, 7-9.	2.5	64

#	Article	IF	Citations
91	PACAP neurons in the ventral premammillary nucleus regulate reproductive function in the female mouse. ELife, 2018, 7, .	6.0	64
92	Sexually Dimorphic Expression of Androgen Receptor Immunoreactivity by Somatostatin Neurones in Rat Hypothalamic Periventricular Nucleus and Bed Nucleus of the Stria Terminalis. Journal of Neuroendocrinology, 1995, 7, 543-553.	2.6	63
93	Kisspeptin neurons coâ€express metâ€enkephalin and galanin in the rostral periventricular region of the female mouse hypothalamus. Journal of Comparative Neurology, 2011, 519, 3456-3469.	1.6	63
94	Role of medial preoptic GABA neurones in regulating luteinising hormone secretion in the ovariectomised rat. Experimental Brain Research, 1991, 87, 345-52.	1.5	62
95	Profile of Monoamine and Excitatory Amino Acid Release in Rat Supraoptic Nucleus over Parturition. Endocrinology, 1997, 138, 33-40.	2.8	61
96	Cell Type-Specific Expression of a Genetically Encoded Calcium Indicator Reveals Intrinsic Calcium Oscillations in Adult Gonadotropin-Releasing Hormone Neurons. Journal of Neuroscience, 2007, 27, 860-867.	3.6	61
97	Electrical and Morphological Characteristics of Anteroventral Periventricular Nucleus Kisspeptin and Other Neurons in the Female Mouse. Endocrinology, 2010, 151, 2223-2232.	2.8	61
98	A simple model of estrous cycle negative and positive feedback regulation of GnRH secretion. Frontiers in Neuroendocrinology, 2020, 57, 100837.	5. 2	60
99	Small-Conductance Calcium-Activated Potassium Channels Control Excitability and Firing Dynamics in Gonadotropin-Releasing Hormone (GnRH) Neurons. Endocrinology, 2008, 149, 3598-3604.	2.8	59
100	Expression of glutamic acid decarboxylase messenger RNA in rat medial preoptic area neurones during the oestrous cycle and after ovariectomy. Molecular Brain Research, 1992, 14, 310-316.	2.3	58
101	Sex differences in the regulation of tyrosine hydroxylase gene transcription by estrogen in the locus coeruleus of TH9-LacZ transgenic mice. Molecular Brain Research, 2002, 104, 220-226.	2.3	58
102	Localization of neuronal nitric oxide synthase-immunoreactivity within sub-populations of noradrenergic A1 and A2 neurons in the rat. Brain Research, 1996, 732, 247-252.	2.2	57
103	Activation of arcuate nucleus GABA neurons promotes luteinizing hormone secretion and reproductive dysfunction: Implications for polycystic ovary syndrome. EBioMedicine, 2019, 44, 582-596.	6.1	57
104	Molecular and cellular properties of GnRH neurons revealed through transgenics in the mouse. Molecular and Cellular Endocrinology, 2001, 185, 185-194.	3.2	56
105	Characterization of GnRH Pulse Generator Activity in Male Mice Using GCaMP Fiber Photometry. Endocrinology, 2019, 160, 557-567.	2.8	56
106	Profiling \hat{I}^3 -Aminobutyric Acid (GABA $<$ sub $>$ A $<$ /sub $>$) Receptor Subunit mRNA Expression in Postnatal Gonadotropin-Releasing Hormone (GnRH) Neurons of the Male Mouse with Single Cell RT-PCR. Neuroendocrinology, 2001, 74, 300-308.	2.5	54
107	Estrogen-Negative Feedback and Estrous Cyclicity Are Critically Dependent Upon Estrogen Receptor-α Expression in the Arcuate Nucleus of Adult Female Mice. Endocrinology, 2014, 155, 2986-2995.	2.8	54
108	Sexual Differentiation of the Brain Requires Perinatal Kisspeptin-GnRH Neuron Signaling. Journal of Neuroscience, 2014, 34, 15297-15305.	3.6	54

#	Article	IF	CITATIONS
109	Disruption of Ephrin Signaling Associates with Disordered Axophilic Migration of the Gonadotropin-Releasing Hormone Neurons. Journal of Neuroscience, 2005, 25, 3142-3150.	3.6	53
110	Dendritic Action Potential Initiation in Hypothalamic Gonadotropin-Releasing Hormone Neurons. Endocrinology, 2008, 149, 3355-3360.	2.8	53
111	Differential Changes in Responses of Hypothalamic and Brainstem Neuronal Populations to Prolactin During Lactation in the Mouse. Biology of Reproduction, 2011, 84, 826-836.	2.7	53
112	Estrous Cycle Plasticity in the Hyperpolarization-Activated Current Ih Is Mediated by Circulating 17Â-Estradiol in Preoptic Area Kisspeptin Neurons. Journal of Neuroscience, 2013, 33, 10828-10839.	3.6	53
113	Immunocytochemical Identification of Oestrogen Receptors in Preoptic Neurones Containing Calcitonin Gene-Related Peptide in the Male and Female Rat. Neuroendocrinology, 1992, 56, 761-764.	2.5	52
114	Localization of Estrogen-Receptive Neurons Projecting to the GnRH Neuron-Containing Rostral Preoptic Area of the Ewe. Neuroendocrinology, 1999, 70, 228-236.	2.5	52
115	Acute Action of Oestrogen on Medial Preoptic Gamma-Aminobutyric Acid Neurons: Correlation with Oestrogen Negative Feedback on Luteinizing Hormone Secretion. Journal of Neuroendocrinology, 1991, 3, 101-106.	2.6	51
116	Regulation of preoptic area gonadotrophin-releasing hormone (GnRH) mRNA expression by gonadal steroids in the long-term gonadectomized male rat. Molecular Brain Research, 1997, 47, 125-133.	2.3	51
117	Knockdown of GABAA Receptor Signaling in GnRH Neurons Has Minimal Effects upon Fertility. Endocrinology, 2010, 151, 4428-4436.	2.8	51
118	Electrical properties of kisspeptin neurons and their regulation of GnRH neurons. Frontiers in Neuroendocrinology, 2015, 36, 15-27.	5.2	51
119	Up-regulation of nitric oxide synthase messenger RNA in an integrated forebrain circuit involved in oxytocin secretion. Neuroscience, 1997, 77, 37-48.	2.3	50
120	Neuroendocrine control of gonadotropinâ€releasing hormone: Pulsatile and surge modes of secretion. Journal of Neuroendocrinology, 2022, 34, e13094.	2.6	50
121	Estrogen Receptor Expression in Brainstem Noradrenergic Neurons of the Sheep. Neuroendocrinology, 1998, 67, 392-402.	2.5	48
122	Kisspeptin Regulation of Neuronal Activity throughout the Central Nervous System. Endocrinology and Metabolism, 2016, 31, 193.	3.0	48
123	Norepinephrine Suppresses Gonadotropin-Releasing Hormone Neuron Excitability in the Adult Mouse. Endocrinology, 2008, 149, 1129-1135.	2.8	47
124	Enhanced c-Fos expression in superior colliculus, paraventricular thalamus and septum during learning of cue-reward association. Neuroscience, 2010, 168, 706-714.	2.3	47
125	Changing patterns of Fos expression in brainstem catecholaminergic neurons during the rat oestrous cycle. Brain Research, 1995, 672, 68-76.	2.2	46
126	Effects of Neuron-Specific Estrogen Receptor (ER) \hat{l}_{\pm} and ER \hat{l}^{2} Deletion on the Acute Estrogen Negative Feedback Mechanism in Adult Female Mice. Endocrinology, 2014, 155, 1418-1427.	2.8	45

#	Article	IF	Citations
127	Spike and Neuropeptide-Dependent Mechanisms Control GnRH Neuron Nerve Terminal Ca ²⁺ over Diverse Time Scales. Journal of Neuroscience, 2017, 37, 3342-3351.	3.6	45
128	Fluctuating Estrogen and Progesterone Receptor Expression in Brainstem Norepinephrine Neurons through the Rat Estrous Cycle. Endocrinology, 1999, 140, 3255-3263.	2.8	45
129	Different dendritic domains of the GnRH neuron underlie the pulse and surge modes of GnRH secretion in female mice. ELife, 2020, 9, .	6.0	44
130	In vivo regulation of specific GABAA receptor subunit messenger rnas by increased gaba concentrations in rat brain. Neuroscience, 1996, 71, 661-670.	2.3	43
131	Direct Regulation of Postnatal GnRH Neurons by the Progesterone Derivative Allopregnanolone in the Mouse. Endocrinology, 2001, 142, 4448-4453.	2.8	43
132	Dendritic Spine Plasticity in Gonadatropin-Releasing Hormone (GnRH) Neurons Activated at the Time of the Preovulatory Surge. Endocrinology, 2011, 152, 4906-4914.	2.8	43
133	\hat{l}^3 -Aminobutyric Acid and Glutamate Differentially Regulate Intracellular Calcium Concentrations in Mouse Gonadotropin-Releasing Hormone Neurons. Endocrinology, 2010, 151, 262-270.	2.8	42
134	Tonic Extrasynaptic GABAA Receptor Currents Control Gonadotropin-Releasing Hormone Neuron Excitability in the Mouse. Endocrinology, 2011, 152, 1551-1561.	2.8	42
135	Chapter 2 Physiological roles for the neurosteroid allopregnanolone in the modulation of brain function during pregnancy and parturition. Progress in Brain Research, 2001, 133, 39-47.	1.4	41
136	Gap Junctions between Neuronal Inputs But Not Gonadotropin-Releasing Hormone Neurons Control Estrous Cycles in the Mouse. Endocrinology, 2011, 152, 2290-2301.	2.8	41
137	Analysis of brainstem A1 and A2 noradrenergic inputs to the preoptic area using microdialysis in the rat. Brain Research, 1994, 636, 227-232.	2.2	40
138	Rapid actions of oestrogen on gonadotropinâ€releasing hormone neurons; from fantasy to physiology?. Journal of Physiology, 2009, 587, 5025-5030.	2.9	40
139	Initiation and Propagation of Action Potentials in Gonadotropin-Releasing Hormone Neuron Dendrites. Journal of Neuroscience, 2012, 32, 151-158.	3.6	40
140	Endogenous Release of ?-Aminobutyric Acid from the Medial Preoptic Area Measured by Microdialysis in the Anaesthetised Rat. Journal of Neurochemistry, 1990, 55, 1617-1623.	3.9	39
141	Transgenics Identify Distal 5′- and 3′-Sequences Specifying Gonadotropin-Releasing Hormone Expression in Adult Mice. Molecular Endocrinology, 1999, 13, 2203-2211.	3.7	39
142	Milestones on Steroids and the Nervous System: 10â€fYears of Basic and Translational Research. Journal of Neuroendocrinology, 2012, 24, 1-15.	2.6	39
143	Vasoactive Intestinal Peptide Excites GnRH Neurons in Male and Female Mice. Endocrinology, 2016, 157, 3621-3630.	2.8	39
144	Oestrogen Modulation of Noradrenaline Neurotransmission. Novartis Foundation Symposium, 2008, 230, 74-93.	1.1	38

#	Article	IF	Citations
145	Highly redundant neuropeptide volume co-transmission underlying episodic activation of the GnRH neuron dendron. ELife, $2021,10,.$	6.0	38
146	Oestrogen and noradrenaline modulate endogenous GABA release from slices of the rat medial preoptic area. Brain Research, 1989, 486, 195-200.	2.2	37
147	Effects of Photoperiod on Estrogen Receptor, Tyrosine Hydroxylase, Neuropeptide Y, and Â-Endorphin Immunoreactivity in the Ewe Hypothalamus. Endocrinology, 1997, 138, 2585-2595.	2.8	37
148	Serotonin Acts Through 5-HT1 and 5-HT2 Receptors to Exert Biphasic Actions on GnRH Neuron Excitability in the Mouse. Endocrinology, 2014, 155, 513-524.	2.8	36
149	Gonadotropin-Releasing Hormone Messenger Ribonucleic Acid Expression Changes before the Onset of the Estradiol-Induced Luteinizing Hormone Surge in the Ewe1. Endocrinology, 1998, 139, 57-64.	2.8	35
150	Progesterone regulation of GABA _A receptor plasticity in adult rat supraoptic nucleus. European Journal of Neuroscience, 2000, 12, 1617-1623.	2.6	35
151	Genetics of Puberty. Hormone Research in Paediatrics, 2007, 68, 75-79.	1.8	34
152	Anatomical location of mature GnRH neurons corresponds with their birthdate in the developing mouse. Developmental Dynamics, 2009, 238, 524-531.	1.8	34
153	Calcium dynamics in gonadotropin-releasing hormone neurons. Frontiers in Neuroendocrinology, 2010, 31, 259-269.	5.2	34
154	Estrous Cycle- and Sex-Dependent Changes in Pre- and Postsynaptic GABABControl of GnRH Neuron Excitability. Endocrinology, 2011, 152, 4856-4864.	2.8	34
155	GnRH Neuron Firing and Response to GABA in Vitro Depend on Acute Brain Slice Thickness and Orientation. Endocrinology, 2012, 153, 3758-3769.	2.8	34
156	Somatostatin-Immunoreactive Neurones in the Hypothalamic Ventromedial Nucleus Possess Oestrogen Receptors in the Male and Female Rat. Journal of Neuroendocrinology, 1994, 6, 323-328.	2.6	33
157	Gonadal Steroid Induction of Kisspeptin Peptide Expression in the Rostral Periventricular Area of the Third Ventricle During Postnatal Development in the Male Mouse. Journal of Neuroendocrinology, 2012, 24, 907-915.	2.6	33
158	Identification of a sexually dimorphic neural population immunoreactive for calcitonin gene-related peptide (CGRP) in the rat medial preoptic area. Brain Research, 1992, 591, 289-295.	2.2	32
159	Synaptic Innervation of the GnRH Neuron Distal Dendron in Female Mice. Endocrinology, 2018, 159, 3200-3208.	2.8	31
160	Regulation of Gonadotropin-Releasing Hormone (GnRH) Gene Expression during GnRH Neuron Migration in the Mouse. Neuroendocrinology, 2001, 73, 149-156.	2.5	30
161	A mathematical model of adult GnRH neurons in mouse brain and its bifurcation analysis. Journal of Theoretical Biology, 2011, 276, 22-34.	1.7	30
162	Neurotensin-Immunoreactive Neurons in the Rat Medial Preoptic Area are Oestrogen-Receptive. Journal of Neuroendocrinology, 1991, 3, 587-589.	2.6	29

#	Article	IF	Citations
163	Kisspeptin Regulation of Arcuate Neuron Excitability in Kisspeptin Receptor Knockout Mice. Endocrinology, 2015, 156, 1815-1827.	2.8	29
164	Sex―and sub regionâ€dependent modulation of arcuate kisspeptin neurones by vasopressin and vasoactive intestinal peptide. Journal of Neuroendocrinology, 2018, 30, e12660.	2.6	29
165	Somatostatin Inhibition of Gonadotropin-Releasing Hormone Neurons in Female and Male Mice. Endocrinology, 2010, 151, 3258-3266.	2.8	28
166	Neural Determinants of Pulsatile Luteinizing Hormone Secretion in Male Mice. Endocrinology, 2020, 161, .	2.8	28
167	Immunohistochemical Evidence for the Presence of Various Kisspeptin Isoforms in the Mammalian Brain. Journal of Neuroendocrinology, 2013, 25, 839-851.	2.6	27
168	RF9 Excitation of GnRH Neurons Is Dependent Upon Kiss1r in the Adult Male and Female Mouse. Endocrinology, 2014, 155, 4915-4924.	2.8	27
169	Activation of a Classic Hunger Circuit Slows Luteinizing Hormone Pulsatility. Neuroendocrinology, 2020, 110, 671-687.	2.5	27
170	The Role of cAMP Response Element-Binding Protein in Estrogen Negative Feedback Control of Gonadotropin-Releasing Hormone Neurons. Journal of Neuroscience, 2012, 32, 11309-11317.	3.6	26
171	Estradiol Acts Directly and Indirectly on Multiple Signaling Pathways to Phosphorylate cAMP-Response Element Binding Protein in GnRH Neurons. Endocrinology, 2012, 153, 3792-3803.	2.8	26
172	Multitasking in Gonadotropin-Releasing Hormone Neuron Dendrites. Neuroendocrinology, 2015, 102, 1-7.	2.5	26
173	Estrogen-Dependent Ontogeny of Sex Differences in Somatostatin Neurons of the Hypothalamic Periventricular Nucleus*. Endocrinology, 1998, 139, 1420-1428.	2.8	25
174	Correlation of Hypothalamic Somatostatin mRNA Expression and Peptide Content with Secretion: Sexual Dimorphism and Differential Regulation by Gonadal Factors. Journal of Neuroendocrinology, 1999, 11, 27-33.	2.6	25
175	Gonadotrophinâ€Releasing Hormone (GnRH) Exerts Stimulatory Effects on GnRH Neurones in Intact Adult Male and Female Mice. Journal of Neuroendocrinology, 2010, 22, 188-195.	2.6	24
176	Direct inhibition of arcuate kisspeptin neurones by neuropeptide Y in the male and female mouse. Journal of Neuroendocrinology, 2020, 32, e12849.	2.6	24
177	LH-RH in picomole concentrations evokes excitation and inhibition of rat arcuate neurones in vitro. Neuroscience Letters, 1984, 46, 311-315.	2.1	23
178	Sex Differences in Estrogen-Dependent Transcription of Gonadotropin-Releasing Hormone (GnRH) Gene Revealed in GnRH Transgenic Mice. Endocrinology, 2003, 144, 3351-3358.	2.8	23
179	Role of the GABAAreceptor \hat{I}^3 2 subunit in the development of gonadotropin-releasing hormone neurons in vivo. European Journal of Neuroscience, 2000, 12, 3488-3496.	2.6	22
180	Kisspeptin-Gpr54 Signaling at the GnRH Neuron Is Necessary for Negative Feedback Regulation of Luteinizing Hormone Secretion in Female Mice. Neuroendocrinology, 2014, 100, 191-197.	2.5	21

#	Article	IF	CITATIONS
181	Perinatal and adult factors responsible for the sexually dimorphic calcitonin gene-related peptide-containing cell population in the rat preoptic area. Neuroscience, 1993, 54, 991-999.	2.3	20
182	Morphological Characterization of the Action Potential Initiation Segment in GnRH Neuron Dendrites and Axons of Male Mice. Endocrinology, 2015, 156, 4174-4186.	2.8	20
183	Indirect Suppression of Pulsatile LH Secretion by CRH Neurons in the Female Mouse. Endocrinology, 2021, 162, .	2.8	20
184	Neurotensin excites neurons in the arcuate nucleus of the rat hypothalamus in vitro. Brain Research, 1986, 364, 391-395.	2.2	19
185	Effects of Central GABA _B Receptor Modulation upon the Milk Ejection Reflex in the Rat. Neuroendocrinology, 1996, 63, 368-376.	2.5	19
186	Understanding calcium homeostasis in postnatal gonadotropin-releasing hormone neurons using cell-specific Pericam transgenics. Cell Calcium, 2012, 51, 267-276.	2.4	18
187	Genetic Deletion of Esr1 in the Mouse Preoptic Area Disrupts the LH Surge and Estrous Cyclicity. Endocrinology, 2019, 160, 1821-1829.	2.8	18
188	Impact of chronic variable stress on neuroendocrine hypothalamus and pituitary in male and female C57BL/6J mice. Journal of Neuroendocrinology, 2021, 33, e12972.	2.6	18
189	Dynamics of GnRH Neuron Ionotropic GABA and Glutamate Synaptic Receptors Are Unchanged during Estrogen Positive and Negative Feedback in Female Mice. ENeuro, 2017, 4, ENEURO.0259-17.2017.	1.9	18
190	Sexually dimorphic expression of calcitonin gene-related peptide (CGRP) mRNA in rat medial preoptic nucleus. Molecular Brain Research, 1995, 34, 143-148.	2.3	17
191	Gonadal steroid neuromodulation of developing and mature hypothalamic neuronal networks. Current Opinion in Neurobiology, 2014, 29, 96-102.	4.2	17
192	Altered aspects of anxiety-related behavior in kisspeptin receptor-deleted male mice. Scientific Reports, 2018, 8, 2794.	3.3	17
193	Expression of GABAA receptor $\hat{l}\pm 2$ sub-unit mRNA by periventricular somatostatin neurones in the rat hypothalamus. Neuroscience Letters, 1994, 173, 9-13.	2.1	15
194	Burst Firing in Gonadotrophinâ€Releasing Hormone Neurones does not Require Ionotrophic <scp>GABA</scp> or Glutamate Receptor Activation. Journal of Neuroendocrinology, 2012, 24, 1476-1483.	2.6	15
195	Non-classical effects of estradiol on cAMP responsive element binding protein phosphorylation in gonadotropin-releasing hormone neurons: Mechanisms and role. Frontiers in Neuroendocrinology, 2014, 35, 31-41.	5. 2	15
196	The dendron and episodic neuropeptide release. Journal of Neuroendocrinology, 2021, 33, e13024.	2.6	15
197	Sexually Dimorphic Ontogeny of GABAergic Influences on Periventricular Somatostatin Neurons. Neuroendocrinology, 1999, 70, 384-391.	2.5	14
198	Innervation of GnRH Neuron Distal Projections and Activation by Kisspeptin in a New GnRH-Cre Rat Model. Endocrinology, 2021, 162, .	2.8	14

#	Article	IF	CITATIONS
199	Reformulation of PULSAR for Analysis of Pulsatile LH Secretion and a Revised Model of Estrogen-Negative Feedback in Mice. Endocrinology, 2021, 162, .	2.8	14
200	Increased Fos Expression in Preoptic Calcitonin Gene-Related Peptide (CGRP) Neurones following Mating but not the Luteinizing Hormone Surge in Female Rats. Journal of Neuroendocrinology, 1995, 7, 377-385.	2.6	13
201	Identification of Neurokinin B-Expressing Neurons as an Highly Estrogen-Receptive, Sexually Dimorphic Cell Group in the Ovine Arcuate Nucleus. Endocrinology, 2000, 141, 4218-4225.	2.8	13
202	Sexually dimorphic expression of calcitonin gene-related peptide (CGRP) immunoreactivity by rat mediobasal hypothalamic neurons., 1996, 367, 444-453.		12
203	Ontogeny and Sexual Differentiation of Somatostatin Biosynthesis and Secretion in the Hypothalamic Periventricularâ€Median Eminence Pathway. Journal of Neuroendocrinology, 1999, 11, 35-42.	2.6	12
204	The 3rd World Conference on Kisspeptin, "Kisspeptin 2017: Brain and Beyond― Unresolved questions, challenges and future directions for the field. Journal of Neuroendocrinology, 2018, 30, e12600.	2.6	12
205	Optical Approaches for Interrogating Neural Circuits Controlling Hormone Secretion. Endocrinology, 2018, 159, 3822-3833.	2.8	12
206	Immunocytochemical Identification of Oestrogen Receptors in the Ovine Pars Tuberalis: Localization Within Gonadotrophs. Journal of Neuroendocrinology, 1992, 4, 659-662.	2.6	11
207	Regulation of Electrical Bursting in a Spatiotemporal Model of a GnRH Neuron. Bulletin of Mathematical Biology, 2013, 75, 1941-1960.	1.9	11
208	Characterization of Tritiated Noradrenaline Release from the Rat Preoptic Area with Microdialysis In Vivo. Journal of Neurochemistry, 1993, 60, 1806-1815.	3.9	9
209	Activityâ€Dependent Modulation of Gonadotrophinâ€Releasing Hormone Neurone Activity by Acute Oestradiol. Journal of Neuroendocrinology, 2012, 24, 1296-1303.	2.6	9
210	Gonadotropin-Releasing Hormone Messenger Ribonucleic Acid Expression Changes before the Onset of the Estradiol-Induced Luteinizing Hormone Surge in the Ewe. Endocrinology, 1998, 139, 57-64.	2.8	9
211	Calcitonin gene-related peptide (CGRP): immunocytochemical identification of a neuropeptide synthesised by ventral paraventricular magnocellular neurones in the sheep. Brain Research, 1993, 611, 147-151.	2.2	7
212	Sexually Dimorphic Effects of Testosterone on Preoptic Area Calcitonin Gene-Related Peptide mRNA Expression Depend upon Neuron Location and Differential Estrogen and Androgen Receptor Activation. Endocrinology, 2001, 142, 3397-3404.	2.8	7
213	Calbindin-D28k mRNA expression in magnocellular hypothalamic neurons of female rats during parturition, lactation and following dehydration. Molecular Brain Research, 1996, 42, 279-286.	2.3	5
214	Projections of the sexually dimorphic calcitonin gene-related peptide neurons of the preoptic area determined by retrograde tracing in the female rat. Journal of Comparative Neurology, 2002, 445, 336-346.	1.6	5
215	Gonadotropin-Releasing Hormone Neuron. , 2003, , 171-177.		5
216	Differential cellular localisation of oestrogen receptor immunoreactivity and oxytocin rnRNA and immunoreactivity in the rat preoptic area. Neuroscience Letters, 1995, 200, 89-92.	2.1	4

#	Article	IF	CITATIONS
217	Hypothalamic Somatostatin and Growth Hormone-Releasing Hormone mRNA Expression Depend upon GABA _A Receptor Expression in the Developing Mouse. Neuroendocrinology, 2002, 76, 93-98.	2.5	3
218	Morphological assessment of GABA and glutamate inputs to GnRH neurons in intact female mice using expansion microscopy. Journal of Neuroendocrinology, 2021, 33, e13021.	2.6	3
219	Inhibitory action of adrenocorticotrophin on rat arcuate neurons in vitro. Brain Research, 1985, 327, 375-378.	2.2	1
220	Journal of Neuroendocrinology Impact Factor Reaches 4.65! Who Cares?. Journal of Neuroendocrinology, 2011, 23, 861-862.	2.6	1
221	Sexually dimorphic expression of calcitonin geneâ€related peptide (CGRP) immunoreactivity by rat mediobasal hypothalamic neurons. Journal of Comparative Neurology, 1996, 367, 444-453.	1.6	1
222	Sexually Dimorphic Effects of Testosterone on Preoptic Area Calcitonin Gene-Related Peptide mRNA Expression Depend upon Neuron Location and Differential Estrogen and Androgen Receptor Activation. Endocrinology, 2001, 142, 3397-3404.	2.8	1
223	SUN-LB083 Functional Role of Arcuate Nucleus NPY/AgRP Neurons in the GnRH Circuit Regulating LH Secretion. Journal of the Endocrine Society, 2019, 3, .	0.2	1
224	Gonadotropin-Releasing Hormone Neurons. , 2018, , .		0