List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6995721/publications.pdf Version: 2024-02-01

ΜλαριτΙΚΔάγιΔά

#	Article	IF	CITATIONS
1	A Supernova-regulated Interstellar Medium: Simulations of the Turbulent Multiphase Medium. Astrophysical Journal, 1999, 514, L99-L102.	4.5	168
2	The Maunder minimum (1645–1715) was indeed a grand minimum: A reassessment of multiple datasets. Astronomy and Astrophysics, 2015, 581, A95.	5.1	158
3	CYCLIC MAGNETIC ACTIVITY DUE TO TURBULENT CONVECTION IN SPHERICAL WEDGE GEOMETRY. Astrophysical Journal Letters, 2012, 755, L22.	8.3	149
4	EFFECTS OF ENHANCED STRATIFICATION ON EQUATORWARD DYNAMO WAVE PROPAGATION. Astrophysical Journal, 2013, 778, 41.	4.5	106
5	Large-scale dynamos in turbulent convection with shear. Astronomy and Astrophysics, 2008, 491, 353-362.	5.1	96
6	The Pencil Code, a modular MPI code for partial differential equations and particles: multipurpose and multiuser-maintained. Journal of Open Source Software, 2021, 6, 2807.	4.6	92
7	The supernova-regulated ISM – I. The multiphase structure. Monthly Notices of the Royal Astronomical Society, 2013, 432, 1396-1423.	4.4	86
8	A solar mean field dynamo benchmark. Astronomy and Astrophysics, 2008, 483, 949-960.	5.1	83
9	Magnetically controlled stellar differential rotation near the transition from solar to anti-solar profiles. Astronomy and Astrophysics, 2015, 576, A26.	5.1	82
10	Confirmation of bistable stellar differential rotation profiles. Astronomy and Astrophysics, 2014, 570, A43.	5.1	80
11	Alpha effect and turbulent diffusion from convection. Astronomy and Astrophysics, 2009, 500, 633-646.	5.1	75
12	Reynolds stress and heat flux in spherical shell convection. Astronomy and Astrophysics, 2011, 531, A162.	5.1	71
13	Convective dynamos in spherical wedge geometry. Astronomische Nachrichten, 2010, 331, 73-81.	1.2	70
14	The supernova-regulated ISM – II. The mean magnetic field. Monthly Notices of the Royal Astronomical Society: Letters, 2013, 430, L40-L44.	3.3	70
15	Multiple dynamo modes as a mechanism for long-term solar activity variations. Astronomy and Astrophysics, 2016, 589, A56.	5.1	68
16	Local models of stellar convection:. Astronomy and Astrophysics, 2004, 422, 793-816.	5.1	59
17	Turbulent transport coefficients in spherical wedge dynamo simulations of solar-like stars. Astronomy and Astrophysics, 2018, 609, A51.	5.1	50
18	Magnetoconvection and dynamo coefficients. Astronomy and Astrophysics, 2006, 455, 401-412.	5.1	49

#	Article	IF	CITATIONS
19	Estimating activity cycles with probabilistic methods. Astronomy and Astrophysics, 2018, 619, A6.	5.1	49
20	Transition from axi- to nonaxisymmetric dynamo modes in spherical convection models of solar-like stars. Astronomy and Astrophysics, 2018, 616, A160.	5.1	48
21	ON THE CAUSE OF SOLAR-LIKE EQUATORWARD MIGRATION IN GLOBAL CONVECTIVE DYNAMO SIMULATIONS. Astrophysical Journal Letters, 2014, 796, L12.	8.3	46
22	STATISTICAL STUDY OF STRONG AND EXTREME GEOMAGNETIC DISTURBANCES AND SOLAR CYCLE CHARACTERISTICS. Astrophysical Journal, 2015, 806, 272.	4.5	46
23	LARGE-SCALE DYNAMOS IN RIGIDLY ROTATING TURBULENT CONVECTION. Astrophysical Journal, 2009, 697, 1153-1163.	4.5	45
24	Extended Subadiabatic Layer in Simulations of Overshooting Convection. Astrophysical Journal Letters, 2017, 845, L23.	8.3	44
25	Magnetorotational instability driven dynamos at low magnetic Prandtl numbers. Monthly Notices of the Royal Astronomical Society, 2011, 413, 901-907.	4.4	43
26	Solar dynamo models withl $\mathbf{\hat{l}}$ -effect and turbulent pumping from local 3D convection calculations. Astronomische Nachrichten, 2006, 327, 884-894.	1.2	42
27	Magnetic field topology of the RS CVn star II Pegasi. Astronomy and Astrophysics, 2013, 550, A84.	5.1	41
28	Convection-driven spherical shell dynamos at varying Prandtl numbers. Astronomy and Astrophysics, 2017, 599, A4.	5.1	39
29	STARSPOTS DUE TO LARGE-SCALE VORTICES IN ROTATING TURBULENT CONVECTION. Astrophysical Journal, 2011, 742, 34.	4.5	36
30	SPOKE-LIKE DIFFERENTIAL ROTATION IN A CONVECTIVE DYNAMO WITH A CORONAL ENVELOPE. Astrophysical Journal, 2013, 778, 141.	4.5	35
31	Negative effective magnetic pressure in turbulent convection. Monthly Notices of the Royal Astronomical Society, 2012, 422, 2465-2473.	4.4	33
32	Flip-flops of FK Comae Berenices. Astronomy and Astrophysics, 2013, 553, A40.	5.1	33
33	QUENCHING AND ANISOTROPY OF HYDROMAGNETIC TURBULENT TRANSPORT. Astrophysical Journal, 2014, 795, 16.	4.5	30
34	Effects of stratification in spherical shell convection. Astronomische Nachrichten, 2011, 332, 883-890.	1.2	29
35	AN AZIMUTHAL DYNAMO WAVE IN SPHERICAL SHELL CONVECTION. Astrophysical Journal Letters, 2014, 780, L22.	8.3	27
36	Influence of a coronal envelope as a free boundary to global convective dynamo simulations. Astronomy and Astrophysics, 2016, 596, A115.	5.1	27

#	Article	IF	CITATIONS
37	Thermal Instability in Shearing and Periodic Turbulence. Astrophysical Journal, 2007, 654, 945-954.	4.5	23
38	Doppler images of II Pegasi for 2004–2010. Astronomy and Astrophysics, 2012, 538, A126.	5.1	23
39	Magnetic flux concentrations from turbulent stratified convection. Astronomy and Astrophysics, 2016, 588, A150.	5.1	23
40	Common dynamo scaling in slowly rotating young and evolved stars. Nature Astronomy, 2020, 4, 658-662.	10.1	23
41	The α effect in rotating convection with sinusoidal shear. Monthly Notices of the Royal Astronomical Society, 2010, 402, 1458-1466.	4.4	22
42	Effects of a subadiabatic layer on convection and dynamos in spherical wedge simulations. Geophysical and Astrophysical Fluid Dynamics, 2019, 113, 149-183.	1.2	21
43	Reynolds stresses from hydrodynamic turbulence with shear and rotation. Astronomy and Astrophysics, 2009, 505, 955-968.	5.1	21
44	Doppler images of the RSÂCVn binary IIÂPegasi during the years 1994–2002. Astronomy and Astrophysics, 2011, 526, A44.	5.1	21
45	Ejections of Magnetic Structures Above a Spherical Wedge Driven by a Convective Dynamo with Differential Rotation. Solar Physics, 2012, 280, 299-319.	2.5	20
46	Zeeman-Doppler imaging of active young solar-type stars. Astronomy and Astrophysics, 2016, 587, A28.	5.1	20
47	The supernova-regulated ISM. Astronomy and Astrophysics, 2018, 611, A15.	5.1	20
48	NEW SCALING FOR THE ALPHA EFFECT IN SLOWLY ROTATING TURBULENCE. Astrophysical Journal, 2013, 762, 127.	4.5	19
49	Stellar Dynamos in the Transition Regime: Multiple Dynamo Modes and Antisolar Differential Rotation. Astrophysical Journal, 2019, 886, 21.	4.5	19
50	Bihelical Spectrum of Solar Magnetic Helicity and Its Evolution. Astrophysical Journal, 2018, 863, 182.	4.5	18
51	Small-scale Dynamo in Supernova-driven Interstellar Turbulence. Astrophysical Journal Letters, 2021, 910, L15.	8.3	18
52	Open and closed boundaries in large-scale convective dynamos. Astronomy and Astrophysics, 2010, 518, A22.	5.1	18
53	Oscillatory large-scale dynamos from Cartesian convection simulations. Geophysical and Astrophysical Fluid Dynamics, 2013, 107, 244-257.	1.2	17
54	Differences in the solar cycle variability of simple and complex active regions during 1996–2018. Astronomy and Astrophysics, 2019, 629, A45.	5.1	17

#	Article	IF	CITATIONS
55	Sensitivity to luminosity, centrifugal force, and boundary conditions in spherical shell convection. Geophysical and Astrophysical Fluid Dynamics, 2020, 114, 8-34.	1.2	17
56	Multiperiodicity, modulations and flip-flops in variable star light curves. Astronomy and Astrophysics, 2013, 559, A97.	5.1	16
57	Large-scale dynamos in rapidly rotating plane layer convection. Astronomy and Astrophysics, 2018, 612, A97.	5.1	16
58	Kinematic frames and "active longitudes― does the Sun have a face?. Astronomy and Astrophysics, 2006, 460, 875-885.	5.1	16
59	Dependence of the largeâ€scale vortex instability on latitude, stratification, and domain size. Astronomische Nachrichten, 2011, 332, 876-882.	1.2	15
60	Methods for compressible fluid simulation on GPUs using high-order finite differences. Computer Physics Communications, 2017, 217, 11-22.	7.5	14
61	Multiperiodicity, modulations, and flip-flops in variable star light curves. Astronomy and Astrophysics, 2015, 577, A120.	5.1	14
62	Local models of stellar convection. Astronomy and Astrophysics, 2005, 438, 403-410.	5.1	14
63	Starspot cycles from Doppler imaging and photometric time series as nonlinear dynamo. Astronomische Nachrichten, 2002, 323, 367-370.	1.2	13
64	Rotational dependence of turbulent transport coefficients in global convective dynamo simulations of solar-like stars. Astronomy and Astrophysics, 2020, 642, A66.	5.1	13
65	Turbulent stresses as a function of shear rate in a local disk model. Astronomische Nachrichten, 2009, 330, 92-99.	1.2	12
66	ANGULAR MOMENTUM TRANSPORT IN CONVECTIVELY UNSTABLE SHEAR FLOWS. Astrophysical Journal, 2010, 719, 67-76.	4.5	12
67	Doppler imaging of LQ Hydrae for 1998–2002. Astronomy and Astrophysics, 2015, 581, A69.	5.1	12
68	Smallâ€scale dynamos in simulations of stratified turbulent convection. Astronomische Nachrichten, 2018, 339, 127-133.	1.2	12
69	Modelling supernova-driven turbulence. Geophysical and Astrophysical Fluid Dynamics, 2020, 114, 77-105.	1.2	12
70	Investigating Global Convective Dynamos with Mean-field Models: Full Spectrum of Turbulent Effects Required. Astrophysical Journal Letters, 2021, 919, L13.	8.3	12
71	Spot activity of II Peg. Astronomische Nachrichten, 2011, 332, 859-865.	1.2	11
72	Starspot activity of HD 199178. Astronomy and Astrophysics, 2019, 625, A79.	5.1	11

#	Article	IF	CITATIONS
73	Influence of Ohmic diffusion on the excitation and dynamics of MRI. Astronomische Nachrichten, 2010, 331, 34-45.	1.2	10
74	Singular Value Decomposition update and its application to (Inc)-OP-ELM. Neurocomputing, 2016, 174, 99-108.	5.9	10
75	A Knee Point in the Rotation–Activity Scaling of Late-type Stars with a Connection to Dynamo Transitions. Astrophysical Journal, 2021, 910, 110.	4.5	10
76	Solar active regions: a nonparametric statistical analysis. Astronomy and Astrophysics, 2010, 513, A48.	5.1	10
77	High-resolution ammonia mapping of the very young protostellar core Chamaeleon-MMS1. Astronomy and Astrophysics, 2014, 564, A99.	5.1	10
78	Long-term spot monitoring of the young solar analogue V889 Herculis. Astronomy and Astrophysics, 2019, 622, A170.	5.1	10
79	Robustness of oscillatory <i>î±</i> ² dynamos in spherical wedges. Astronomy and Astrophysics, 2016, 593, A134.	5.1	9
80	Estimating activity cycles with probabilistic methods. Astronomy and Astrophysics, 2018, 615, A111.	5.1	8
81	Physically motivated heat-conduction treatment in simulations of solar-like stars: effects on dynamo transitions. Astronomy and Astrophysics, 2021, 645, A141.	5.1	8
82	Compressible Test-field Method and Its Application to Shear Dynamos. Astrophysical Journal, 2022, 932, 8.	4.5	8
83	Doppler images of DI Piscium during 2004–2006. Astronomy and Astrophysics, 2014, 562, A139.	5.1	7
84	The supernova-regulated ISM. Astronomy and Astrophysics, 2018, 614, A101.	5.1	7
85	Spot evolution on LQ Hya from 2006–2017: temperature maps based on SOFIN and FIES data. Astronomy and Astrophysics, 2019, 629, A120.	5.1	7
86	Interaction of Large- and Small-scale Dynamos in Isotropic Turbulent Flows from GPU-accelerated Simulations. Astrophysical Journal, 2021, 907, 83.	4.5	7
87	Turbulent viscosity and magnetic Prandtl number from simulations of isotropically forced turbulence. Astronomy and Astrophysics, 2020, 636, A93.	5.1	7
88	Shapes of stellar activity cycles. Astronomy and Astrophysics, 2020, 638, A69.	5.1	7
89	Multiperiodicity, modulations and flip-flops in variable star light curves. Astronomy and Astrophysics, 2011, 535, A23.	5.1	6
90	DYNAMO ACTION IN THERMALLY UNSTABLE INTERSTELLAR FLOWS. Astrophysical Journal, 2012, 753, 32.	4.5	6

#	Article	IF	CITATIONS
91	Quantifying the effect of turbulent magnetic diffusion on the growth rate of the magnetoâ~rotational instability. Astronomy and Astrophysics, 2014, 567, A139.	5.1	6
92	Solar Cycle Occurrence of Alfvénic Fluctuations and Related Geoâ€Efficiency. Journal of Geophysical Research: Space Physics, 2017, 122, 9848-9857.	2.4	6
93	Helicity proxies from linear polarisation of solar active regions. Astronomy and Astrophysics, 2020, 641, A46.	5.1	6
94	Scalable communication for high-order stencil computations using CUDA-aware MPI. Parallel Computing, 2022, 111, 102904.	2.1	6
95	Testing turbulent closure models with convection simulations. Astronomische Nachrichten, 2015, 336, 32-52.	1.2	5
96	Longâ€ŧerm variations of turbulent transport coefficients in a solarlike convective dynamo simulation. Astronomische Nachrichten, 2017, 338, 885-895.	1.2	5
97	On the Existence of Shear-current Effects in Magnetized Burgulence. Astrophysical Journal, 2020, 905, 179.	4.5	5
98	Zeeman-Doppler imaging of five young solar-type stars. Astronomy and Astrophysics, 2022, 659, A71.	5.1	5
99	Verification of Reynolds stress parameterizations from simulations. Astronomische Nachrichten, 2012, 333, 78-83.	1.2	4
100	<i>f</i> -mode strengthening from a localised bipolar subsurface magnetic field. Geophysical and Astrophysical Fluid Dynamics, 2020, 114, 196-212.	1.2	4
101	Local models of stellar convection. Astronomy and Astrophysics, 2006, 448, 433-438.	5.1	4
102	Driving Galactic Turbulence by Supernova Explosions. Studia Geophysica Et Geodaetica, 1998, 42, 410-418.	0.5	3
103	Mean-field closure parameters for passive scalar turbulence. Physica Scripta, 2012, 86, 018406.	2.5	3
104	Inferring magnetic helicity spectrum in spherical domains: Method and example applications. Astronomy and Astrophysics, 2021, 654, A3.	5.1	3
105	Does the Sun have a face?. Astronomische Nachrichten, 2007, 328, 1020-1022.	1.2	2
106	Dynamically dominant magnetic fields in the diffuse interstellar medium. Proceedings of the International Astronomical Union, 2008, 4, 87-88.	0.0	2
107	Generation of mean flows in rotating anisotropic turbulence: The case of solar near-surface shear layer. Astronomy and Astrophysics, 0, , .	5.1	2
108	Modelling the interplay between epidemics and regional socio-economics. Physica A: Statistical Mechanics and Its Applications, 2022, 604, 127696.	2.6	2

#	Article	IF	CITATIONS
109	Estimates of the Strouhal number from numerical models of convection. Astronomische Nachrichten, 2005, 326, 186-189.	1.2	1
110	From convective to stellar dynamos. Proceedings of the International Astronomical Union, 2010, 6, 279-287.	0.0	1
111	Coronal ejections from convective spherical shell dynamos. Proceedings of the International Astronomical Union, 2011, 7, 154-158.	0.0	1
112	Gregor@night: The future highâ€resolution stellar spectrograph for the GREGOR solar telescope. Astronomische Nachrichten, 2012, 333, 901-910.	1.2	1
113	Method of frequency dependent correlations: investigating the variability of total solar irradiance. Astronomy and Astrophysics, 2017, 600, A9.	5.1	1
114	Stellar dynamos - perspectives and challenges. EAS Publications Series, 2003, 9, 9-9.	0.3	1
115	Modelling the turbulent magnetized ISM. Astrophysics and Space Science, 2004, 289, 449-457.	1.4	0
116	Stellar nonlinear dynamos: observations and modelling. Proceedings of the International Astronomical Union, 2008, 4, 417-418.	0.0	0
117	Method for estimating cycle lengths from multidimensional time series: Test cases and application to a massive "in silico―dataset. , 2016, , .		0