Zhi-Feng Huang

List of Publications by Citations

Source: https://exaly.com/author-pdf/6995585/zhi-feng-huang-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

42 679 16 25 g-index

45 810 10.5 4.43 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
42	Parkinson&Disease: Extracellular Nanomatrix-Induced Self-Organization of Neural Stem Cells into Miniature Substantia Nigra-Like Structures with Therapeutic Effects on Parkinsonian Rats (Adv. Sci. 24/2019). Advanced Science, 2019, 6, 1970144	13.6	78
41	One-step electrospinning of carbon nanowebs on metallic textiles for high-capacitance supercapacitor fabrics. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 6802-6808	13	66
40	Tailorable chiroptical activity of metallic nanospiral arrays. <i>Nanoscale</i> , 2016 , 8, 4504-10	7:7	47
39	Morphology Control of Nanotube Arrays. Advanced Materials, 2009, 21, 2983-2987	24	44
38	Enantioselective photoinduced cyclodimerization of a prochiral anthracene derivative adsorbed on helical metal nanostructures. <i>Nature Chemistry</i> , 2020 , 12, 551-559	17.6	41
37	Wafer-scale, three-dimensional helical porous thin films deposited at a glancing angle. <i>Nanoscale</i> , 2014 , 6, 9401-9	7.7	34
36	Fabrication of Nickel Oxide Nanopillar Arrays on Flexible Electrodes for Highly Efficient Perovskite Solar Cells. <i>Nano Letters</i> , 2019 , 19, 3676-3683	11.5	33
35	Chiroptically Active Plasmonic Nanoparticles Having Hidden Helicity and Reversible Aqueous Solvent Effect on Chiroptical Activity. <i>Small</i> , 2016 , 12, 5902-5909	11	29
34	Plasmonic-Enhanced Cholesteric Films: Coassembling Anisotropic Gold Nanorods with Cellulose Nanocrystals. <i>Advanced Optical Materials</i> , 2019 , 7, 1801816	8.1	26
33	Chiroptically Active Metallic Nanohelices with Helical Anisotropy. Small, 2017, 13, 1701883	11	22
32	Ultraviolet-Visible Chiroptical Activity of Aluminum Nanostructures. <i>Small</i> , 2017 , 13, 1701112	11	20
31	Two chiroptical modes of silver nanospirals. <i>Nanotechnology</i> , 2016 , 27, 115703	3.4	19
30	Porosification-reduced optical trapping of silicon nanostructures. <i>Nanoscale</i> , 2012 , 4, 5835-9	7.7	18
29	Chiral Nanoparticle-Induced Enantioselective Amplification of Molecular Optical Activity. <i>Advanced Functional Materials</i> , 2018 , 29, 1807307	15.6	17
28	Laser-induced greenish-blue photoluminescence of mesoporous silicon nanowires. <i>Scientific Reports</i> , 2014 , 4, 4940	4.9	16
27	Weakening Circular Dichroism of Plasmonic Nanospirals Induced by Surface Grafting with Alkyl Ligands. <i>Small</i> , 2016 , 12, 6698-6702	11	16
26	Recent Advances in Inorganic Chiral Nanomaterials. Advanced Materials, 2021, e2005506	24	15

25	Chirality Transfer in Galvanic Replacement Reactions. <i>Nano Letters</i> , 2019 , 19, 7427-7433	11.5	14
24	Disclosure of charge storage mechanisms in molybdenum oxide nanobelts with enhanced supercapacitive performance induced by oxygen deficiency. <i>Rare Metals</i> , 2021 , 40, 2447-2454	5.5	14
23	Ballistic glancing angle deposition of inclined Ag nanorods limited by adatom diffusion. <i>Nanotechnology</i> , 2013 , 24, 465707	3.4	13
22	Helical nanoparticle-induced enantiospecific adsorption of N3 dyes. <i>Chemical Communications</i> , 2018 , 54, 4270-4273	5.8	12
21	Enhancement in broadband and quasi-omnidirectional antireflection of nanopillar arrays by ion milling. <i>Nanotechnology</i> , 2012 , 23, 275703	3.4	12
20	Radiative loss-determined circular dichroism of plasmonic nanospirals with bendable stability of chiroptical activity. <i>RSC Advances</i> , 2016 , 6, 84348-84353	3.7	11
19	Chiral Ligand-Free, Optically Active Nanoparticles Inherently Composed of Chiral Lattices at the Atomic Scale. <i>Small</i> , 2020 , 16, e2001473	11	10
18	Extension of Compositional Space to the Ternary in Alloy Chiral Nanoparticles through Galvanic Replacement Reactions. <i>Advanced Science</i> , 2020 , 7, 2001321	13.6	8
17	Binary Chiral Nanoparticles Exhibit Amplified Optical Activity and Enhanced Refractive Index Sensitivity. <i>Small</i> , 2020 , 16, e1906048	11	6
16	Porosification-Induced Back-Bond Weakening in Chemical Etching of n-Si(111). <i>Journal of Physical Chemistry C</i> , 2013 , 117, 2203-2209	3.8	6
15	Low-Temperature-Deposited TiO2 Nanopillars for Efficient and Flexible Perovskite Solar Cells. <i>Advanced Materials Interfaces</i> , 2021 , 8, 2001512	4.6	6
14	Chiral Nanoparticles: Chiral Ligand-Free, Optically Active Nanoparticles Inherently Composed of Chiral Lattices at the Atomic Scale (Small 24/2020). <i>Small</i> , 2020 , 16, 2070134	11	5
13	Titanium Nanopillar Arrays Functioning as Electron Transporting Layers for Efficient, Anti-Aging Perovskite Solar Cells. <i>Small</i> , 2021 , 17, e2004778	11	5
12	Chiral nanoparticle-induced amplification in optical activity of molecules with chiral centers. <i>Informati</i> Materily, 2020 , 2, 1216-1224	23.1	4
11	Extracellular Nanomatrix-Induced Self-Organization of Neural Stem Cells into Miniature Substantia Nigra-Like Structures with Therapeutic Effects on Parkinsonian Rats. <i>Advanced Science</i> , 2019 , 6, 190182	2 ^{13.6}	4
10	Highly Efficient Large-Area Flexible Perovskite Solar Cells Containing Tin Oxide Vertical Nanopillars without Oxygen Vacancies. <i>ACS Applied Energy Materials</i> , 2022 , 5, 3568-3577	6.1	2
9	Nanostructures: Ultravioletlisible Chiroptical Activity of Aluminum Nanostructures (Small 39/2017). <i>Small</i> , 2017 , 13,	11	1
8	Chiral Nanoparticles: Chiral Nanoparticle-Induced Enantioselective Amplification of Molecular Optical Activity (Adv. Funct. Mater. 8/2019). <i>Advanced Functional Materials</i> , 2019 , 29, 1970050	15.6	1

7	Flexible Solar Cells: Low-Temperature-Deposited TiO2 Nanopillars for Efficient and Flexible Perovskite Solar Cells (Adv. Mater. Interfaces 3/2021). <i>Advanced Materials Interfaces</i> , 2021 , 8, 2170016	4.6	1
6	Sensitive, High-Speed, and Broadband Perovskite Photodetectors with Built-In TiO Metalenses. <i>Small</i> , 2021 , 17, e2102694	11	1
5	Direct observation of dynamic surface reconstruction and active phases on honeycomb Ni3NIIo3N/CC for oxygen evolution reaction. <i>Science China Materials</i> ,1	7.1	1
4	Chiral Nanoparticles with Enhanced Thermal Stability of Chiral Structures through Alloying <i>Small</i> , 2022 , e2107657	11	O
3	Nanohelix-Induced Optical Activity of Liquid Metal Nanoparticles Small, 2022, e2200620	11	O
2	Plasmonic Nanospirals: Weakening Circular Dichroism of Plasmonic Nanospirals Induced by Surface Grafting with Alkyl Ligands (Small 48/2016). <i>Small</i> , 2016 , 12, 6697-6697	11	
1	One-Fold Anisotropy of Silver Chiral Nanoparticles Studied by Second-Harmonic Generation. <i>ACS Sensors</i> , 2021 , 6, 454-460	9.2	