Qing-Nan Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6995474/publications.pdf

Version: 2024-02-01

218381 214527 2,826 105 26 47 citations g-index h-index papers 107 107 107 2312 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Establishment and Validation of Prognostic Nomograms for Endemic Nasopharyngeal Carcinoma. Journal of the National Cancer Institute, 2016, 108, djv291.	3.0	281
2	Neoadjuvant chemotherapy followed by concurrent chemoradiotherapy versus concurrent chemoradiotherapy alone in locoregionally advanced nasopharyngeal carcinoma: A phase III multicentre randomised controlled trial. European Journal of Cancer, 2017, 75, 14-23.	1.3	226
3	Prospective Study of Tailoring Whole-Body Dual-Modality [¹⁸ F]Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography With Plasma Epstein-Barr Virus DNA for Detecting Distant Metastasis in Endemic Nasopharyngeal Carcinoma at Initial Staging. Journal of Clinical Oncology, 2013, 31, 2861-2869.	0.8	171
4	Induction chemotherapy followed by concurrent chemoradiotherapy versus concurrent chemoradiotherapy alone in locoregionally advanced nasopharyngeal carcinoma: long-term results of a phase III multicentre randomised controlled trial. European Journal of Cancer, 2019, 119, 87-96.	1.3	150
5	Concurrent chemoradiotherapy with nedaplatin versus cisplatin in stage Il–IVB nasopharyngeal carcinoma: an open-label, non-inferiority, randomised phase 3 trial. Lancet Oncology, The, 2018, 19, 461-473.	5.1	118
6	Single-cell transcriptomic analysis defines the interplay between tumor cells, viral infection, and the microenvironment in nasopharyngeal carcinoma. Cell Research, 2020, 30, 950-965.	5.7	111
7	The Prognostic Value of Plasma Epstein-Barr Viral DNA and Tumor Response to Neoadjuvant Chemotherapy in Advanced-Stage Nasopharyngeal Carcinoma. International Journal of Radiation Oncology Biology Physics, 2015, 93, 862-869.	0.4	110
8	The Association Between the Development of Radiation Therapy, Image Technology, and Chemotherapy, and the Survival of Patients With Nasopharyngeal Carcinoma: A Cohort Study From 1990 to 2012. International Journal of Radiation Oncology Biology Physics, 2019, 105, 581-590.	0.4	80
9	Tumor CTLA-4 overexpression predicts poor survival in patients with nasopharyngeal carcinoma. Oncotarget, 2016, 7, 13060-13068.	0.8	80
10	Phase I trial of adoptively transferred tumor-infiltrating lymphocyte immunotherapy following concurrent chemoradiotherapy in patients with locoregionally advanced nasopharyngeal carcinoma. Oncolmmunology, 2015, 4, e976507.	2.1	61
11	The Prognostic Value of Treatment-Related Lymphopenia in Nasopharyngeal Carcinoma Patients. Cancer Research and Treatment, 2018, 50, 19-29.	1.3	56
12	EBV infection-induced GPX4 promotes chemoresistance and tumor progression in nasopharyngeal carcinoma. Cell Death and Differentiation, 2022, 29, 1513-1527.	5.0	45
13	A deep survival analysis method based on ranking. Artificial Intelligence in Medicine, 2019, 98, 1-9.	3.8	44
14	Optimal cumulative cisplatin dose in nasopharyngeal carcinoma patients based on induction chemotherapy response. Radiotherapy and Oncology, 2019, 137, 83-94.	0.3	44
15	High-Sensitivity C-Reactive Protein Complements Plasma Epstein-Barr Virus Deoxyribonucleic Acid Prognostication in Nasopharyngeal Carcinoma: A Large-Scale Retrospective and Prospective Cohort Study. International Journal of Radiation Oncology Biology Physics, 2015, 91, 325-336.	0.4	41
16	Ten-year outcomes of survival and toxicity for a phase III randomised trial of concurrent chemoradiotherapy versus radiotherapy alone in stage II nasopharyngeal carcinoma. European Journal of Cancer, 2019, 110, 24-31.	1.3	40
17	Combination of Tumor Volume and Epstein-Barr Virus DNA Improved Prognostic Stratification of Stage II Nasopharyngeal Carcinoma in the Intensity Modulated Radiotherapy Era: A Large-Scale Cohort Study. Cancer Research and Treatment, 2018, 50, 861-871.	1.3	38
18	Plasma Epstein-Barr viral DNA complements TNM classification of nasopharyngeal carcinoma in the era of intensity-modulated radiotherapy. Oncotarget, 2016, 7, 6221-6230.	0.8	37

#	Article	IF	CITATIONS
19	New surgical staging system for patients with recurrent nasopharyngeal carcinoma based on the AJCC/UICC rTNM classification system. European Journal of Cancer, 2015, 51, 1771-1779.	1.3	36
20	In-cell infection: a novel pathway for Epstein-Barr virus infection mediated by cell-in-cell structures. Cell Research, 2015, 25, 785-800.	5. 7	36
21	Identifying optimal candidates for local treatment of the primary tumor among patients with de novo metastatic nasopharyngeal carcinoma: a retrospective cohort study based on Epstein–Barr virus DNA level and tumor response to palliative chemotherapy. BMC Cancer, 2019, 19, 92.	1.1	33
22	High-density lipoprotein cholesterol as a predictor of poor survival in patients with nasopharyngeal carcinoma. Oncotarget, 2016, 7, 42978-42987.	0.8	32
23	Prognostic Value of Plasma Epstein–Barr Virus DNA for Local and Regionally Advanced Nasopharyngeal Carcinoma Treated With Cisplatin-Based Concurrent Chemoradiotherapy in Intensity-Modulated Radiotherapy Era. Medicine (United States), 2016, 95, e2642.	0.4	29
24	Symptom clusters in patients with nasopharyngeal carcinoma during radiotherapy. European Journal of Oncology Nursing, 2017, 28, 7-13.	0.9	29
25	Concurrent chemoradiotherapy with or without cetuximab for stage II to IVb nasopharyngeal carcinoma: a case–control study. BMC Cancer, 2017, 17, 567.	1.1	29
26	Is Hemoglobin Level in Patients with Nasopharyngeal Carcinoma Still a Significant Prognostic Factor in the Era of Intensity-Modulated Radiotherapy Technology?. PLoS ONE, 2015, 10, e0136033.	1.1	28
27	Different Prognostic Values of Plasma Epstein-Barr Virus DNA and Maximal Standardized Uptake Value of 18F-FDG PET/CT for Nasopharyngeal Carcinoma Patients with Recurrence. PLoS ONE, 2015, 10, e0122756.	1.1	27
28	Development and validation of the immune signature to predict distant metastasis in patients with nasopharyngeal carcinoma., 2020, 8, e000205.		26
29	Deintensified Chemoradiotherapy for Pretreatment Epstein-Barr Virus DNA-Selected Low-Risk Locoregionally Advanced Nasopharyngeal Carcinoma: A Phase II Randomized Noninferiority Trial. Journal of Clinical Oncology, 2022, 40, 1163-1173.	0.8	25
30	FMNL1 mediates nasopharyngeal carcinoma cell aggressiveness by epigenetically upregulating MTA1. Oncogene, 2018, 37, 6243-6258.	2.6	24
31	The diagnostic and prognostic values of plasma Epsteinâ€Barr virus DNA for residual cervical lymphadenopathy in nasopharyngeal carcinoma patients: a retrospective study. Cancer Communications, 2019, 39, 1-13.	3.7	24
32	Combining pretreatment plasma Epsteinâ€Barr virus DNA level and cervical node necrosis improves prognostic stratification in patients with nasopharyngeal carcinoma: A cohort study. Cancer Medicine, 2019, 8, 6841-6852.	1.3	22
33	Effect of Induction Chemotherapy With Paclitaxel, Cisplatin, and Capecitabine vs Cisplatin and Fluorouracil on Failure-Free Survival for Patients With Stage IVA to IVB Nasopharyngeal Carcinoma. JAMA Oncology, 2022, 8, 706.	3.4	22
34	The impact of the cumulative dose of cisplatin during concurrent chemoradiotherapy on the clinical outcomes of patients with advanced-stage nasopharyngeal carcinoma in an era of intensity-modulated radiotherapy. BMC Cancer, 2015, 15, 977.	1.1	21
35	Famitinib in combination with concurrent chemoradiotherapy in patients with locoregionally advanced nasopharyngeal carcinoma: a phase 1, openâ€label, doseâ€escalation Study. Cancer Communications, 2018, 38, 1-13.	3.7	20
36	Targeting the IRAK1–S100A9 Axis Overcomes Resistance to Paclitaxel in Nasopharyngeal Carcinoma. Cancer Research, 2021, 81, 1413-1425.	0.4	19

#	Article	IF	CITATIONS
37	Induction Chemotherapy Plus Concurrent Chemoradiotherapy Versus Concurrent Chemoradiotherapy Alone in Locoregionally Advanced Nasopharyngeal Carcinoma in Children and Adolescents: A Matched Cohort Analysis. Cancer Research and Treatment, 2018, 50, 1304-1315.	1.3	19
38	Efficacy of controlled-release oxycodone for reducing pain due to oral mucositis in nasopharyngeal carcinoma patients treated with concurrent chemoradiotherapy: a prospective clinical trial. Supportive Care in Cancer, 2019, 27, 3759-3767.	1.0	18
39	Subdivision of Nasopharyngeal Carcinoma Patients with Bone-Only Metastasis at Diagnosis for Prediction of Survival and Treatment Guidance. Cancer Research and Treatment, 2019, 51, 1259-1268.	1.3	18
40	With or without reirradiation in advanced local recurrent nasopharyngeal carcinoma: a caseâ€"control study. BMC Cancer, 2016, 16, 774.	1.1	17
41	Individualized concurrent chemotherapy by pretreatment plasma Epsteinâ€Barr viral DNA in Ilâ€II stage nasopharyngeal carcinoma: A propensity score matching analysis using a large cohort. Cancer Medicine, 2019, 8, 4214-4225.	1.3	17
42	Effect of local treatment for metastasis and its sequence with chemotherapy on prognosis of post-treatment metastatic nasopharyngeal carcinoma patients. Oral Oncology, 2019, 92, 40-45.	0.8	17
43	Deep learning signatures reveal multiscale intratumor heterogeneity associated with biological functions and survival in recurrent nasopharyngeal carcinoma. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 2972-2982.	3.3	17
44	The role of capecitabine as maintenance therapy in <i>de novo</i> metastatic nasopharyngeal carcinoma: A propensity score matching study. Cancer Communications, 2020, 40, 32-42.	3.7	16
45	The impact of smoking on the clinical outcome of locoregionally advanced nasopharyngeal carcinoma after chemoradiotherapy. Radiation Oncology, 2014, 9, 246.	1.2	15
46	Induction chemotherapy followed by concurrent chemoradiotherapy versus concurrent chemoradiotherapy alone in stage III-IVb nasopharyngeal carcinoma patients with Epstein-Barr virus DNA ≥4000 copies/ml: a matched study. Oncotarget, 2016, 7, 29739-29748.	0.8	15
47	Relationship Between the Comprehensive Nutritional Index and the EORTC QLQ-H&N35 in Nasopharyngeal Carcinoma Patients Treated with Intensity-Modulated Radiation Therapy. Nutrition and Cancer, 2017, 69, 436-443.	0.9	15
48	A Randomized Controlled Trial Comparing Two Different Schedules for Cisplatin Treatment in Patients with Locoregionally Advanced Nasopharyngeal Cancer. Clinical Cancer Research, 2021, 27, 4186-4194.	3.2	15
49	Pretreatment Serum Amyloid A and C-reactive Protein Comparing with Epstein-Barr Virus DNA as Prognostic Indicators in Patients with Nasopharyngeal Carcinoma: A Prospective Study. Cancer Research and Treatment, 2018, 50, 701-711.	1.3	14
50	Liposomal paclitaxel versus docetaxel in induction chemotherapy using Taxanes, cisplatin and 5-fluorouracil for locally advanced nasopharyngeal carcinoma. BMC Cancer, 2018, 18, 1279.	1.1	13
51	Pretreatment quality of life as a predictor of survival for patients with nasopharyngeal carcinoma treated with IMRT. BMC Cancer, 2018, 18, 114.	1.1	13
52	<p>The development of a nomogram to predict post-radiation necrosis in nasopharyngeal carcinoma patients: a large-scale cohort study</p> . Cancer Management and Research, 2019, Volume 11, 6253-6263.	0.9	13
53	Establishment and validation of a nomogram for predicting survival in patients with de novo metastatic nasopharyngeal carcinoma. Oral Oncology, 2019, 94, 73-79.	0.8	12
54	Establishment and validation of a nomogram for predicting the benefit of concurrent chemotherapy in stage II nasopharyngeal carcinoma: A study based on a phase III randomized clinical trial with 10-year follow-up. Oral Oncology, 2020, 100, 104490.	0.8	12

#	Article	IF	CITATIONS
55	Autocrine <scp>INSL</scp> 5 promotes tumor progression and glycolysis via activation of <scp>STAT</scp> 5 signaling. EMBO Molecular Medicine, 2020, 12, e12050.	3.3	12
56	Advanced-Stage Nasopharyngeal Carcinoma: Restaging System after Neoadjuvant Chemotherapy on the Basis of MR Imaging Determines Survival. Radiology, 2017, 282, 171-181.	3.6	11
57	Weekly versus triweekly cisplatin plus intensity-modulated radiotherapy in locally advanced nasopharyngeal carcinoma: A propensity score analysis with a large cohort. Journal of Cancer, 2018, 9, 3447-3455.	1.2	11
58	Patterns of Failure and Survival Trends Of 720 Patients with Stage I Nasopharyngeal Carcinoma Diagnosed from 1990-2012: A Large-scale Retrospective Cohort Study. Journal of Cancer, 2018, 9, 1308-1317.	1.2	11
59	The impact of Adult Comorbidity Evaluation-27 on the clinical outcome of elderly nasopharyngeal carcinoma patients treated with chemoradiotherapy or radiotherapy: a matched cohort analysis. Journal of Cancer, 2019, 10, 5614-5621.	1.2	11
60	Subdivision of de-novo metastatic nasopharyngeal carcinoma based on tumor burden and pretreatment EBV DNA for therapeutic guidance of locoregional radiotherapy. BMC Cancer, 2021, 21, 534.	1.1	11
61	Patterns of Failure and Survival Trends in 3,808 Patients with Stage II Nasopharyngeal Carcinoma Diagnosed from 1990 to 2012: A Large-Scale Retrospective Cohort Study. Cancer Research and Treatment, 2019, 51, 1449-1463.	1.3	11
62	Stratification of Candidates for Induction Chemotherapy in Stage III-IV Nasopharyngeal Carcinoma: A Large Cohort Study Based on a Comprehensive Prognostic Model. Frontiers in Oncology, 2020, 10, 255.	1.3	10
63	Establishment of a prognostic nomogram to identify optimal candidates for local treatment among patients with local recurrent nasopharyngeal carcinoma. Oral Oncology, 2020, 106, 104711.	0.8	10
64	Combining plasma Epstein-Barr virus DNA and nodal maximal standard uptake values of 18F-fluoro-2-deoxy-D-glucose positron emission tomography improved prognostic stratification to predict distant metastasis for locoregionally advanced nasopharyngeal carcinoma. Oncotarget, 2015, 6, 38296-38307.	0.8	10
65	Identifying distinct risks of treatment failure in nasopharyngeal carcinoma: A study based on the dynamic changes in peripheral blood lymphocytes, monocytes, N classification, and plasma Epsteinâ€Barr virus DNA. Head and Neck, 2021, , .	0.9	10
66	Development and validation of a transcriptomics-based gene signature to predict distant metastasis and guide induction chemotherapy in locoregionally advanced nasopharyngeal carcinoma. European Journal of Cancer, 2022, 163, 26-34.	1.3	10
67	Establishment of a prognostic scoring model for regional recurrent nasopharyngeal carcinoma after neck dissection. Cancer Biology and Medicine, 2020, 17, 227-236.	1.4	9
68	Effect of Concurrent Chemoradiotherapy With Nedaplatin vs Cisplatin on the Long-term Outcomes of Survival and Toxic Effects Among Patients With Stage II to IVB Nasopharyngeal Carcinoma. JAMA Network Open, 2021, 4, e2138470.	2.8	9
69	Maximal standard uptake values of 18F-fluoro-2-deoxy-D-glucose positron emission tomography compared with Epstein-Barr virus DNA as prognostic indicators in de novo metastatic nasopharyngeal carcinoma patients. BMC Cancer, 2019, 19, 908.	1.1	8
70	Establishment and validation of two nomograms to predict the benefit of concurrent chemotherapy in stage Ilâ€IVa nasopharyngeal carcinoma patients with different risk factors: Analysis based on a large cohort. Cancer Medicine, 2020, 9, 1661-1670.	1.3	8
71	Comparing three induction chemotherapy regimens for patients with locoregionally advanced nasopharyngeal carcinoma based on TNM stage and plasma Epstein–Barr virus DNA level. BMC Cancer, 2020, 20, 89.	1.1	8
72	Geriatric nutritional risk index as an independent prognostic factor in locally advanced nasopharyngeal carcinoma treated using radical concurrent chemoradiotherapy: a retrospective cohort study. Annals of Translational Medicine, 2021, 9, 532-532.	0.7	8

#	Article	IF	CITATIONS
73	Irradiation-related longitudinal white matter atrophy underlies cognitive impairment in patients with nasopharyngeal carcinoma. Brain Imaging and Behavior, 2021, 15, 2426-2435.	1.1	8
74	Nomogram for the prediction of primary distant metastasis of nasopharyngeal carcinoma to guide individualized application of FDG PET/CT. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 2586-2598.	3.3	8
75	Optimal cumulative cisplatin dose in nasopharyngeal carcinoma patients based on plasma Epstein–Barr virus DNA level after induction chemotherapy. Aging, 2020, 12, 4931-4944.	1.4	8
76	Optimizing the Treatment Pattern for De Novo Metastatic Nasopharyngeal Carcinoma Patients: A Large-Scale Retrospective Cohort Study. Frontiers in Oncology, 2020, 10, 543646.	1.3	7
77	Intensive Local Radiotherapy Is Associated With Better Local Control and Prolonged Survival in Bone-Metastatic Nasopharyngeal Carcinoma Patients. Frontiers in Oncology, 2020, 10, 378.	1.3	7
78	Construction of a comprehensive nutritional index and comparison of its prognostic performance with the PNI and NRI for survival in older patients with nasopharyngeal carcinoma: a retrospective study. Supportive Care in Cancer, 2021, 29, 5371-5381.	1.0	7
79	Impact of smoking on survival in nasopharyngeal carcinoma: A cohort study with 23,325 patients diagnosed from 1990 to 2016. Radiotherapy and Oncology, 2021, 162, 7-17.	0.3	7
80	Epstein-Barr virus glycoprotein gH/gL antibodies complement IgA-viral capsid antigen for diagnosis of nasopharyngeal carcinoma. Oncotarget, 2016, 7, 16372-16383.	0.8	7
81	Utility of Epstein–Barr Virus DNA in Nasopharynx Swabs as a Reflex Test to Triage Seropositive Individuals in Nasopharyngeal Carcinoma Screening Programs. Clinical Chemistry, 2022, 68, 953-962.	1.5	7
82	Nomogram Predicting the Benefits of Adding Concurrent Chemotherapy to Intensity-Modulated Radiotherapy After Induction Chemotherapy in Stages II–IVb Nasopharyngeal Carcinoma. Frontiers in Oncology, 2020, 10, 539321.	1.3	6
83	Optimal sequencing of chemotherapy with chemoradiotherapy based on TNM stage classification and EBV DNA in locoregionally advanced nasopharyngeal carcinoma. Cancer Communications, 2019, 39, 1-3.	3.7	5
84	Induction chemotherapy followed by radiotherapy versus concurrent chemoradiotherapy in the treatment of different risk locoregionally advanced nasopharyngeal carcinoma. Therapeutic Advances in Medical Oncology, 2020, 12, 175883592092821.	1.4	5
85	Low value of whole-body dual-modality [18f]fluorodeoxyglucose positron emission tomography/computed tomography in primary staging of stage l–ll nasopharyngeal carcinoma: a nest case-control study. European Radiology, 2021, 31, 5222-5233.	2.3	5
86	Increased Angiogenin Expression Correlates With Radiation Resistance and Predicts Poor Survival for Patients With Nasopharyngeal Carcinoma. Frontiers in Pharmacology, 2021, 12, 627935.	1.6	5
87	Establishment and validation of a prognostic nomogram to predict early metastasis in nasopharyngeal carcinoma patients within six months after radiotherapy and to guide intensive treatment. Radiotherapy and Oncology, 2021, 162, 202-211.	0.3	5
88	The effect of adding concurrent chemotherapy to radiotherapy for stage II nasopharyngeal carcinoma with undetectable pretreatment Epstein-Barr virus DNA: Retrospective analysis with a large institutional-based cohort. Translational Oncology, 2021, 14, 100990.	1.7	4
89	Efficacy of Transnasal Endoscopic Fineâ€Needle Aspiration Biopsy in Diagnosing Submucosal Nasopharyngeal Carcinoma. Laryngoscope, 2021, 131, 1798-1804.	1.1	4
90	Do all patients with locoregionally advanced nasopharyngeal carcinoma benefit from the maintenance chemotherapy using S-1/capecitabine?. Oral Oncology, 2021, 122, 105539.	0.8	4

#	Article	IF	Citations
91	Prognostic effect of pregnancy on young female patients with nasopharyngeal carcinoma: results from a matched cohort analysis. Oncotarget, 2016, 7, 21913-21921.	0.8	4
92	Percent change in apparent diffusion coefficient and plasma EBV DNA after induction chemotherapy identifies distinct prognostic response phenotypes in advanced nasopharyngeal carcinoma. BMC Cancer, 2021, 21, 1320.	1.1	4
93	The prognosis of neck residue nasopharyngeal carcinoma (NPC) patients: results from a case-cohort study. Journal of Cancer, 2018, 9, 1765-1772.	1.2	3
94	Identifying optimal candidates for induction chemotherapy among stage II–IVa nasopharyngeal carcinoma based on pretreatment Epstein–Barr virus DNA and nodal maximal standard uptake values of [18 F]â€fluorodeoxyglucose positron emission tomography. Cancer Medicine, 2020, 9, 8852-8863.	1.3	3
95	Prognostic significance of a combined and controlled nutritional status score and EBV-DNA in patients with advanced nasopharyngeal carcinoma: a long-term follow-up study. Cancer Biology and Medicine, 2021, 19, 551-564.	1.4	3
96	Management of suboptimal response to induction chemotherapy in locoregionally advanced nasopharyngeal carcinoma: Re-induction therapy or direct to Radiotherapy?. Radiotherapy and Oncology, 2021, 163, 185-191.	0.3	3
97	Establishment and Validation of a Nomogram for Nasopharyngeal Carcinoma Patients Concerning the Prognostic Effect of Parotid Lymph Node Metastases. Cancer Research and Treatment, 2020, 52, 855-866.	1.3	3
98	Induction or adjuvant chemotherapy plus concurrent chemoradiotherapy versus concurrent chemoradiotherapy alone in paediatric nasopharyngeal carcinoma in the IMRT era: A recursive partitioning risk stratification analysis based on EBV DNA. European Journal of Cancer, 2021, 159, 133-143.	1.3	3
99	Role of zoledronic acid in nasopharyngeal carcinoma patients with bone-only metastasis at diagnosis. Oral Oncology, 2019, 97, 31-36.	0.8	2
100	Development and validation of a normal tissue complication probability model for acquired nasal cavity stenosis and atresia after radical radiotherapy for nasopharyngeal carcinoma. Radiotherapy and Oncology, 2021, 160, 9-17.	0.3	2
101	Impact of salvage radiotherapy on survival of patients with advanced locally recurrent nasopharyngeal carcinoma: Derivation and validation of a predictive model. Radiotherapy and Oncology, 2022, 167, 252-260.	0.3	2
102	Cost-Effectiveness analysis of combining plasma Epstein-Barr virus DNA testing and different surveillance imaging modalities for nasopharyngeal carcinoma patients in first remission. Oral Oncology, 2022, 128, 105851.	0.8	2
103	Longitudinal Trend of Health-Related Quality of Life During Concurrent Chemoradiotherapy and Survival in Patients With Stage Il–IVb Nasopharyngeal Carcinoma. Frontiers in Oncology, 2020, 10, 579292.	1.3	1
104	Divergent effects of irradiation on brain cortical morphology in patients with nasopharyngeal carcinoma: one-year follow-up study using structural magnetic resonance imaging. Quantitative Imaging in Medicine and Surgery, 2021, 11, 2307-2320.	1.1	1
105	Alpha-fetoprotein–producing recurrent nasopharyngeal carcinoma: A case report. SAGE Open Medical Case Reports, 2021, 9, 2050313X2110577.	0.2	0