
Kenneth L Mcnally

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6995386/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature, 2018, 557, 43-49.	27.8	1,091
2	Genomewide SNP variation reveals relationships among landraces and modern varieties of rice. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12273-12278.	7.1	581
3	The 3,000 rice genomes project. GigaScience, 2014, 3, 7.	6.4	451
4	Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza. Nature Genetics, 2018, 50, 285-296.	21.4	413
5	Open access resources for genome-wide association mapping in rice. Nature Communications, 2016, 7, 10532.	12.8	371
6	SNP-Seek database of SNPs derived from 3000 rice genomes. Nucleic Acids Research, 2015, 43, D1023-D1027.	14.5	357
7	Rice SNP-seek database update: new SNPs, indels, and queries. Nucleic Acids Research, 2017, 45, D1075-D1081.	14.5	290
8	Variation in root system architecture and drought response in rice (Oryza sativa): Phenotyping of the OryzaSNP panel in rainfed lowland fields. Field Crops Research, 2011, 120, 205-214.	5.1	261
9	The complete DNA sequence of the mitochondrial genome of Podospora anserina. Current Genetics, 1990, 17, 375-402.	1.7	215
10	Convergent evolution of perenniality in rice and sorghum. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4050-4054.	7.1	196
11	Evaluation of near-isogenic lines of rice introgressed with QTLs for root depth through marker-aided selection. Theoretical and Applied Genetics, 2001, 103, 75-83.	3.6	192
12	Drought Resistance Improvement in Rice: An Integrated Genetic and Resource Management Strategy. Plant Production Science, 2011, 14, 1-14.	2.0	192
13	Genomics of gene banks: A case study in rice. American Journal of Botany, 2012, 99, 407-423.	1.7	152
14	High-throughput single nucleotide polymorphism genotyping for breeding applications in rice using the BeadXpress platform. Molecular Breeding, 2012, 29, 875-886.	2.1	139
15	Improvement of Drought Resistance in Rice. Advances in Agronomy, 2009, , 41-99.	5.2	122
16	New allelic variants found in key rice saltâ€ŧolerance genes: an association study. Plant Biotechnology Journal, 2013, 11, 87-100.	8.3	120
17	Structural variants in 3000 rice genomes. Genome Research, 2019, 29, 870-880.	5.5	112
18	Genetic Variation in Biomass Traits among 20 Diverse Rice Varieties Â. Plant Physiology, 2011, 155, 157-168.	4.8	96

#	Article	IF	CITATIONS
19	SMALL-SUBUNIT RIBOSOMAL DNA SEQUENCE ANALYSES AND A RECONSTRUCTION OF THE INFERRED PHYLOGENY AMONG SYMBIOTIC DINOFLAGELLATES (PYRROPHYTA)1. Journal of Phycology, 1994, 30, 316-329.	2.3	93
20	A platinum standard pan-genome resource that represents the population structure of Asian rice. Scientific Data, 2020, 7, 113.	5.3	86
21	Rapid method for detecting SNPs on agarose gels and its application in candidate gene mapping. Molecular Breeding, 2007, 19, 87-101.	2.1	85
22	Sequencing Multiple and Diverse Rice Varieties. Connecting Whole-Genome Variation with Phenotypes. Plant Physiology, 2006, 141, 26-31.	4.8	84
23	Towards a deeper haplotype mining of complex traits in rice with <scp>RFGB</scp> v2.0. Plant Biotechnology Journal, 2020, 18, 14-16.	8.3	78
24	Development of a Research Platform for Dissecting Phenotype–Genotype Associations in Rice (Oryza) Tj ETQqC	0 0 0 rgBT 4.0	/Qyerlock 10
25	Alternate wetting and drying irrigation for rice in Bangladesh: Is it sustainable and has plant breeding something to offer?. Food and Energy Security, 2013, 2, 120-129.	4.3	74
26	Field-based high throughput phenotyping rapidly identifies genomic regions controlling yield components in rice. Scientific Reports, 2017, 7, 42839.	3.3	74
27	Rice Molecular Breeding Laboratories in the Genomics Era: Current Status and Future Considerations. International Journal of Plant Genomics, 2008, 2008, 1-25.	2.2	68
28	Structure, allelic diversity and selection of Asr genes, candidate for drought tolerance, in Oryza sativa L. and wild relatives. Theoretical and Applied Genetics, 2010, 121, 769-787.	3.6	68
29	Leaf morphology, rather than plant water status, underlies genetic variation of rice leaf rolling under drought. Plant, Cell and Environment, 2019, 42, 1532-1544.	5.7	67
30	An imputation platform to enhance integration of rice genetic resources. Nature Communications, 2018, 9, 3519.	12.8	65
31	Assessing the genetic diversity of rice originating from Bangladesh, Assam and West Bengal. Rice, 2015, 8, 35.	4.0	63
32	Allele mining and enhanced genetic recombination for rice breeding. Rice, 2015, 8, 34.	4.0	57
33	DNA sequence analysis of the 24.5 Kilobase pair cytochrome oxidase subunit I mitochondrial gene from Podospora anserina: a gene with sixteen introns. Current Genetics, 1989, 16, 381-406.	1.7	56
34	Identification of stable QTLs causing chalk in rice grains in nine environments. Theoretical and Applied Genetics, 2016, 129, 141-153.	3.6	54
35	SNP-Seek II: A resource for allele mining and analysis of big genomic data in Oryza sativa. Current Plant Biology, 2016, 7-8, 16-25.	4.7	48
36	Nucleotide diversity analysis highlights functionally important genomic regions. Scientific Reports, 2016, 6, 35730.	3.3	48

KENNETH L MCNALLY

#	Article	IF	CITATIONS
37	Migration, isolation and hybridization in island crop populations: the case of Madagascar rice. Molecular Ecology, 2010, 19, 4892-4905.	3.9	47
38	Variation in seed longevity among diverse Indica rice varieties. Annals of Botany, 2019, 124, 447-460.	2.9	45
39	The nucleotide sequence of the small subunit ribosomal RNA gene from Symbiodinium pilosum, a symbiotic dinoflagellate. Current Genetics, 1992, 21, 409-416.	1.7	42
40	Screening of rice Genebank germplasm for yield and selection of new drought tolerance donors. Field Crops Research, 2013, 147, 12-22.	5.1	41
41	Genome Wide Association Mapping of Grain and Straw Biomass Traits in the Rice Bengal and Assam Aus Panel (BAAP) Grown Under Alternate Wetting and Drying and Permanently Flooded Irrigation. Frontiers in Plant Science, 2018, 9, 1223.	3.6	41
42	Linking genotype to phenotype: the International Rice Information System (IRIS). Bioinformatics, 2003, 19, i63-i65.	4.1	38
43	Isolation and sequence analysis of DREB2A homologues in three cereal and two legume species. Plant Science, 2009, 177, 460-467.	3.6	33
44	Fine Scale Genomic Signals of Admixture and Alien Introgression among Asian Rice Landraces. Genome Biology and Evolution, 2019, 11, 1358-1373.	2.5	32
45	DNA sequence analysis of the apocytochrome b gene of Podospora anserina: a new family of intronic open reading frame. Current Genetics, 1989, 16, 407-418.	1.7	31
46	Rice functional genomics and breeding database (RFGB)-3K-rice SNP and InDel sub-database. Chinese Science Bulletin, 2015, 60, 367-371.	0.7	31
47	Genetic Loci Governing Grain Yield and Root Development under Variable Rice Cultivation Conditions. Frontiers in Plant Science, 2017, 8, 1763.	3.6	30
48	Genetic diversity and phylogenetic relationship in AA Oryza species as revealed by Rim2/Hipa CACTA transposon display. Genes and Genetic Systems, 2006, 81, 93-101.	0.7	28
49	Genetic diversity of rice tungro spherical virus in tungro-endemic provinces of the Philippines and Indonesia. Archives of Virology, 2000, 145, 1183-1197.	2.1	27
50	From bits to bites: Advancement of the Germinate platform to support prebreeding informatics for crop wild relatives. Crop Science, 2021, 61, 1538-1566.	1.8	26
51	A High-throughput Genomic Tool: Diversity Array Technology Complementary for Rice Genotyping. Journal of Integrative Plant Biology, 2006, 48, 1069-1076.	8.5	25
52	DNA sequence analysis of the mitochondrial ND4L-ND5 gene complex from Podospora anserina. Journal of Molecular Biology, 1990, 212, 269-286.	4.2	24
53	Crossability patterns within and among Oryza series Sativae species from Asia and Australia. Genetic Resources and Crop Evolution, 2013, 60, 1899-1914.	1.6	24
54	Environmental Response and Genomic Regions Correlated with Rice Root Growth and Yield under Drought in the OryzaSNP Panel across Multiple Study Systems. PLoS ONE, 2015, 10, e0124127.	2.5	24

#	Article	IF	CITATIONS
55	Developmental Dynamics and Early Growth Vigour in Rice. <scp>I</scp> . Relationship Between Development Rate (1/Phyllochron) and Growth. Journal of Agronomy and Crop Science, 2012, 198, 374-384.	3.5	22
56	State of ex situ conservation of landrace groups of 25 major crops. Nature Plants, 2022, 8, 491-499.	9.3	21
57	Use of EcoTILLING to identify natural allelic variants of rice candidate genes involved in salinity tolerance. Plant Genetic Resources: Characterisation and Utilisation, 2011, 9, 300-304.	0.8	19
58	Development of a Core Set from a Large Rice Collection using a Modified Heuristic Algorithm to Retain Maximum Diversity. Journal of Integrative Plant Biology, 2009, 51, 1116-1125.	8.5	16
59	Genetic composition and complexity of virus populations at tungro-endemic and outbreak rice sites. Archives of Virology, 2000, 145, 2643-2657.	2.1	14
60	Local differentiation amidst extensive allele sharing in <i><scp>O</scp>ryza nivara</i> and <i><scp>O</scp>. rufipogon</i> . Ecology and Evolution, 2013, 3, 3047-3062.	1.9	14
61	Chemical- and Irradiation-Induced Mutants and TILLING. , 2007, , 148-180.		13
62	Identification of SUB1A alleles from wild rice Oryza rufipogon Griff Genetic Resources and Crop Evolution, 2011, 58, 1237-1242.	1.6	13
63	Ecogeographic Variation in the Morphology of Two Asian Wild Rice Species, <i>Oryza nivara</i> and <i>Oryza rufipogon</i> . International Journal of Plant Sciences, 2013, 174, 896-909.	1.3	13
64	Cell Wall Composition and Bioenergy Potential of Rice Straw Tissues Are Influenced by Environment, Tissue Type, and Genotype. Bioenergy Research, 2015, 8, 1165-1182.	3.9	13
65	Novel Sources of Pre-Harvest Sprouting Resistance for Japonica Rice Improvement. Plants, 2021, 10, 1709.	3.5	11
66	Isolation and sequence analysis of the small subunit ribosomal RNA gene from the euryhaline yeast Debaryomyces hansenii. Current Genetics, 1992, 22, 191-195.	1.7	10
67	Use of introgression lines and zonal mapping to identify RAPD markers linked to QTL. Molecular Breeding, 1997, 3, 203-212.	2.1	10
68	Phenotypic response of farmerâ€selected CWRâ€derived rice lines to salt stress in the Mekong Delta. Crop Science, 2021, 61, 201-218.	1.8	10
69	Aus rice root architecture variation contributing to grain yield under drought suggests a key role of nodal root diameter class. Plant, Cell and Environment, 2022, 45, 854-870.	5.7	10
70	Fertility in an interspecific rice population and its effect on selection for rhizome length. Field Crops Research, 2006, 95, 30-38.	5.1	7
71	Advanced Strategic Research to Promote the Use of Rice Genetic Resources. Agronomy, 2020, 10, 1629.	3.0	7
72	Genetic erosion in traditional rice agro-ecosystems in Southern Philippines: drivers and consequences. Plant Genetic Resources: Characterisation and Utilisation, 2020, 18, 1-10.	0.8	7

KENNETH L MCNALLY

#	Article	IF	CITATIONS
73	Upland Rice: Cultural Keystone Species in a Philippine Traditional Agroecosystem. Asian Journal of Agriculture and Development, 2020, 17, 93-105.	0.4	6
74	Mitochondrial DNA sequence analysis of the cytochrome oxidase subunit II gene from Podospora anserina. Journal of Molecular Biology, 1990, 212, 287-294.	4.2	5
75	Phenotypic Variation and the Impact of Admixture in the Oryza rufipogon Species Complex (ORSC). Frontiers in Plant Science, 0, 13, .	3.6	5
76	Genetic diversity, linkage disequilibrium, and population structure in a panel of Brazilian rice accessions. Journal of Applied Genetics, 2019, 60, 27-31.	1.9	4
77	Progress in single-access information systems for wheat and rice crop improvement. Briefings in Bioinformatics, 2019, 20, 565-571.	6.5	4
78	Genetic diversity patterns in ex situ collections of Oryza officinalis Wall. ex G. Watt revealed by morphological and microsatellite markers. Genetic Resources and Crop Evolution, 2017, 64, 733-744.	1.6	3
79	Traditional agro-ecosystems in Southern Philippines. International Journal of Disaster Resilience in the Built Environment, 2019, 10, 289-300.	1.2	3
80	Editorial: Reproductive Barriers and Gene Introgression in Rice Species. Frontiers in Plant Science, 2021, 12, 699761.	3.6	2
81	Revealing sequence variation patterns in rice with machine learning methods. BMC Bioinformatics, 2008, 9, .	2.6	1
82	SNP discovery at candidate genes for drought responsiveness in rice. , 2009, , 311-324.		1
83	Mass genome sequencing of crops and wild relatives to accelerate crop breeding: the digital rice genebank. IOP Conference Series: Earth and Environmental Science, 2020, 482, 012005.	0.3	1
84	Characterizing genetic diversity and creating novel gene pools in rice for trait dissection and gene function discovery. Nature Precedings, 2010, , .	0.1	0
85	Exploring 'omics' of genetic resources to mitigate the effects of climate change , 2014, , 166-189.		0