Jun-Prof Jens Voskuhl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6994753/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular recognition of bilayer vesicles. Chemical Society Reviews, 2009, 38, 495-505.	18.7	240
2	Lightâ€Responsive Capture and Release of DNA in a Ternary Supramolecular Complex. Angewandte Chemie - International Edition, 2011, 50, 9747-9751.	7.2	164
3	Dual Stimuliâ€Responsive Selfâ€Assembled Supramolecular Nanoparticles. Angewandte Chemie - International Edition, 2014, 53, 3400-3404.	7.2	136
4	Sugarâ€Decorated Sugar Vesicles: Lectin–Carbohydrate Recognition at the Surface of Cyclodextrin Vesicles. Chemistry - A European Journal, 2010, 16, 2790-2796.	1.7	112
5	In Situ Modification of Plain Liposomes with Lipidated Coiled Coil Forming Peptides Induces Membrane Fusion. Journal of the American Chemical Society, 2013, 135, 8057-8062.	6.6	105
6	Multivalent Interaction of Cyclodextrin Vesicles, Carbohydrate Guests, and Lectins: A Kinetic Investigation. Langmuir, 2011, 27, 1391-1397.	1.6	60
7	A soft supramolecular carrier with enhanced singlet oxygen photosensitizing properties. Soft Matter, 2013, 9, 2453.	1.2	60
8	Phosphorescence Through Hindered Motion of Pure Organic Emitters. Chemistry - A European Journal, 2018, 24, 12221-12230.	1.7	60
9	In Vitro and In Vivo Supramolecular Modification of Biomembranes Using a Lipidated Coiledâ€Coil Motif. Angewandte Chemie - International Edition, 2013, 52, 14247-14251.	7.2	54
10	Advances in contact printing technologies of carbohydrate, peptide and protein arrays. Current Opinion in Chemical Biology, 2014, 18, 1-7.	2.8	52
11	Supramolecular surface adhesion mediated by azobenzene polymer brushes. Chemical Communications, 2016, 52, 1964-1966.	2.2	51
12	Nanodiamonds in sugar rings: an experimental and theoretical investigation of cyclodextrin–nanodiamond inclusion complexes. Organic and Biomolecular Chemistry, 2012, 10, 4524.	1.5	50
13	Aromatic Thioethers as Novel Luminophores with Aggregationâ€Induced Fluorescence and Phosphorescence. Chemistry - A European Journal, 2017, 23, 13660-13668.	1.7	50
14	Molecular Recognition of Vesicles: Host–Guest Interactions Combined with Specific Dimerization of Zwitterions. Chemistry - A European Journal, 2010, 16, 8300-8306.	1.7	48
15	Controlled liposome fusion mediated by SNARE protein mimics. Biomaterials Science, 2013, 1, 1046.	2.6	46
16	Host–Guest Complexes of Cyclodextrins and Nanodiamonds as a Strong Nonâ€Covalent Binding Motif for Selfâ€Assembled Nanomaterials. Chemistry - A European Journal, 2017, 23, 16059-16065.	1.7	45
17	Photoresponsive Cucurbit[8]urilâ€Mediated Adhesion of Bacteria on Supported Lipid Bilayers. Small, 2015, 11, 6187-6196.	5.2	42
18	Lightâ€Triggered Capture and Release of DNA and Proteins by Host–Guest Binding and Electrostatic Interaction. Chemistry - A European Journal, 2015, 21, 3271-3277.	1.7	42

JUN-PROF JENS VOSKUHL

#	Article	IF	CITATIONS
19	Nanosized food additives impact beneficial and pathogenic bacteria in the human gut: a simulated gastrointestinal study. Npj Science of Food, 2018, 2, 22.	2.5	37
20	Mesogens with aggregationâ€induced emission properties: Materials with a bright future. Aggregate, 2022, 3, e124.	5.2	37
21	Fluorescent Modular Boron Systems Based on NNN- and ONO-Tridentate Ligands: Self-Assembly and Cell Imaging. Journal of Organic Chemistry, 2013, 78, 4410-4418.	1.7	33
22	A dual pH-responsive supramolecular gelator with aggregation-induced emission properties. Soft Matter, 2018, 14, 6166-6170.	1.2	32
23	Agglutination of bacteria using polyvalent nanoparticles of aggregation-induced emissive thiophthalonitrile dyes. Journal of Materials Chemistry B, 2016, 4, 4732-4738.	2.9	30
24	Host-guest complexes – Boosting the performance of photosensitizers. International Journal of Pharmaceutics, 2020, 586, 119595.	2.6	28
25	Mapping the Regioisomeric Space and Visible Color Range of Purely Organic Dual Emitters with Ultralong Phosphorescence Components: From Violet to Red Towards Pure White Light. Angewandte Chemie - International Edition, 2022, 61, .	7.2	28
26	Immobilization of Liposomes and Vesicles on Patterned Surfaces by a Peptide Coiled oil Binding Motif. Angewandte Chemie - International Edition, 2012, 51, 12616-12620.	7.2	26
27	Membrane-Fusogen Distance Is Critical for Efficient Coiled-Coil-Peptide-Mediated Liposome Fusion. Langmuir, 2017, 33, 12443-12452.	1.6	25
28	A non-zipper-like tetrameric coiled coil promotes membrane fusion. RSC Advances, 2016, 6, 7990-7998.	1.7	21
29	Probing the self-assembly and stability of oligohistidine based rod-like micelles by aggregation induced luminescence. Organic and Biomolecular Chemistry, 2016, 14, 5574-5579.	1.5	20
30	Functionalizing the glycocalyx of living cells with supramolecular guest ligands for cucurbit[8]uril-mediated assembly. Chemical Communications, 2016, 52, 7146-7149.	2.2	19
31	Mesogens with Aggregation-Induced Emission Formed by Hydrogen Bonding. , 2019, 1, 589-593.		19
32	Covalent Surface Functionalization of Calcium Phosphate Nanoparticles with Fluorescent Dyes by Copperâ€Catalysed and by Strainâ€Promoted Azideâ€Alkyne Click Chemistry. ChemNanoMat, 2019, 5, 436-446.	1.5	19
33	Guanidiniocarbonylâ€Pyrroles (GCP) – 20 Years of the Schmuck Binding Motif. ChemPlusChem, 2020, 85, 985-997.	1.3	19
34	On the Influence of Substitution Patterns in Thioetherâ€Based Luminophores with Aggregationâ€Induced Emission Properties. ChemistrySelect, 2018, 3, 985-991.	0.7	18
35	Coiled-coil driven membrane fusion: zipper-like vs. non-zipper-like peptide orientation. Faraday Discussions, 2013, 166, 349.	1.6	17
36	Coiled coil driven membrane fusion between cyclodextrin vesicles and liposomes. Soft Matter, 2014, 10, 9746-9751.	1.2	16

JUN-PROF JENS VOSKUHL

#	Article	IF	CITATIONS
37	Bridged Aromatic Oxo―and Thioethers with Intense Emission in Solution and the Solid State. Chemistry - an Asian Journal, 2021, 16, 2307-2313.	1.7	14
38	Power struggles between oligopeptides and cyclodextrin vesicles. Soft Matter, 2012, 8, 8770.	1.2	12
39	Alkylated Aromatic Thioethers with Aggregationâ€Induced Emission Properties—Assembly and Photophysics. Chemistry - an Asian Journal, 2019, 14, 814-820.	1.7	12
40	Photo-switching and -cyclisation of hydrogen bonded liquid crystals based on resveratrol. Chemical Communications, 2020, 56, 1105-1108.	2.2	12
41	All in One: Stimuli-Responsive, Efficient Mitotracking, and Single Source White Light Emission. Journal of Physical Chemistry Letters, 2021, 12, 1162-1168.	2.1	12
42	Structure and luminescence properties of supramolecular polymers of amphiphilic aromatic thioether–peptide conjugates in water. Polymer Chemistry, 2019, 10, 3163-3169.	1.9	11
43	Understanding the Role of Chalcogens in Etherâ€Based Luminophores with Aggregationâ€Induced Fluorescence and Phosphorescence. ChemPhotoChem, 2020, 4, 398-406.	1.5	11
44	Enhanced Chiral Recognition by Cyclodextrin Dimers. International Journal of Molecular Sciences, 2011, 12, 4637-4646.	1.8	10
45	A stimuli responsive two component supramolecular hydrogelator with aggregation-induced emission properties. Soft Matter, 2019, 15, 7117-7121.	1.2	9
46	Supramolecular subphthalocyanine complexes–cellular uptake and phototoxicity. Chemical Communications, 2020, 56, 7653-7656.	2.2	9
47	Molecular Recognition of Spermine using Aggregationâ€Induced Emission. Israel Journal of Chemistry, 2018, 58, 927-931.	1.0	8
48	Structure–property relationships in aromatic thioethers featuring aggregation-induced emission: solid-state structures and theoretical analysis. CrystEngComm, 2019, 21, 3097-3105.	1.3	8
49	Naphthalonitriles featuring efficient emission in solution and in the solid state. Beilstein Journal of Organic Chemistry, 2020, 16, 2960-2970.	1.3	7
50	UV resonance Raman spectroscopy of the supramolecular ligand guanidiniocarbonyl indole (GCI) with 244 nm laser excitation. Beilstein Journal of Organic Chemistry, 2020, 16, 2911-2919.	1.3	7
51	Prospects of ultraviolet resonance Raman spectroscopy in supramolecular chemistry on proteins. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 254, 119622.	2.0	6
52	Umbelliferone Decorated Waterâ€soluble Zinc(II) Phthalocyanines – <i>In Vitro</i> Phototoxic Antimicrobial Antiâ€cancer Agents. Chemistry - A European Journal, 2021, 27, 14672-14680.	1.7	6
53	Targeting protein-loaded CB[8]-mediated supramolecular nanocarriers to cells. RSC Advances, 2017, 7, 54341-54346.	1.7	5
54	Synthesis and fluorescent properties of diblock terpolymer micelles modified with an aromatic thioether-based AIE fluorophore. Polymer, 2020, 208, 122942.	1.8	5

JUN-PROF JENS VOSKUHL

#	Article	IF	CITATIONS
55	Smart Glycopolymeric Nanoparticles for Multivalent Lectin Binding and Stimuli-Controlled Guest Release. Biomacromolecules, 2020, 21, 2356-2364.	2.6	5
56	Naturally occurring polyphenols as building blocks for supramolecular liquid crystals – substitution pattern dominates mesomorphism. Molecular Systems Design and Engineering, 2021, 6, 390-397.	1.7	5
57	Luminescent Amphiphilic Aminoglycoside Probes to Study Transfection. ChemBioChem, 2021, 22, 1563-1567.	1.3	5
58	Ultraviolet resonance Raman spectroscopy with a continuously tunable picosecond laser: Application to the supramolecular ligand guanidiniocarbonyl pyrrole (GCP). Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 250, 119359.	2.0	5
59	Mapping the regioisomeric space and visible color range of purely organic dual emitters with ultralong phosphorescence components: From violet to red towards pure whiteâ€light. Angewandte Chemie, 0, , .	1.6	5
60	A Bivalent Supramolecular GCP Ligand Enables Blocking of the Taspase1/Importin $\hat{I}\pm$ Interaction. ChemMedChem, 2021, 17, e202100640.	1.6	5
61	PEGylated sequence-controlled macromolecules using supramolecular binding to target the Taspase1/Importin \hat{I}_{\pm} interaction. Chemical Communications, 2021, 57, 3091-3094.	2.2	4
62	Lipofection with estrone-based luminophores featuring aggregation-induced emission properties. RSC Advances, 2020, 10, 19643-19647.	1.7	3
63	Reversible Selfâ€Assembly of Gold Nanoparticles Based on Coâ€Functionalization with Zwitterionic and Cationic Binding Motifs**. Chemistry - A European Journal, 2021, 27, 13539-13543.	1.7	3
64	Covalent Attachment of Aggregation-Induced Emission Molecules to the Surface of Ultrasmall Gold Nanoparticles to Enhance Cell Penetration. Molecules, 2022, 27, 1788.	1.7	3
65	Total Synthesis of Resveratrone and <i>iso</i> â€Resveratrone. ChemistryOpen, 2022, 11, .	0.9	3
66	Programmed disassembly of supramolecular nanoparticles stabilized by heteroternary CB[8] host-guest interactions. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 331, 146-152.	2.0	2
67	Special Issue – Aggregationâ€Induced Emission. Israel Journal of Chemistry, 2018, 58, 811-812.	1.0	2
68	Tuning the solid-state emission of liquid crystalline nitro-cyanostilbene by halogen bonding. Beilstein Journal of Organic Chemistry, 2021, 17, 124-131.	1.3	2
69	Take your Positions and Shine: Effects of Positioning Aggregationâ€Induced Emission Luminophores within Sequenceâ€Defined Macromolecules. Chemistry - A European Journal, 2021, 27, 10186-10192.	1.7	2
70	Photoresponsive Materials: Photoresponsive Cucurbit[8]uril-Mediated Adhesion of Bacteria on Supported Lipid Bilayers (Small 46/2015). Small, 2015, 11, 6186-6186.	5.2	1
71	Understanding the Role of Chalcogens in Etherâ€Based Luminophores with Aggregationâ€Induced Fluorescence and Phosphorescence. ChemPhotoChem, 2020, 4, 384-384.	1.5	1
72	Frontispiece: Phosphorescence Through Hindered Motion of Pure Organic Emitters. Chemistry - A European Journal, 2018, 24, .	1.7	0

#	Article	IF	CITATIONS
73	Evolution of Artificial Arginine Analogues—Fluorescent Guanidiniocarbonyl-Indoles as Efficient Oxo-Anion Binders. Molecules, 2022, 27, 3005.	1.7	0