Muhammad Tayyab Akhtar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6994267/publications.pdf

Version: 2024-02-01

1307594 1372567 10 158 10 7 citations h-index g-index papers 10 10 10 190 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Perturbations in Amino Acid Metabolism in Reserpine-Treated Zebrafish Brain Detected by 1</sup>H Nuclear Magnetic Resonance-Based Metabolomics">sup>1H Nuclear Magnetic Resonance-Based Metabolomics . Zebrafish, 2021, 18, 42-54.	1.1	8
2	Recovery of Gelatin from Bovine Skin with the Aid of Pepsin and Its Effects on the Characteristics of the Extracted Gelatin. Polymers, 2021, 13, 1554.	4.5	15
3	Meat Quality, Fatty Acid Content and NMR Metabolic Profile of Dorper Sheep Supplemented with Bypass Fats. Foods, 2021, 10, 1133.	4.3	10
4	Cassia fistula Leaves; UHPLC-QTOF-MS/MS Based Metabolite Profiling and Molecular Docking Insights to Explore Bioactives Role towards Inhibition of Pancreatic Lipase. Plants, 2021, 10, 1334.	3.5	6
5	1H-NMR-Based Metabolomics: An Integrated Approach for the Detection of the Adulteration in Chicken, Chevon, Beef and Donkey Meat. Molecules, 2021, 26, 4643.	3.8	14
6	Clitorienolactones and Isoflavonoids of Clitorea ternatea Roots Alleviate Stress-Like Symptoms in a Reserpine-Induced Zebrafish Model. Molecules, 2021, 26, 4137.	3.8	4
7	Anti-Obesity Attributes; UHPLC-QTOF-MS/MS-Based Metabolite Profiling and Molecular Docking Insights of Taraxacum officinale. Molecules, 2020, 25, 4935.	3.8	30
8	UHPLC-QTOF-MS/MS based phytochemical characterization and anti-hyperglycemic prospective of hydro-ethanolic leaf extract of Butea monosperma. Scientific Reports, 2020, 10, 3530.	3.3	35
9	Antioxidant activity, α-glucosidase inhibition and phytochemical profiling of <i>Hyophorbe lagenicaulis</i> leaf extracts. Peerl, 2019, 7, e7022.	2.0	17
10	Metabolite profiling and inhibitory properties of leaf extracts of $\langle i \rangle$ Ficus benjamina $\langle i \rangle$ towards $\hat{l}\pm -g$ lucosidase and $\hat{l}\pm -g$ luc	3.0	19