Michael D Buck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6994208/publications.pdf

Version: 2024-02-01

30 papers

8,178 citations

304743 22 h-index 434195 31 g-index

31 all docs

31 docs citations

times ranked

31

13347 citing authors

#	Article	IF	CITATIONS
1	The receptor DNGR-1 signals for phagosomal rupture to promote cross-presentation of dead-cell-associated antigens. Nature Immunology, 2021, 22, 140-153.	14.5	104
2	SARS-CoV-2 detection by a clinical diagnostic RT-LAMP assay. Wellcome Open Research, 2021, 6, 9.	1.8	13
3	Fever supports CD8 ⁺ effector T cell responses by promoting mitochondrial translation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	28
4	An isoform of Dicer protects mammalian stem cells against multiple RNA viruses. Science, 2021, 373, 231-236.	12.6	67
5	Secreted gelsolin inhibits DNGR-1-dependent cross-presentation and cancer immunity. Cell, 2021, 184, 4016-4031.e22.	28.9	63
6	SARS-CoV-2 detection by a clinical diagnostic RT-LAMP assay. Wellcome Open Research, 2021, 6, 9.	1.8	11
7	Recruitment of dendritic cell progenitors to foci of influenza A virus infection sustains immunity. Science Immunology, 2021, 6, eabi9331.	11.9	14
8	Tonic TCR Signaling Inversely Regulates the Basal Metabolism of CD4+ T Cells. ImmunoHorizons, 2020, 4, 485-497.	1.8	14
9	Polyamines and elF5A Hypusination Modulate Mitochondrial Respiration and Macrophage Activation. Cell Metabolism, 2019, 30, 352-363.e8.	16.2	223
10	Acetate Promotes T Cell Effector Function during Glucose Restriction. Cell Reports, 2019, 27, 2063-2074.e5.	6.4	205
11	Mitochondrial Membrane Potential Regulates Nuclear Gene Expression in Macrophages Exposed to Prostaglandin E2. Immunity, 2018, 49, 1021-1033.e6.	14.3	75
12	Metabolic Instruction of Immunity. Cell, 2017, 169, 570-586.	28.9	871
13	Mitochondrial Priming by CD28. Cell, 2017, 171, 385-397.e11.	28.9	212
14	Arginase 1 is an innate lymphoid-cell-intrinsic metabolic checkpoint controlling type 2 inflammation. Nature Immunology, 2016, 17, 656-665.	14.5	215
15	Mitochondrial Dynamics Controls T Cell Fate through Metabolic Programming. Cell, 2016, 166, 63-76.	28.9	1,025
16	Type 1 Interferons Induce Changes in Core Metabolism that Are Critical for Immune Function. Immunity, 2016, 44, 1325-1336.	14.3	248
17	Autophagy Genes Enhance Murine Gammaherpesvirus 68 Reactivation from Latency by Preventing Virus-Induced Systemic Inflammation. Cell Host and Microbe, 2016, 19, 91-101.	11.0	56
18	Inhibition of endoplasmic reticulum glucosidases is required for inÂvitro and inÂvivo dengue antiviral activity by the iminosugar UV-4. Antiviral Research, 2016, 129, 93-98.	4.1	52

#	Article	IF	CITATIONS
19	Dengue Virus Evolution under a Host-Targeted Antiviral. Journal of Virology, 2015, 89, 5592-5601.	3.4	49
20	T cell metabolism drives immunity. Journal of Experimental Medicine, 2015, 212, 1345-1360.	8.5	937
21	Metabolic Competition in the Tumor Microenvironment Is a Driver of Cancer Progression. Cell, 2015, 162, 1229-1241.	28.9	2,158
22	T cell metabolism drives immunity. Journal of Cell Biology, 2015, 210, 2104OIA169.	5.2	4
23	Helminth infection reactivates latent \hat{I}^3 -herpesvirus via cytokine competition at a viral promoter. Science, 2014, 345, 573-577.	12.6	172
24	Memory CD8+ T Cells Use Cell-Intrinsic Lipolysis to Support the Metabolic Programming Necessary for Development. Immunity, 2014, 41, 75-88.	14.3	650
25	An iminosugar with potent inhibition of dengue virus infection in vivo. Antiviral Research, 2013, 98, 35-43.	4.1	83
26	CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14336-14341.	7.1	428
27	Tracking the Evolution of Dengue Virus Strains D2S10 and D2S20 by 454 Pyrosequencing. PLoS ONE, 2013, 8, e54220.	2.5	18
28	Inhibition of Dengue Virus Infections in Cell Cultures and in AG129 Mice by a Small Interfering RNA Targeting a Highly Conserved Sequence. Journal of Virology, 2011, 85, 10154-10166.	3.4	50
29	Better late than never: antivirals for dengue. Expert Review of Anti-Infective Therapy, 2011, 9, 755-757.	4.4	7
30	STAT2 Mediates Innate Immunity to Dengue Virus in the Absence of STAT1 via the Type I Interferon Receptor. PLoS Pathogens, 2011, 7, e1001297.	4.7	124