Birgit Wild

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6994193/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spatial patterns and distributional controls of total and methylated mercury off the Lena River in the Laptev Sea sediments. Marine Chemistry, 2022, 238, 104052.	0.9	6
2	Lignin Preservation and Microbial Carbohydrate Metabolism in Permafrost Soils. Journal of Geophysical Research G: Biogeosciences, 2022, 127, e2020JG006181.	1.3	5
3	CASCADE – The Circum-Arctic Sediment CArbon DatabasE. Earth System Science Data, 2021, 13, 2561-2572.	3.7	22
4	Remobilization of dormant carbon from Siberian-Arctic permafrost during three past warming events. Science Advances, 2020, 6, .	4.7	37
5	Carbon loss from northern circumpolar permafrost soils amplified by rhizosphere priming. Nature Geoscience, 2020, 13, 560-565.	5.4	72
6	Plant roots increase both decomposition and stable organic matter formation in boreal forest soil. Nature Communications, 2019, 10, 3982.	5.8	115
7	Rivers across the Siberian Arctic unearth the patterns of carbon release from thawing permafrost. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10280-10285.	3.3	118
8	Microbial carbon and nitrogen cycling responses to drought and temperature in differently managed mountain grasslands. Soil Biology and Biochemistry, 2019, 135, 144-153.	4.2	51
9	Remobilization of Old Permafrost Carbon to Chukchi Sea Sediments During the End of the Last Deglaciation. Global Biogeochemical Cycles, 2019, 33, 2-14.	1.9	35
10	Decoupling of priming and microbial N mining during a short-term soil incubation. Soil Biology and Biochemistry, 2019, 129, 71-79.	4.2	52
11	Significance of dark CO2 fixation in arctic soils. Soil Biology and Biochemistry, 2018, 119, 11-21.	4.2	58
12	Soil organic matter quality exerts a stronger control than stoichiometry on microbial substrate use efficiency along a latitudinal transect. Soil Biology and Biochemistry, 2018, 121, 212-220.	4.2	104
13	Fate of carbohydrates and lignin in north-east Siberian permafrost soils. Soil Biology and Biochemistry, 2018, 116, 311-322.	4.2	59
14	Standardized protocols and procedures can precisely and accurately quantify non-structural carbohydrates. Tree Physiology, 2018, 38, 1764-1778.	1.4	171
15	A plant–microbe interaction framework explaining nutrient effects on primary production. Nature Ecology and Evolution, 2018, 2, 1588-1596.	3.4	100
16	Resistance of soil protein depolymerization rates to eight years of elevated CO2, warming, and summer drought in a temperate heathland. Biogeochemistry, 2018, 140, 255-267.	1.7	13
17	Temperature response of permafrost soil carbon is attenuated by mineral protection. Global Change Biology, 2018, 24, 3401-3415.	4.2	107
18	Amino acid production exceeds plant nitrogen demand in Siberian tundra. Environmental Research Letters, 2018, 13, 034002.	2.2	49

BIRGIT WILD

#	Article	IF	CITATIONS
19	Decoupling of microbial carbon, nitrogen, and phosphorus cycling in response to extreme temperature events. Science Advances, 2017, 3, e1602781.	4.7	143
20	Microbial utilization of mineral-associated nitrogen in soils. Soil Biology and Biochemistry, 2017, 104, 185-196.	4.2	30
21	Short-term carbon input increases microbial nitrogen demand, but not microbial nitrogen mining, in a set of boreal forest soils. Biogeochemistry, 2017, 136, 261-278.	1.7	22
22	Plant-derived compounds stimulate the decomposition of organic matter in arctic permafrost soils. Scientific Reports, 2016, 6, 25607.	1.6	87
23	Carbon Isotope Composition of Carbohydrates and Polyols in Leaf and Phloem Sap ofPhaseolus vulgarisL. Influences Predictions of Plant Water Use Efficiency. Plant and Cell Physiology, 2016, 57, 1756-1766.	1.5	14
24	Stress-induced changes in carbon allocation among metabolite pools influence isotope-based predictions of water use efficiency in Phaseolus vulgaris. Functional Plant Biology, 2016, 43, 1149.	1.1	7
25	Microbial nitrogen dynamics in organic and mineral soil horizons along a latitudinal transect in western Siberia. Global Biogeochemical Cycles, 2015, 29, 567-582.	1.9	108
26	Properties and bioavailability of particulate and mineralâ€essociated organic matter in <scp>A</scp> rctic permafrost soils, <scp>L</scp> ower <scp>K</scp> olyma <scp>R</scp> egion, <scp>R</scp> ussia. European Journal of Soil Science, 2015, 66, 722-734.	1.8	59
27	Storage and transformation of organic matter fractions in cryoturbated permafrost soils across the Siberian Arctic. Biogeosciences, 2015, 12, 4525-4542.	1.3	85
28	Microbial community composition shapes enzyme patterns in topsoil and subsoil horizons along a latitudinal transect in Western Siberia. Soil Biology and Biochemistry, 2015, 83, 106-115.	4.2	104
29	Non-structural carbohydrates in woody plants compared among laboratories. Tree Physiology, 2015, 35, tpv073.	1.4	163
30	The effect of warming on the vulnerability of subducted organic carbon in arctic soils. Soil Biology and Biochemistry, 2015, 90, 19-29.	4.2	68
31	Effects of Soil Organic Matter Properties and Microbial Community Composition on Enzyme Activities in Cryoturbated Arctic Soils. PLoS ONE, 2014, 9, e94076.	1.1	90
32	Site- and horizon-specific patterns of microbial community structure and enzyme activities in permafrost-affected soils of Greenland. Frontiers in Microbiology, 2014, 5, 541.	1.5	73
33	Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling. Nature Communications, 2014, 5, 3694.	5.8	594
34	Distinct microbial communities associated with buried soils in the Siberian tundra. ISME Journal, 2014, 8, 841-853.	4.4	137
35	Soil warming alters microbial substrate use in alpine soils. Global Change Biology, 2014, 20, 1327-1338.	4.2	97
36	Input of easily available organic C and N stimulates microbial decomposition of soil organic matter in arctic permafrost soil. Soil Biology and Biochemistry, 2014, 75, 143-151.	4.2	213

BIRGIT WILD

#	Article	IF	CITATIONS
37	Nitrogen dynamics in Turbic Cryosols from Siberia and Greenland. Soil Biology and Biochemistry, 2013, 67, 85-93.	4.2	78
38	Host-compound foraging by intestinal microbiota revealed by single-cell stable isotope probing. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4720-4725.	3.3	210
39	Linking microbial community structure and allocation of plant-derived carbon in an organic agricultural soil using 13CO2 pulse-chase labelling combined with 13C-PLFA profiling. Soil Biology and Biochemistry, 2013, 58, 207-215.	4.2	71
40	Responses of belowground carbon allocation dynamics to extended shading in mountain grassland. New Phytologist, 2013, 198, 116-126.	3.5	84
41	Rate of Belowground Carbon Allocation Differs with Successional Habit of Two Afromontane Trees. PLoS ONE, 2012, 7, e45540.	1.1	11
42	Stoichiometric controls of nitrogen and phosphorus cycling in decomposing beech leaf litter. Ecology, 2012, 93, 770-782.	1.5	228
43	Allocation of carbon to fine root compounds and their residence times in a boreal forest depend on root size class and season. New Phytologist, 2012, 194, 972-981.	3.5	56
44	ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature, 2012, 487, 477-481.	13.7	1,035
45	Influence of litter chemistry and stoichiometry on glucan depolymerization during decomposition of beech (Fagus sylvatica L.) litter. Soil Biology and Biochemistry, 2012, 50, 174-187.	4.2	31
46	A field method to store samples from temperate mountain grassland soils for analysis of phospholipid fatty acids. Soil Biology and Biochemistry, 2012, 51, 81-83.	4.2	31
47	Compoundâ€specific differences in ¹³ C of soluble carbohydrates in leaves and phloem of 6â€monthâ€old <i>Eucalyptus globulus</i> (Labill). Plant, Cell and Environment, 2011, 34, 1599-1608.	2.8	18
48	Negligible contribution from roots to soil-borne phospholipid fatty acid fungal biomarkers 18:2ï‰6,9 and 18:1ï‰9. Soil Biology and Biochemistry, 2010, 42, 1650-1652.	4.2	150
49	Contribution of carbon fixed by Rubisco and PEPC to phloem export in the Crassulacean acid metabolism plant Kalanchoë daigremontiana. Journal of Experimental Botany, 2010, 61, 1375-1383.	2.4	47