Akira Iyo

List of Publications by Citations

Source: https://exaly.com/author-pdf/6993996/akira-iyo-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

81 484 10,004 50 h-index g-index citations papers 10,629 2.8 5.61 501 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
484	Effect of Structural Parameters on Superconductivity in Fluorine-Free LnFeAsO1-y (Ln = La, Nd). Journal of the Physical Society of Japan, 2008 , 77, 083704	1.5	542
483	Superconductivity at 54 K in F-Free NdFeAsO1-y. Journal of the Physical Society of Japan, 2008, 77, 0637	70:7 5	277
482	Microwave penetration depth and quasiparticle conductivity of PrFeAsO1-y single crystals: evidence for a full-gap superconductor. <i>Physical Review Letters</i> , 2009 , 102, 017002	7.4	217
481	Octet-line node structure of superconducting order parameter in KFe2As2. <i>Science</i> , 2012 , 337, 1314-7	33.3	196
480	New-Structure-Type Fe-Based Superconductors: CaAFe4As4 (A = K, Rb, Cs) and SrAFe4As4 (A = Rb, Cs). <i>Journal of the American Chemical Society</i> , 2016 , 138, 3410-5	16.4	169
479	Evidence for superconducting gap nodes in the zone-centered hole bands of KFe2As2 from magnetic penetration-depth measurements. <i>Physical Review B</i> , 2010 , 82,	3.3	166
478	Unprecedented anisotropic metallic state in undoped iron arsenide BaFe2As2 revealed by optical spectroscopy. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 12238-42	11.5	158
477	Structural Quantum Criticality and Superconductivity in Iron-Based Superconductor Ba(Fe1-xCox)2As2. <i>Journal of the Physical Society of Japan</i> , 2012 , 81, 024604	1.5	155
476	Universal heat conduction in the iron arsenide superconductor KFe2As2: evidence of a d-wave state. <i>Physical Review Letters</i> , 2012 , 109, 087001	7.4	145
475	Anisotropic energy gaps of iron-based superconductivity from intraband quasiparticle interference in LiFeAs. <i>Science</i> , 2012 , 336, 563-7	33.3	139
474	Possible Multiple Gap Superconductivity with Line Nodes in Heavily Hole-Doped Superconductor KFe2As2 Studied by 75As Nuclear Quadrupole Resonance and Specific Heat. <i>Journal of the Physical Society of Japan</i> , 2009 , 78, 083712	1.5	127
473	Unusual magnetic and superconducting characteristics in multilayered high-Tc cuprates: 63Cu NMR study. <i>Physical Review B</i> , 2001 , 64,	3.3	124
472	75As-NQR/NMR Studies on Oxygen-Deficient Iron-Based Oxypnictide Superconductors LaFeAsO1-y (y = 0, 0.25, 0.4) and NdFeAsO0.6. <i>Journal of the Physical Society of Japan</i> , 2008 , 77, 093704	1.5	120
471	Evolution of the optical spectrum with doping in Ba(Fe1⊠Cox)2As2. <i>Physical Review B</i> , 2010 , 81,	3.3	116
470	Uniform mixing of high-Tc superconductivity and antiferromagnetism on a single CuO2 plane of a Hg-based five-layered cuprate. <i>Physical Review Letters</i> , 2006 , 96, 087001	7.4	114
469	Effect of carrier distribution on superconducting characteristics of the multilayered high-Tc cuprate (Cu0.6C0.4)Ba2Ca3Cu4O12+y: 63CuNMR study. <i>Physical Review B</i> , 2000 , 61, 9707-9710	3.3	110
468	Single Crystal Growth and Characterization of the Iron-Based Superconductor KFe2As2Synthesized by KAs Flux Method. <i>Journal of the Physical Society of Japan</i> , 2010 , 79, 124713	1.5	104

(2011-2009)

467	75As NMR Study of Hole-Doped Superconductor Ba1-xKxFe2As2 (Tc?38 K). <i>Journal of the Physical Society of Japan</i> , 2009 , 78, 033704	1.5	98	
466	Strong-Coupling Spin-Singlet Superconductivity with Multiple Full Gaps in Hole-Doped Ba0.6K0.4Fe2As2Probed by57Fe-NMR. <i>Journal of the Physical Society of Japan</i> , 2009 , 78, 103702	1.5	96	
465	Flux pinning in PrFeAsO0.9 and NdFeAsO0.9F0.1 superconducting crystals. <i>Physical Review B</i> , 2010 , 81,	3.3	93	
464	Superconductivity above 50 K in LnFeAsO1-y (Ln = Nd, Sm, Gd, Tb, and Dy) Synthesized by High-Pressure Technique. <i>Journal of the Physical Society of Japan</i> , 2009 , 78, 034712	1.5	92	
463	Fermi Surface and Mass Enhancement in KFe2As2 from de Haas lan Alphen Effect Measurements. Journal of the Physical Society of Japan, 2010 , 79, 053702	1.5	90	
462	Appearance of pressure-induced superconductivity in BaFe2As2 under hydrostatic conditions and its extremely high sensitivity to uniaxial stress. <i>Physical Review B</i> , 2010 , 81,	3.3	88	
461	Anisotropy of the in-plane resistivity of underdoped Ba(Fe(1-x)Co(x))2As2 superconductors induced by impurity scattering in the antiferromagnetic orthorhombic phase. <i>Physical Review Letters</i> , 2013 , 110, 207001	7.4	86	
460	Temperature-induced magnetization reversal in BiFe0.5Mn0.5O3 synthesized at high pressure. <i>Physical Review B</i> , 2010 , 82,	3.3	86	
459	Coexistence of superconductivity and antiferromagnetism in multilayered high-Tc superconductor HgBa2Ca4Cu5Oy: Cu-NMR study. <i>Physical Review B</i> , 2004 , 69,	3.3	86	
458	How to make superconducting-anisotropy least in high-Tc cuprate superconductors. <i>Physica C: Superconductivity and Its Applications</i> , 1997 , 282-287, 1973-1974	1.3	84	
457	Inverse iron isotope effect on the transition temperature of the (Ba,K)Fe2As2 superconductor. <i>Physical Review Letters</i> , 2009 , 103, 257003	7.4	80	
456	High-TcSuperconductivity and Antiferromagnetism in Multilayered Copper Oxides A New Paradigm of Superconducting Mechanism <i>Journal of the Physical Society of Japan</i> , 2012 , 81, 011008	1.5	77	
455	Complete Fermi surface in BaFe2As2 observed via Shubnikov-de Haas oscillation measurements on detwinned single crystals. <i>Physical Review Letters</i> , 2011 , 107, 176402	7.4	74	
454	Electronic reconstruction through the structural and magnetic transitions in detwinned NaFeAs. <i>New Journal of Physics</i> , 2012 , 14, 073019	2.9	73	
453	NMR study of carrier distribution and superconductivity in multilayered high-Tc cuprates. <i>Journal of Physics and Chemistry of Solids</i> , 2001 , 62, 171-175	3.9	73	
452	Remarkable Suppression of TCby Pressure in NdFeAsO1-y(y= 0.4). <i>Journal of the Physical Society of Japan</i> , 2008 , 77, 075003	1.5	7 ²	
45 ¹	Suppression of Magnetic Order by Pressure in BaFe2As2. <i>Journal of the Physical Society of Japan</i> , 2008 , 77, 105004	1.5	71	
450	Incommensurate spin fluctuations in hole-overdoped superconductor KFe2As2. <i>Physical Review Letters</i> , 2011 , 106, 067003	7.4	68	

449	Pseudogap formation above the superconducting dome in iron pnictides. <i>Physical Review B</i> , 2014 , 89,	3.3	63
448	Dependence of carrier doping on the impurity potential in transition-metal-substituted FeAs-based superconductors. <i>Physical Review Letters</i> , 2013 , 110, 107007	7.4	63
447	Manifestations of multiple-carrier charge transport in the magnetostructurally ordered phase of BaFe2As2. <i>Physical Review B</i> , 2011 , 84,	3.3	63
446	Spin Correlation in High-TcCuprate HgBa2Ca2Cu3O8+WithTc=133 K An Origin ofTc-Enhancement Evidenced by63Cu-NMR Study[] <i>Journal of the Physical Society of Japan</i> , 1995 , 64, 4561-4565	1.5	63
445	Relationship between crystal structure and superconductivity in iron-based superconductors. <i>Solid State Communications</i> , 2012 , 152, 644-648	1.6	62
444	Three-Dimensional Electronic Structure of Superconducting Iron Pnictides Observed by Angle-Resolved Photoemission Spectroscopy. <i>Journal of the Physical Society of Japan</i> , 2009 , 78, 123706	1.5	61
443	Effect of Co doping on the in-plane anisotropy in the optical spectrum of underdoped Ba(Fe(1-x)Co(x))2As2. <i>Physical Review Letters</i> , 2012 , 109, 217003	7·4	60
442	Zero Resistivity above 150 K in HgBa2Ca2Cu3O8+Et High Pressure. <i>Journal of the Physical Society of Japan</i> , 2013 , 82, 023711	1.5	59
441	Superconductivity at 26 K in (Ca1-xNax)Fe2As2. Applied Physics Express, 2008, 1, 081702	2.4	55
440	Superconductivity at 28.3 and 17.1 K in (Ca4Al2O6))(Fe2Pn2) (Pn=As and P). <i>Applied Physics Letters</i> , 2010 , 97, 172506	3.4	54
439	Lower critical fields of superconducting PrFeAsO1∏ single crystals. <i>Physical Review B</i> , 2009 , 79,	3.3	53
438	Superconductivity in Fe-Based Compound EuAFe4As4 (A = Rb and Cs). <i>Journal of the Physical Society of Japan</i> , 2016 , 85, 064710	1.5	53
437	Study on enhancement ofTc(?130 K) in TlBa2Ca2Cu3Oysuperconductors. <i>Superconductor Science and Technology</i> , 2001 , 14, 504-510	3.1	52
436	Tl valence change and Tc enhancement (>130 K) in (Cu,Tl)Ba2Ca2Cu3Oy due to nitrogen annealing. <i>Physical Review B</i> , 2001 , 63,	3.3	52
435	Abrupt change in the energy gap of superconducting Ba1\(\mathbb{U}\)KxFe2As2 single crystals with hole doping. <i>Physical Review B</i> , 2012 , 86,	3.3	51
434	Degradation of Superconductivity and Spin Fluctuations by Electron Overdoping in LaFeAsO1-xFx. Journal of the Physical Society of Japan, 2010 , 79, 074715	1.5	50
433	Spin Fluctuations and Unconventional Superconductivity in the Fe-Based Oxypnictide Superconductor LaFeAsO0.7 Probed by 57Fe-NMR. <i>Journal of the Physical Society of Japan</i> , 2009 , 78, 013701	1.5	50
432	Tc vs n Relationship for Multilayered High-Tc Superconductors. <i>Journal of the Physical Society of Japan</i> , 2007 , 76, 094711	1.5	50

431	High stable post-spinel NaMn2O4 cathode of sodium ion battery. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 14822-14826	13	49	
430	Lattice Dynamics of LaFeAsO1-xFx and PrFeAsO1-y via Inelastic X-Ray Scattering and First-Principles Calculation. <i>Journal of the Physical Society of Japan</i> , 2008 , 77, 103715	1.5	49	
429	Growth of BaFe2(As1-xPx)2Single Crystals (0団) by Ba2As3/Ba2P3-Flux Method. <i>Journal of the Physical Society of Japan</i> , 2012 , 81, 104710	1.5	48	
428	From d-wave to s-wave pairing in the iron-pnictide superconductor (Ba,K)Fe2As2. <i>Superconductor Science and Technology</i> , 2012 , 25, 084013	3.1	48	
427	Splitting of resonance excitations in nearly optimally doped Ba(Fe0.94Co0.06)2As2: an inelastic neutron scattering study with polarization analysis. <i>Physical Review Letters</i> , 2013 , 110, 137001	7.4	48	
426	Gap in KFe2As2 studied by small-angle neutron scattering observations of the magnetic vortex lattice. <i>Physical Review B</i> , 2011 , 84,	3.3	48	
425	Fermi surface in KFe2As2 determined via de HaasMan Alphen oscillation measurements. <i>Physical Review B</i> , 2013 , 87,	3.3	47	
424	Cu1\text{UTlxBa2Ca3Cu4O12\text{\tint{\text{\tint{\text{\tint{\text{\tilit{\tex	1.3	47	
423	Superconductivity at 43 K at ambient pressure in the iron-based layered compound La1 YxFeAsOy. <i>Physical Review B</i> , 2008 , 78,	3.3	47	
422	Genuine Phase Diagram of Homogeneously Doped CuO2 Plane in High-Tc Cuprate Superconductors. <i>Journal of the Physical Society of Japan</i> , 2008 , 77, 124706	1.5	46	
421	Preparation of polycrystals with various Tc and single crystal growth of Ba2Ca3Cu4O8(O1¶Fy)2 under high pressure. <i>Physica C: Superconductivity and Its Applications</i> , 2003 , 392-396, 140-144	1.3	46	
420	Fermi surfaces and quasi-particle band dispersions of the iron pnictides superconductor KFe2As2 observed by angle-resolved photoemission spectroscopy. <i>Journal of Physics and Chemistry of Solids</i> , 2011 , 72, 465-468	3.9	45	
419	Potential Antiferromagnetic Fluctuations in Hole-Doped Iron-Pnictide Superconductor Ba1-xKxFe2As2 Studied by 75As Nuclear Magnetic Resonance Measurement. <i>Journal of the Physical Society of Japan</i> , 2012 , 81, 054704	1.5	44	
418	Inelastic neutron scattering study of the resonance mode in the optimally doped pnictide superconductor LaFeAsO0.92F0.08. <i>Physical Review B</i> , 2010 , 82,	3.3	44	
417	Carrier distribution and superconductivity in multilayer high-T c cuprates proved by 63Cu NMR. <i>Journal of Low Temperature Physics</i> , 1999 , 117, 473-477	1.3	42	
416	Interpretation of Abnormal AC Loss Peak Based onVortex-MoleculeModel for a Multicomponent Cuprate Superconductor. <i>Japanese Journal of Applied Physics</i> , 2007 , 46, 134-145	1.4	41	
4 ¹ 5	High-pressure synthesis and properties of Ba2CanflCunO2n(O,F)2 (n=2B) superconductors. <i>Physica C: Superconductivity and Its Applications</i> , 2001 , 366, 43-50	1.3	40	
414	Doping-dependent critical current properties in K, Co, and P-doped BaFe2As2 single crystals. Physical Review B, 2017 , 95,	3.3	39	

413	Doping evolution of the quasiparticle excitations in heavily hole-doped Ba1\(KxFe2As2: A possible superconducting gap with sign-reversal between hole pockets. <i>Physical Review B</i> , 2014 , 89,	3.3	39
412	Effect of doping on the magnetostructural ordered phase of iron arsenides: a comparative study of the resistivity anisotropy in doped BaFe2As2 with doping into three different sites. <i>Journal of the American Chemical Society</i> , 2013 , 135, 3158-63	16.4	39
411	Normal-state charge dynamics in doped BaFeAstroles of doping and necessary ingredients for superconductivity. <i>Scientific Reports</i> , 2014 , 4, 5873	4.9	38
410	Crucial role of oxygen stoichiometry in determining the structure and properties of BiMnO3. Journal of Materials Chemistry, 2008 , 18, 2191		38
409	Anomalous Fermi-surface dependent pairing in a self-doped high-Tc superconductor. <i>Physical Review Letters</i> , 2006 , 97, 236401	7.4	38
408	High-pressure synthesis of TlBa2Can I CunOy (n=3 and 4) with Tc=133.5 K (n=3) and 127 K (n=4). <i>Physica C: Superconductivity and Its Applications</i> , 2001 , 357-360, 324-328	1.3	38
407	Evidence for excluding the possibility of d-wave superconducting-gap symmetry in Ba-doped KFe2As2. <i>Physical Review B</i> , 2014 , 89,	3.3	37
406	Orbital character and electron correlation effects on two- and three-dimensional Fermi surfaces in KFe2As2 revealed by angle-resolved photoemission spectroscopy. <i>Frontiers in Physics</i> , 2014 , 2,	3.9	37
405	Absence of an appreciable iron isotope effect on the transition temperature of the optimally doped SmFeAsO(1-y) Superconductor. <i>Physical Review Letters</i> , 2010 , 105, 037004	7.4	37
404	Two-Dimensional Spin Density Wave State in LaFeAsO. <i>Journal of the Physical Society of Japan</i> , 2009 , 78, 043705	1.5	37
403	High-pressure synthesis and physical properties of new iron (nickel)-based superconductors. <i>Physica C: Superconductivity and Its Applications</i> , 2009 , 469, 355-369	1.3	36
402	Possible hydrogen doping and enhancement of Tc (=35 K) in a LaFeAsO-based superconductor. <i>Applied Physics Letters</i> , 2010 , 96, 072514	3.4	34
401	Emergence of superconductivity in "32522" structure of (Ca3Al2O(5-y))(Fe2Pn2) (Pn = As and P). Journal of the American Chemical Society, 2011 , 133, 9630-3	16.4	34
400	Doping Dependence of Normal-State Properties in Iron-Based Oxypnictide Superconductor LaFeAsO1-y Probed by 57Fe-NMR and 75As-NMR/NQR. <i>Journal of the Physical Society of Japan</i> , 2009 , 78, 084717	1.5	34
399	Anomalous AC Susceptibility Response of (Cu,C)Ba2Ca2Cu3Oy: Experimental Indication of Two-Component Vortex Matter in Multi-Layered Cuprate Superconductors. <i>Japanese Journal of Applied Physics</i> , 2007 , 46, L451-L453	1.4	34
398	Synthesis and physical properties of Ca1\(\mathbb{R}\)ExFeAs2withRE= La\(\mathbb{L}\)d. Applied Physics Express, 2014 , 7, 073102	2.4	33
397	Mechanism of Tc enhancement in Cu1⊠Tlx-1234 and -1223 system with Tc > 130 K. <i>Physica C:</i> Superconductivity and Its Applications, 2000 , 341-348, 487-488	1.3	33
396	Synthesis and physical properties of multilayered cuprates. <i>Physica C: Superconductivity and Its Applications</i> , 2006 , 445-448, 17-22	1.3	31

(2003-2015)

395	Identifying the 'fingerprint' of antiferromagnetic spin fluctuations in iron pnictide superconductors. <i>Nature Physics</i> , 2015 , 11, 177-182	16.2	30
394	Crystal chemistry of CuBa2CanflCunOy(n = 4, 5, 6) superconductors. <i>Physica C: Superconductivity and Its Applications</i> , 1997 , 279, 181-196	1.3	30
393	Hall effect of superconducting copper oxide, Cu-1234. <i>Physica C: Superconductivity and Its Applications</i> , 1996 , 258, 384-388	1.3	30
392	Signature of multigap nodeless superconductivity in CaKFe4As4. <i>Physical Review B</i> , 2017 , 95,	3.3	29
391	C-axis critical current of a PrFeAsO0.7 single crystal. <i>Applied Physics Letters</i> , 2010 , 96, 202504	3.4	29
390	Three-dimensional nature of normal and superconducting states in BaNi2P2 single crystals with the ThCr2Si2-type structure. <i>Physical Review B</i> , 2009 , 79,	3.3	29
389	High pressure synthesis and characterization of single crystals of CuBa2Ca3Cu4Oy superconductor. <i>Physica C: Superconductivity and Its Applications</i> , 1998 , 298, 209-216	1.3	29
388	Large and significantly anisotropic critical current density induced by planar defects in CaKFe4As4 single crystals. <i>Physical Review B</i> , 2019 , 99,	3.3	28
387	Unique defect structure and advantageous vortex pinning properties in superconducting CaKFe4As4. <i>Npj Quantum Materials</i> , 2019 , 4,	5	28
386	s ⁻ -like spin resonance in the iron-based nodal superconductor BaFe2(As0.65P0.35)2 observed using inelastic neutron scattering. <i>Physical Review B</i> , 2011 , 84,	3.3	28
385	Dielectric properties, thermal decomposition and related aspects of BiAlO3. <i>Solid State Communications</i> , 2008 , 146, 435-437	1.6	28
384	Carrier doping and superconducting properties in Cu-1234 and CuTl-1223 superconductors. <i>Physica B: Condensed Matter</i> , 2000 , 284-288, 1075-1076	2.8	28
383	Growth of single crystal PrFeAsO1 and its characterization. <i>Physica C: Superconductivity and Its Applications</i> , 2009 , 469, 901-904	1.3	27
382	Magneto-optical imaging of iron-oxypnictide SmFeAsO1\(\mathbb{U}\)Fx and SmFeAsO1\(\mathbb{J}\). <i>Physica C:</i> Superconductivity and Its Applications, 2009 , 469, 915-920	1.3	27
381	Isotope Effect in Multi-Band and Multi-Channel Attractive Systems and Inverse Isotope Effect in Iron-Based Superconductors. <i>Journal of the Physical Society of Japan</i> , 2009 , 78, 094718	1.5	26
380	Bulk and Local Magnetic Properties of Iron-Based Oxypnictide Superconductor SmFeAsO1-xFx. <i>Journal of the Physical Society of Japan</i> , 2008 , 77, 54-57	1.5	26
379	Relationship Between Crystal Structure and Superconductivity in LnFeAsO1-y(Ln = Lanthanide). <i>Journal of the Physical Society of Japan</i> , 2008 , 77, 44-46	1.5	25
378	Magnetism of Multi-Layer HgBa2Ca4Cu5Oy Superconductor Studied by BR Measurements. <i>International Journal of Modern Physics B</i> , 2003 , 17, 3540-3543	1.1	25

377	Selective reduction for hole-doping in Cu1\(\mathbb{I}\)Tlx-1223 (Cu1\(\mathbb{I}\)TlxBa2Ca2Cu3O10\(\mathbb{J}\)) system with Tc>132 K. <i>Physica B: Condensed Matter</i> , 2000 , 284-288, 1085-1086	2.8	25
376	Superconductivity in the Mg-doped CuBa2Ca3Cu4O12 system. <i>Physical Review B</i> , 1998 , 58, 9504-9509	3.3	25
375	Ordered aeschynite-type polar magnets RFeWO6 (R=Dy, Eu, Tb, and Y): A new family of type-II multiferroics. <i>Physical Review B</i> , 2017 , 95,	3.3	24
374	Simplest nontoxic double-layered cuprate Ba2CaCu2O4(O,F)2 superconductor with a transition temperature of 108K. <i>Applied Physics Letters</i> , 2008 , 92, 222501	3.4	24
373	Uniform mixing of antiferromagnetism and high-temperature superconductivity in electron-doped layers of four-layered Ba(2)Ca(3)Cu(4)O(8)F(2): a new phenomenon in an electron underdoped regime. <i>Physical Review Letters</i> , 2007 , 98, 257002	7.4	24
372	Thermodynamic Study of Nodal Structure and Multiband Superconductivity of KFe2As2. <i>Journal of the Physical Society of Japan</i> , 2014 , 83, 013704	1.5	23
371	Two distinct superconducting states in KFe2As2 under high pressure. <i>Physical Review B</i> , 2014 , 89,	3.3	23
370	Novel superconducting characteristics and unusual normal-state properties in iron-based pnictide superconductors: 57FeNMR and 75AsNQR/NMR studies in REFeAsO1 (RE=La, Pr, Nd) and Ba0.6K0.4Fe2As2. <i>Physica C: Superconductivity and Its Applications</i> , 2009 , 469, 559-565	1.3	23
369	Effects of uniaxial pressure and annealing on the resistivity of Ba(Fe1\(\mathbb{R}\)Cox)2As2. <i>Journal of Physics and Chemistry of Solids</i> , 2011 , 72, 418-419	3.9	23
368	NMR/NQR and Specific Heat Studies of Iron Pnictide Superconductor KFe2As2. <i>Journal of the Physical Society of Japan</i> , 2011 , 80, SA118	1.5	23
367	75As NMR Study of the Ternary Iron Arsenide BaFe2As2. <i>Journal of the Physical Society of Japan</i> , 2008 , 77, 093706	1.5	23
366	Crystal growth of Ba2Can´1CunO2n(O,F)2(n= 3 and 4) multi-layered superconductors under high pressure. <i>Superconductor Science and Technology</i> , 2004 , 17, 143-147	3.1	23
365	Distinct doping dependence of critical temperature and critical current density in Ba1-xKxFe2As2 superconductor. <i>Scientific Reports</i> , 2016 , 6, 26671	4.9	23
364	Anisotropy of the superconducting gap in the iron-based superconductor BaFe2(As(1-x)P(x))2. <i>Scientific Reports</i> , 2014 , 4, 7292	4.9	22
363	Spin Resonance in the New-Structure-Type Iron-Based Superconductor CaKFe4As4. <i>Journal of the Physical Society of Japan</i> , 2017 , 86, 093703	1.5	22
362	Hysteretic superconducting resistive transition in Ba0.07K0.93Fe2As2. <i>Physical Review B</i> , 2013 , 87,	3.3	22
361	Vortex melting line and anisotropy of high-pressure-synthesized TlBa2Ca2Cu3O10 line and anisotropy of high-pressure-synthesized TlBa2Ca2Cu3O10 line and anisotropy of high-temperature superconductor from third-harmonic susceptibility studies. <i>Applied Physics Letters</i> , 2003 , 83, 506-508	3.4	22
360	Specific heat study on CuxBa2CandCunOy. <i>Physica C: Superconductivity and Its Applications</i> , 2001 , 357-360, 222-225	1.3	22

Synthesis of HgBa2Ca3Cu4O10+[(Hg-1234) and HgBa2Ca4Cu5O12+[(Hg-1245) from oxygen controlled precursors under high pressure. <i>European Physical Journal D</i> , 1996 , 46, 1491-1492		22	
Strong Electronic Correlations in Iron Pnictides: Comparison of Optical Spectra for BaFe2As2-Related Compounds. <i>Journal of the Physical Society of Japan</i> , 2014 , 83, 104703	1.5	21	
Universality of the dispersive spin-resonance mode in superconducting BaFe2As2. <i>Physical Review Letters</i> , 2013 , 111, 167002	7.4	21	
High-TcSuperconductivity withTc= 52 K under Antiferromagnetic Order in Five-Layered Cuprate Ba2Ca4Cu5O10(F,O)2withTN= 175 K:19F- and Cu-NMR Studies. <i>Journal of the Physical Society of Japan</i> , 2011 , 80, 043706	1.5	21	
Strong carrier-scattering in iron-pnictide superconductors LnFeAsO1 (Ln=La and Nd) obtained from charge transport experiments. <i>Physical Review B</i> , 2010 , 81,	3.3	21	
Co and Mn doping effect in polycrystalline (Ca,La) and (Ca,Pr)FeAs2superconductors. <i>Superconductor Science and Technology</i> , 2015 , 28, 065001	3.1	20	
Uniform mixing of antiferromagnetism and high-Tc superconductivity in multilayer copper oxides Ba2CanflCunO2nF2 (n=2,3,4) with apical fluorines: C63u-NMR/NQR and F19-NMR studies. <i>Physical Review B</i> , 2009 , 79,	3.3	20	
Fermi Surface in BaNi2P2. Journal of the Physical Society of Japan, 2009, 78, 033706	1.5	20	
Angle-resolved photoemission spectroscopy study of PrFeAsO0.7: Comparison with LaFePO. <i>Physical Review B</i> , 2011 , 84,	3.3	20	
Antiferromagnetic Phase Transition in Four-Layered High-Tc Superconductors Ba2Ca3Cu4O8(FyO1-y)2 with Tc=55🛭02 K: 63Cu- and 19F-NMR Studies. <i>Journal of the Physical</i> Society of Japan, 2009 , 78, 064705	1.5	20	
New high-Tc superconductor families of Ag1\(\mathbb{R}\)CuxBa2Can\(\mathbb{R}\)CunO2n+3\(\mathbb{Q}\) and CuBa2Can\(\mathbb{R}\)CunO2n+4\(\mathbb{Q}\) with Tc>116 K. <i>Physica C: Superconductivity and Its Applications</i> , 1994 , 235-240, 981-982	1.3	20	
Crossover from bad to good metal in BaFe2(As1NPx)2 induced by isovalent P substitution. <i>Physical Review B</i> , 2013 , 88,	3.3	19	
Pairing symmetry of the multiorbital pnictide superconductor BaFe1.84Co0.16As2 from Raman scattering. <i>Physical Review B</i> , 2010 , 82,	3.3	19	
Pressure-Induced Modification of Crystal Structure in NdFeAsO1-y (1-y=0.85), Accompanied by Remarkable Suppression of Tc. <i>Journal of the Physical Society of Japan</i> , 2009 , 78, 013705	1.5	19	
Specific Heat Study on CuxBa2Ca3Cu4Oy. <i>Journal of the Physical Society of Japan</i> , 2001 , 70, 329-332	1.5	19	
Novel electronic nematicity in heavily hole-doped iron pnictide superconductors. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 6424-6429	11.5	18	
Strange Inter-Layer Properties of Ba(Fe1-xCox)2As2 Appearing in Ultrasonic Measurements. Journal of the Physical Society of Japan, 2013 , 82, 114604	1.5	18	
Enhanced high-field transport critical current densities observed forex situPIT processed Ag/(Ba, K)Fe2As2thin tapes. <i>Superconductor Science and Technology</i> , 2013 , 26, 065003	3.1	18	
	Controlled precursors under high pressure. European Physical Journal D, 1996, 46, 1491-1492 Strong Electronic Correlations in Iron Pnictides: Comparison of Optical Spectra for BaFe2As2-Related Compounds. Journal of the Physical Society of Japan, 2014, 83, 104703 Universality of the dispersive spin-resonance mode in superconducting BaFe2As2. Physical Review Letters, 2013, 111, 167002 High-TcSuperconductivity withTc= 52 K under Antiferromagnetic Order in Five-Layered Cuprate BaZCa4Cu5010(F,O)2withTN= 175 K:19F- and Cu-NMR Studies. Journal of the Physical Society of Japan, 2011, 80, 043706 Strong carrier-scattering in iron-pnictide superconductors InFeAsO1jj (Ln=La and Nd) obtained from charge transport experiments. Physical Review B, 2010, 81. Co and Mn doping effect in polycrystalline (Ca,La) and (Ca,Pr)FeAs2superconductors. Superconductor Science and Technology, 2015, 28, 065001 Uniform mixing of antiferromagnetism and high-Tc superconductivity in multilayer copper oxides BaZCanBCunO2nF2 (n=2,3,4) with apical fluorines: C63u-NMR/NQR and F19-NMR studies. Physical Review B, 2009, 79, Fermi Surface in BaNi2P2. Journal of the Physical Society of Japan, 2009, 78, 033706 Angle-resolved photoemission spectroscopy study of PrFeAsO0.7: Comparison with LaFePO. Physical Review B, 2011, 84, Antiferromagnetic Phase Transition in Four-Layered High-Tc Superconductors Ba2Ca3Cu4O8(FyO1-y)2 with Tc=55102 K: 63Cu- and 19F-NMR Studies. Journal of the Physical Society of Japan, 2009, 78, 064705 New high-Tc superconductor families of Ag18CuxBa2CanflCunO2n+3j and CuBa2CanflCunO2n+4j with Tc>516 K. Physica C: Superconductivity and Its Applications, 1994, 235-240, 981-982 Crossover from bad to good metal in BaFe2(As18Px)2 induced by isovalent P substitution. Physical Review B, 2013, 88, Pairing symmetry of the multiorbital pnictide superconductor BaFe1.84Co0.16As2 from Raman scattering. Physical Review B, 2010, 82, Pressure-Induced Modification of Crystal Structure in NdFeAsO1-y (1-y=0.85), Accompanied by Remarkable Suppre	Strong Electronic Correlations in Iron Pnictides: Comparison of Optical Spectra for BaFe2As2-Related Compounds. Journal of the Physical Society of Japan, 2014, 83, 104703 1.5 Universality of the dispersive spin-resonance mode in superconducting BaFe2As2. Physical Review Letters, 2013, 111, 167002 High-TcSuperconductivity withTc= 52 K under Antiferromagnetic Order in Five-Layered Cuprate Ba2Ca4Cu5O10[F,O]2 withTN= 175 K:19F- and Cu-NMR Studies. Journal of the Physical Society of Japan, 2011, 80, 043706 Strong carrier-scattering in iron-pnictide superconductors LnFeAsO10 (Ln=La and Nd) obtained from charge transport experiments. Physical Review B, 2010, 81, Co and Mn doping effect in polycrystalline (Ca La) and (Ca Pr)FeAs2superconductors. Superconductor Science and Technology, 2015, 28, 065001 Uniform mixing of antiferromagnetism and high-Tc superconductivity in multilayer copper oxides Ba2CantiCunO2nF2 (n=2,3,4) with apical fluorines: C63u-NMR/NQR and F19-NMR studies. Physical Review B, 2009, 79, Fermi Surface in BaNi2P2. Journal of the Physical Society of Japan, 2009, 78, 033706 1.5 Angle-resolved photoemission spectroscopy study of PrFeAsO0.7: Comparison with LaFePO. Physical Review B, 2011, 84, Antiferromagnetic Phase Transition in Four-Layered High-Tc Superconductors Ba2Ca3Cu4O8(FyO1-y)2 with Tc=58/02 K: 63Cu- and 19F-NMR Studies. Journal of the Physical Society of Japan, 2009, 78, 064705 1.5 Analyse-resolved photoemission spectroscopy study of PrFeAsO1.7: Comparison with LaFePO. Physical Review B, 2013, 88, Pairing symmetry of the multiorbital pnictide superconductivity and its Applications, 1994, 235-240, 981-982 Crossover from bad to good metal in BaFe2(As1RPx)2 induced by isovalent P substitution. Physical Review B, 2013, 88, Pairing symmetry of the multiorbital pnictide superconductor BaFe1.84Co0.16As2 from Raman scattering. Physical Review B, 2010, 82, Pressure-Induced Modification of Crystal Structure in NdFeAsO1-y (1-y=0.85). Accompanied by Remarkable Suppression of Tc. Journal of th	Strong Electronic Correlations in Iron Pnictides: Comparison of Optical Spectra for BaFe2Asz-Related Compounds. Journal of the Physical Society of Japan, 2014, 83, 104703 Lohiversality of the dispersive spin-resonance mode in superconducting BaFe2Asz-Physical Review [74] 21 High-TcSuperconductivity withTre= 52 K under AntiFerromagnetic Order in Five-Layered Cuprate BaZca4cuS-010(F,O)2withTNs= 175 K:19F- and Cu-NMR Studies. Journal of the Physical Society of Japan, 2011, 80, 043706 Strong carrier-scattering in iron-pnictide superconductors LnFeAs2O1IJ (Ln=La and Nd) obtained from charge transport experiments. Physical Review B, 2010, 81, Co and Mn doping effect in polycrystalline (Cs_La) and (Ca_Pr)FeAs2superconductors. Signer conductors Science and Technology, 2015, 28, 065001 Uniform mixing of antiferromagnetism and high-Tcs uperconductivity in multilayer copper oxides BaZcand CunO2nF2 (n=2,3,4) with apical fluorines: C63u-NMR/NQR and F19-NMR studies. Physical Review B, 2009, 79, Fermi Surface in BaNi2P2. Journal of the Physical Society of Japan, 2009, 78, 033706 15 20 Angle-resolved photoemission spectroscopy study of PrFeAsO0.7: Comparison with LaFePO. Physical Review B, 2011, 84, Antiferromagnetic Phase Transition in Four-Layered High-Tc Superconductors BaZca3cuGuG(PyO-12) with Tc=55102 K: 63Cu- and 19F-NMR Studies. Journal of the Physical Society of Japan, 2009, 78, 064705 New high-Tc superconductor families of Ag18CuxBaZcanliCunO2n+39 and CubaZcanliCunO2n+49 with Tc=116 K. Physica C: Superconductivity and its Applications, 1994, 235-240, 981-982 Crossover from bad to good metal in BaFe2(As1BPx)2 induced by isovalent P substitution. Physical Review B, 2013, 88. Pairing symmetry of the multi-orbital pnictide superconductor BaFe1.84Co0.16As2 from Raman scattering. Physical Review B, 2010, 82, Pressure-Induced Modification of Crystal Structure in NdFeAsO1-y (1-y=0.85), Accompanied by Remarkable Suppression of Tc. Journal of the Physical Society of Japan, 2009, 78, 013705 Specific Heat Study on C

341	Comment on "Quantum criticality and nodal superconductivity in the FeAs-based superconductor KFe2As2". <i>Physical Review Letters</i> , 2010 , 104, 259701; author reply 259702	7.4	18
340	Anomalous vortex melting line in the two-component superconductor (Cu,C)Ba2Ca3Cu4O10+[] <i>Physical Review B</i> , 2006 , 74,	3.3	18
339	Two-dimensional nature of four-layer cuprate superconductors. <i>Physical Review B</i> , 2001 , 63,	3.3	18
338	63Cu NMR probe of superconducting properties in HgBa2Ca2Cu3O8+ delta : A possible reason for Tc=133 K. <i>Physical Review B</i> , 1996 , 53, R8906-R8909	3.3	18
337	Coexisting spin resonance and long-range magnetic order of Eu in EuRbFe4As4. <i>Physical Review B</i> , 2019 , 100,	3.3	17
336	Antiferromagnetic spin fluctuations and unconventional nodeless superconductivity in an iron-based new superconductor (Ca4Al2O(6-y))(Fe2As2): 75As nuclear quadrupole resonance study. <i>Physical Review Letters</i> , 2011 , 107, 047002	7.4	17
335	Soft and isotropic phonons in PrFeAsO1 . Physical Review B, 2011 , 84,	3.3	17
334	Origin of Tc Enhancement Induced by Doping Yttrium and Hydrogen into LaFeAsO-Based Superconductors: 57Fe-, 75As-, 139La-, and 1H-NMR Studies. <i>Journal of the Physical Society of Japan</i> , 2010 , 79, 103703	1.5	17
333	Superconducting properties of the heavy-ions and neutron irradiated (Cu,C)Ba2CanflCunO2n+4ll (n=3, 4 and 5). <i>Physica C: Superconductivity and Its Applications</i> , 2002 , 378-381, 329-332	1.3	17
332	Nanodots-induced pinning centers in thin films: effects on critical current density, activation energy and flux jump rate. <i>IEEE Transactions on Applied Superconductivity</i> , 2003 , 13, 3726-3729	1.8	17
331	Synthesis, structure, and phase diagram of (Sr1Nax)Fe2As2superconductors. <i>Superconductor Science and Technology</i> , 2015 , 28, 062001	3.1	16
330	Emergent phases of nodeless and nodal superconductivity separated by antiferromagnetic order in iron-based superconductor (Ca4Al2O6)Fe2(As1\(\mathbb{N}\)Px)2: 75As- and 31P-NMR studies. <i>Physical Review B</i> , 2013 , 87,	3.3	16
329	Correlation between the interlayer Josephson coupling strength and an enhanced superconducting transition temperature of multilayer cuprate superconductors. <i>Physical Review B</i> , 2012 , 85,	3.3	16
328	Magnetically coupled pancake vortex molecules in HgBa2CanflCunOy (nf). <i>Physical Review B</i> , 2008 , 77,	3.3	16
327	Superconducting and magnetic characteristics in the multilayered high-Tc cuprates TlBa2Ca2Cu3O10 with Tc>130 K probed by Cu and Tl NMR: High value for Tc. <i>Physical Review B</i> , 2002 , 65,	3.3	16
326	(Cu,Tl)Ba2Ca3Cu4Ox compositions: II. Heating rate applied to synthesis of superconducting ceramics. <i>Superconductor Science and Technology</i> , 2002 , 15, 975-982	3.1	16
325	Single-Crystal Growth of Ba1NKxFe2As2 by KAs Self-Flux Method. <i>Journal of the Physical Society of Japan</i> , 2016 , 85, 034718	1.5	15
324	Large enhancement of superconducting transition temperature of SrBi3 induced by Na substitution for Sr. <i>Scientific Reports</i> , 2015 , 5, 10089	4.9	15

(2006-2009)

323	Unusual layer-dependent charge distribution, collective mode coupling, and superconductivity in multilayer cuprate Ba2Ca3Cu4O8F2. <i>Physical Review Letters</i> , 2009 , 103, 036403	7.4	15
322	Electron-doped superconductivity induced by oxygen vacancies in as-grown Sr0.6Ca0.4CuO2´infinite-layer films. <i>Superconductor Science and Technology</i> , 2003 , 16, L1-L3	3.1	15
321	Photoemission study of chemical bond nature of (Cu,Tl)-1223 with Tc above 130 K. <i>Physica B: Condensed Matter</i> , 2000 , 284-288, 1083-1084	2.8	15
320	Superconductivity on Hole-Doping Side of (LaNa)FeAs. <i>Journal of the American Chemical Society</i> , 2018 , 140, 369-374	16.4	14
319	Experimental Observation of a Possible First-Order Phase Transition below the Superconducting Transition Temperature in the Multilayer Cuprate Superconductor HgBa2Ca4Cu5Oy. <i>Journal of the Physical Society of Japan</i> , 2014 , 83, 074705	1.5	14
318	Structure, magnetism and giant dielectric constant of BiCr0.5Mn0.5O3 synthesized at high pressures. <i>Journal of Materials Chemistry</i> , 2010 , 20, 1646-1650		14
317	Dependence of band-renormalization effects on the number of copper oxide layers in Tl-based copper oxide superconductors revealed by angle-resolved photoemission spectroscopy. <i>Physical Review Letters</i> , 2009 , 103, 067003	7.4	14
316	Planar CuO2 hole density in high-Tc cuprates determined by NMR Knight shift: Cu63 NMR on bilayered Ba2CaCu2O4(F,O)2 and three-layered Ba2Ca2Cu3O6(F,O)2. <i>Physical Review B</i> , 2011 , 83,	3.3	14
315	Coherence Effect of Sign-Reversing s´Wave Cooper Pair State in Heavily Overdoped LaFeAsO-based Superconductor: 75As-Nuclear Quadrupole Resonance. <i>Journal of the Physical Society of Japan</i> , 2010 , 79, 113701	1.5	14
314	Transport properties of TlBa2Ca2Cu3Oy in an over-doped state. <i>Physica C: Superconductivity and Its Applications</i> , 2006 , 442, 91-96	1.3	14
313	Zn and Ni Doping Effect on Anomalous Suppression of T c in an Over Doped Region of TlBa2Ca2Cu3O9[] <i>Journal of Low Temperature Physics</i> , 2003 , 131, 643-646	1.3	14
312	Preparation of Tl-2212 and Tl-1223 superconductor thin films and their microwave surface resistance. <i>IEEE Transactions on Applied Superconductivity</i> , 2003 , 13, 2913-2916	1.8	14
311	TUNNELING SPECTROSCOPY OF TRILAYER HIGH-TC CUPRATE, TlBa2Ca2Cu2O10-Ilnternational Journal of Modern Physics B, 2005 , 19, 225-229	1.1	14
310	Tc beyond 130 K on a high-pressure synthesized (Cu,Tl)-1223 superconductor. <i>Physica B: Condensed Matter</i> , 2000 , 284-288, 1079-1080	2.8	14
309	Superconductivity in a New 1144-Type Family of (La,Na)AFeAs (A = Rb or Cs). <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 868-873	6.4	13
308	Hybridization and suppression of superconductivity in CeFeAsO1J. Pressure and temperature dependence of the electronic structure. <i>Physical Review B</i> , 2010 , 82,	3.3	13
307	TUNNELING STUDY ON Ba2Ca3Cu4O8(O1-xFx)2. International Journal of Modern Physics B, 2007 , 21, 3233-3237	1.1	13
306	Disorder-Driven Quantum Phase Transition from Antiferromagnetic Metal to Insulating State in Multilayered High-Tc Cuprate (Cu,C)Ba2Ca4Cu5Oy. <i>Journal of the Physical Society of Japan</i> , 2006 , 75, 123702	1.5	13

305	Anomalous behaviour of irreversibility lines in multi-layered superconductor (Cu,C)Ba2Ca3Cu4Oy. <i>Superconductor Science and Technology</i> , 2004 , 17, 423-429	3.1	13
304	High Pressure Synthesis and Properties of HgBa2Ca4Cu5O y (Hg-1245) Superconductor. <i>Journal of Low Temperature Physics</i> , 2003 , 131, 637-641	1.3	13
303	New Intermetallic Ternary Phosphide Chalcogenide AP2 \square Xx (A = Zr, Hf; X = S, Se) Superconductors with PbFCl-Type Crystal Structure. <i>Journal of the Physical Society of Japan</i> , 2014 , 83, 074713	1.5	12
302	Structural Analysis on Iron-Based Superconductor Pr1111 System with Oxygen Deficiency and Flourine Substitution. <i>Journal of the Physical Society of Japan</i> , 2011 , 80, 034601	1.5	12
301	Quasi-two-dimensional Fermi surfaces and coherent interlayer transport in KFeAsII <i>Physical Review Letters</i> , 2010 , 105, 246403	7.4	12
300	Effect of K Doping on Phonons in Ba1-xKxFe2As2. Journal of the Physical Society of Japan, 2010 , 79, 014	17⁄1 / 1	12
299	Superconductivity of NdFeAsO1-yunder Hydrostatic Pressure. <i>Journal of the Physical Society of Japan</i> , 2008 , 77, 131-133	1.5	12
298	Coexistence of superconductivity and antiferromagnetism in HgBa2Ca4Cu5Oy: Multiharmonic susceptibility and vortex dynamics study. <i>Physical Review B</i> , 2007 , 76,	3.3	12
297	Enhanced two-dimensional properties of the four-layered cuprate high-Tc superconductor TlBa2Ca3Cu4Oy. <i>Physical Review B</i> , 2004 , 70,	3.3	12
296	Application of elevated magnetic fields during growth of BiSrCaCuO superconducting whiskers and studies of growth defects for better understanding of the growth mechanism. <i>Journal of Crystal Growth</i> , 2004 , 269, 518-534	1.6	12
295	Effects of residual carbon on phase formation of TlBa2CanflCunOy (n=3 and 4) superconductors. <i>Physica C: Superconductivity and Its Applications</i> , 2002 , 370, 205-209	1.3	12
294	The effect of pinning centers in Zn-doped CuBa2Ca3Cu4O12¶ high-temperature superconductors. Journal of Physics and Chemistry of Solids, 2002, 63, 1073-1076	3.9	12
293	Temperature-dependent local structure in the Nb3Ge superconductor studied by high-resolution Ge K-edge EXAFS measurements. <i>Physical Review B</i> , 2003 , 68,	3.3	12
292	Low superconducting anisotropy (월5월1) in (Cu,Tl)-1223 superconductors. <i>Physica B: Condensed Matter</i> , 2000 , 284-288, 1081-1082	2.8	12
291	Interlayer coupling and superconducting properties of the triple-layer compound B0.6C0.4(Sr0.25Ba0.75)2Ca2Cu3O9. <i>Physical Review B</i> , 1998 , 57, 8667-8670	3.3	12
290	Superconductivity in LaBi3with AuCu3-type structure. <i>Superconductor Science and Technology</i> , 2016 , 29, 03LT02	3.1	11
289	Electronic structure of BaNi2P2 observed by angle-resolved photoemission spectroscopy. <i>Physical Review B</i> , 2014 , 89,	3.3	11
288	Domains in multiband superconductors. <i>Physica C: Superconductivity and Its Applications</i> , 2011 , 471, 747	'- 75 ,0	11

287	Antiferromagnetism, superconductivity, and pseudogap in three-layered high-Tc cuprates Ba2Ca2Cu3O6(F,O)2 probed by Cu-NMR. <i>Physical Review B</i> , 2011 , 83,	3.3	11
286	High-pressure synthesis of (M,C)(Ba,Sr)2Ca2Cu3O9 (MAl and Ga). <i>Physica C: Superconductivity and Its Applications</i> , 1997 , 282-287, 509-510	1.3	11
285	Fabrication of (Cu, C)Ba2CuOy superconducting thin film by RF magnetron sputtering. <i>Journal of Physics: Conference Series</i> , 2006 , 43, 289-292	0.3	11
284	Ferroelectricity in Bi26MMxO40I(M=Al and Ga) with the Bi2O3 structure. <i>Solid State Communications</i> , 2006 , 140, 42-44	1.6	11
283	Preparation and superconductivity of (B1\(\mathbb{R}\)Cx)(Sr1\(\mathbb{B}\)Bay)2Ca2Cu3Oz. <i>Physica C: Superconductivity and Its Applications</i> , 1999 , 311, 35-41	1.3	11
282	Pressure effect on superconducting Ba $1 \ \ \ \ \ \ \ \ \ \ $	1.3	11
281	Antiferroic electronic structure in the nonmagnetic superconducting state of the iron-based superconductors. <i>Science Advances</i> , 2017 , 3, e1700466	14.3	10
280	Superconductivity in layered ZrP2\sexwith PbFCl-type structure. <i>Superconductor Science and Technology</i> , 2016 , 29, 055004	3.1	10
279	Absence of superconductivity in the collapsed tetragonal phase of KFe2As2 under hydrostatic pressure. <i>Physical Review B</i> , 2016 , 94,	3.3	10
278	Study on the capacity fading of pristine and FePO 4 coated LiNi 1/3 Co 1/3 Mn 1/3 O 2 by Electrochemical and Magnetical techniques. <i>Electrochimica Acta</i> , 2014 , 148, 26-32	6.7	10
277	Cyclotron resonance and mass enhancement by electron correlation in KFe2As2. <i>Physical Review Letters</i> , 2011 , 107, 166402	7.4	10
276	Time-reversal symmetry-breaking in two-band superconductors. <i>Physica C: Superconductivity and Its Applications</i> , 2010 , 470, 2023-2026	1.3	10
275	Probing the Superconducting Gap from Tunneling Conductance on NdFeAsO0.7 with T C=51 K. Journal of Superconductivity and Novel Magnetism, 2010 , 23, 575-578	1.5	10
274	Preparation of Tl-2212 and -1223 superconductor thin films and their microwave properties. <i>Physica C: Superconductivity and Its Applications</i> , 2003 , 388-389, 473-474	1.3	10
273	Effect of the neutron irradiation of the high temperature superconductor (Cu,C)Ba2CanflCunO2n+4[n=3, 4 and 5). <i>Physica C: Superconductivity and Its Applications</i> , 2001 , 357-360, 234-236	1.3	10
272	(Cu,Tl)Ba2Ca3Cu4Ox compositions: I. The influence of synthesis time and temperature on the phase formation and evaporation\$ndash\$condensation mechanism. <i>Superconductor Science and Technology</i> , 2002 , 15, 964-974	3.1	10
271	NMR study of magnetic excitations and pseudogap in HgBa2Ca3Cu4Oy. <i>Physica B: Condensed Matter</i> , 1999 , 259-261, 571-572	2.8	10
270	Vortex lattice structure in BaFe2(As0.67P0.33)2 via small-angle neutron scattering. <i>Physical Review B</i> , 2014 , 90,	3.3	9

269	Penetration depth and flux-flow resistivity measurements of BaFe2(As0.55P0.45)2 single crystals. <i>Physica C: Superconductivity and Its Applications</i> , 2014 , 504, 24-27	1.3	9
268	Superconducting fluctuations and anomalous phonon renormalization much above superconducting transition temperature in Ca4Al2O5.7Fe2As2. <i>Applied Physics Letters</i> , 2012 , 100, 2226	0 2 4	9
267	Gigantic Effect of Pressure in CeFeAsO1-y. Journal of the Physical Society of Japan, 2009, 78, 065002	1.5	9
266	Search for new iron oxypnictide superconductors by using high-pressure synthesis technique. <i>Physica C: Superconductivity and Its Applications</i> , 2009 , 469, 898-900	1.3	9
265	High-temperature superconductivity and antiferromagnetism in multilayer cuprates: 63Cu and 19F NMR on five-layer Ba2Ca4Cu5O10(F,O)2. <i>Physical Review B</i> , 2012 , 85,	3.3	9
264	Disappearance of Meissner Effect and Specific Heat Jump in a Multiband Superconductor, Ba0.2K0.8Fe2As2. <i>Journal of Superconductivity and Novel Magnetism</i> , 2010 , 23, 253-256	1.5	9
263	Synthesis and Physical Properties of LnFeAsO1-y. Journal of the Physical Society of Japan, 2008, 77, 36-3	91.5	9
262	(Cu,C)Ba2Ca3Cu4Ox(LiF)y: addition of LiFIIn effective way to synthesize overdoped superconductor. <i>Superconductor Science and Technology</i> , 2004 , 17, 430-437	3.1	9
261	Annealing effect on the irreversibility line in (Cu,C)Ba2Ca2Cu3Oy. <i>Physica B: Condensed Matter</i> , 2000 , 284-288, 867-868	2.8	9
260	Pressure effect on Tc in (Cu,Tl)Ba2Ca2Cu3Oy superconductor. <i>Physica B: Condensed Matter</i> , 2000 , 284-288, 1077-1078	2.8	9
259	Highly c-axis orientated superconducting core and large critical current density in BaNaFeAs powder-in-tube tape. <i>Scientific Reports</i> , 2019 , 9, 13064	4.9	8
258	Large critical current densities in a silver-sheathed (Sr,Na)Fe2As2tape. <i>Superconductor Science and Technology</i> , 2015 , 28, 105007	3.1	8
257	Synthesis of CaKFe4As4 bulk samples with high critical current density using a spark plasma sintering technique. <i>Superconductor Science and Technology</i> , 2020 , 33, 094005	3.1	8
256	Crystal structure and superconductivity of Balr©eland Balr©elwith two-dimensional Ba-Ge networks. <i>Journal of the American Chemical Society</i> , 2014 , 136, 5245-8	16.4	8
255	Effects of Zn substitution on the electronic structure of BaFe2As2 revealed by angle-resolved photoemission spectroscopy. <i>Physical Review B</i> , 2013 , 87,	3.3	8
254	Thermoelectric properties of LaFeAsO1 at low temperature. <i>Journal of Applied Physics</i> , 2010 , 108, 033703	2.5	8
253	Synthesis of ErFeAsO-based superconductors by the hydrogen doping method. <i>Europhysics Letters</i> , 2010 , 92, 57011	1.6	8
252	High-Tc nodeless s−-wave superconductivity in (Y,La)FeAsO(1-y) with Tc=50 K:75As-NMR study. <i>Physical Review Letters</i> , 2012 , 109, 157001	7.4	8

(2003-2007)

251	Variation of Tc in multilayered cuprates of HgBa2CandCunOy. <i>Physica C: Superconductivity and Its Applications</i> , 2007 , 460-462, 436-437	1.3	8	
250	Critical current densities and irreversibility fields of a HgBa2CanflCunO2n+2+Bample containing n=6fl5 phases. <i>Physica C: Superconductivity and Its Applications</i> , 2008 , 468, 1287-1290	1.3	8	
249	A simple test for highJcand lowRssuperconducting thin films. <i>Superconductor Science and Technology</i> , 2003 , 16, L23-L24	3.1	8	
248	Microstructure study of Ba?Ca?Cu?O high-Tc superconductors. <i>Physica C: Superconductivity and Its Applications</i> , 1995 , 242, 326-332	1.3	8	
247	The least anisotropic high-Tc superconductor CuBa2Ca3Cu4O12J. <i>European Physical Journal D</i> , 1996 , 46, 3185-3186		8	
246	Preparation of (B1NCx)(Sr1NBay)2 Ca2Cu3O9 with Tc=119 K. <i>European Physical Journal D</i> , 1996 , 46, 1481-1482		8	
245	Superconductivity in Uncollapsed Tetragonal LaFeAs. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 1018-1023	6.4	8	
244	Elastoresistance measurements on CaKFe4As4 and KCa2Fe4As4F2 with the Fe site of C2v symmetry. <i>Physical Review B</i> , 2020 , 102,	3.3	7	
243	Superconducting state in (Eu1-xCax)RbFe4As4with 1144-type Structure. <i>Journal of Physics:</i> Conference Series, 2018 , 969, 012027	0.3	7	
242	Angle-resolved photoemission study on the superconducting iron-pnictides of BaFe2(As,P)2 with low energy photons. <i>Solid State Communications</i> , 2012 , 152, 695-700	1.6	7	
241	Disappearance of superconductivity in the solid solution between (Ca4Al2O6)(Fe2As2) and (Ca4Al2O6)(Fe2P2) superconductors. <i>Journal of the American Chemical Society</i> , 2012 , 134, 15181-4	16.4	7	
240	Observation of Softened Fe Modes in K-Doped BaFe2As2 via 57Fe Nuclear Resonant Inelastic Scattering. <i>Journal of the Physical Society of Japan</i> , 2010 , 79, 013706	1.5	7	
239	Novel superconducting phases in copper oxides and iron-oxypnictides: NMR studies. <i>Journal of Physics and Chemistry of Solids</i> , 2011 , 72, 486-491	3.9	7	
238	NMR study of Fe-oxypnictide superconductors RE-FeAsD (RE = Nd, Pr, La0.7Y0.3). <i>Physica C:</i> Superconductivity and Its Applications, 2010 , 470, S375-S376	1.3	7	
237	Irreversibility line and flux pinning properties in a multilayered cuprate superconductor of Ba2Ca3Cu4O8(O,F)2(Tc= 105 K). <i>Superconductor Science and Technology</i> , 2008 , 21, 075014	3.1	7	
236	Evidence of strong anisotropic behavior in the five-layered superconductor HgBa2Ca4Cu5O12+y from equilibrium magnetization measurements. <i>Physical Review B</i> , 2008 , 77,	3.3	7	
235	Pressure Effect on Hall Coefficient in Multilayered High-T c Cuprates. <i>Journal of Low Temperature Physics</i> , 2003 , 131, 681-685	1.3	7	
234	BR study on multi-layered HgBa2Ca4Cu5Oy (Hg-1245) superconductor. <i>Physica C:</i> Superconductivity and Its Applications, 2003 , 388-389, 243-244	1.3	7	

233	Reversible magnetization and irreversibility line of tri-layer superconductor Ba2Ca2Cu3O6(O,F)2 with Tc~108K. <i>Solid State Communications</i> , 2005 , 133, 459-463	1.6	7
232	Fabrication of iron-based superconducting tapes using Ba1\(\mathbb{R}\)KxFe2As2withx= 0.3 and 0.4. Superconductor Science and Technology, 2017 , 30, 054001	3.1	6
231	Dependences on RE of superconducting properties of transition metal co-doped (Ca,RE)FeAs2 with RE= Latd. <i>Physica C: Superconductivity and Its Applications</i> , 2015 , 518, 14-17	1.3	6
230	Orbital-anisotropic electronic structure in the nonmagnetic state of BaFe(AsP) superconductors. <i>Scientific Reports</i> , 2018 , 8, 2169	4.9	6
229	Probing the anisotropic vortex lattice in the Fe-based superconductor KFe2As2 using small-angle neutron scattering. <i>Physical Review B</i> , 2013 , 88,	3.3	6
228	Discovery of the Ca4Al2O6Fe2Pn2 Al-42622(Pn) and Ca3Al2O5Fe2Pn2 Al-32522(Pn) (Pn=As, P) superconductors. <i>Physica C: Superconductivity and Its Applications</i> , 2013 , 484, 12-15	1.3	6
227	In-plane electronic anisotropy in the antiferromagnetic orthorhombic phase of isovalent-substituted Ba(Fe1\(\text{Rux}\)2As2. <i>Physical Review B</i> , 2015 , 92,	3.3	6
226	Crystal structure and superconductivity in (Cu,Hg)Ba2Ca4Cu5Oy. <i>Physica C: Superconductivity and Its Applications</i> , 1997 , 281, 237-243	1.3	6
225	Phase diagram of a lattice of vortex molecules in multicomponent superconductors and multilayer cuprate superconductors. <i>Superconductor Science and Technology</i> , 2008 , 21, 085011	3.1	6
224	Neutron powder diffraction of the superconductor TlBa2Ca2Cu3O8+Iwith different maximum TC values (TC = 120I 32 K). <i>Superconductor Science and Technology</i> , 2008 , 21, 085014	3.1	6
223	Sheet Dependence on Superconducting Gap in Oxygen-Deficient Iron-Based Oxypnictide Superconductors NdFeAsO0.85. <i>Journal of the Physical Society of Japan</i> , 2008 , 77, 103712	1.5	6
222	Coexistence of antiferromagnetic order and superconductivity in five-layered Hg-based high-Tc cuprate. <i>Physica C: Superconductivity and Its Applications</i> , 2004 , 408-410, 761-763	1.3	6
221	Selective-over-doping in Cu-1234 (CuBa2Ca3Cu4O12¶) system with high and low superconducting anisotropy 1.6. <i>Physica B: Condensed Matter</i> , 2000 , 292, 238-240	2.8	6
220	Pressure Effects on Resistive Transition in (Cu,M)Ba2Ca3Cu4Oy (M=C,Al,Tl,Mg,Zn) Superconductors. <i>Journal of Low Temperature Physics</i> , 1999 , 117, 903-907	1.3	6
219	Infrared evidence of presence or absence of the CO3 group in two kinds of Cu based cuprate superconductors. <i>Physica C: Superconductivity and Its Applications</i> , 1995 , 243, 257-261	1.3	6
218	Electrical resistivity of FeAs, FeAs2 and Fe2As at homogeneous high pressures. <i>Journal of Physics:</i> Conference Series, 2017 , 950, 042024	0.3	5
217	Effects of Swift-Particle Irradiations on Critical Current Density in CaKFe4As4. <i>Journal of Physics:</i> Conference Series, 2019 , 1293, 012013	0.3	5
216	Electronic Structure of Novel Non-centrosymmetric Superconductor Mg2Rh3P. <i>Journal of Physics: Conference Series</i> , 2019 , 1293, 012028	0.3	5

215	Large elastic anomalies and strong electron-lattice coupling in iron-based superconductor Ba(Fe1\(\text{MC}\) Cox)2As2. <i>Solid State Communications</i> , 2012 , 152, 680-687	1.6	5
214	Fermi-surface reconstruction involving two van Hove singularities across the antiferromagnetic transition in BaFe2As2. <i>Solid State Communications</i> , 2013 , 157, 16-20	1.6	5
213	Synthesis and Superconductivity of a Strontium Digermanide SrGe with ThSi Structure. <i>Inorganic Chemistry</i> , 2017 , 56, 8590-8595	5.1	5
212	Evidence of a universal relation between electron-mode coupling and Tc in Ba1\(\text{MKxFe2As2}\) superconductor from laser angle-resolved photoemission spectroscopy. <i>Physical Review B</i> , 2014 , 90,	3.3	5
211	Exotic Vortex Matter: Pancake Vortex Molecules and Fractional-Flux Molecules in Some Exotic and/or Two-Component Superconductors. <i>Journal of Superconductivity and Novel Magnetism</i> , 2011 , 24, 1-6	1.5	5
210	The critical current density, irreversibility line, and flux pinning properties of Ba2CaCu2O4(O,F)2 high-Tc superconductor. <i>Journal of Applied Physics</i> , 2010 , 107, 093905	2.5	5
209	Synthesis ofLnFeAsO1ysuperconductors (Ln=La and Nd) using the high-pressure technique. <i>New Journal of Physics</i> , 2009 , 11, 045002	2.9	5
208	X-ray Absorption and Emission Spectroscopy Study of the Effect of Doping on the Low Energy Electronic Structure of PrFeAsO1-\(\Pi\)Journal of the Physical Society of Japan, 2010 , 79, 074716	1.5	5
207	Number of CuO2 layers dependence of magnetic quantum criticality in homogeneously doped high-Tc copper oxides: A 63Cu-NMR study on four-layered high-Tc compounds HgBa2Ca3Cu4O8+. <i>Physica C: Superconductivity and Its Applications</i> , 2010 , 470, S140-S141	1.3	5
206	Topological structure of the inter-band phase difference soliton in two-band superconductivity. <i>Physica C: Superconductivity and Its Applications</i> , 2010 , 470, 1010-1012	1.3	5
205	Vortex molecule andi-soliton studies in multilayer cuprate superconductors. <i>Journal of Physics: Conference Series</i> , 2008 , 97, 012212	0.3	5
204	Enhancement of an Iron-Based Layered Compound Superconducting Properties by High Pressure Synthesis Technique. <i>Journal of the Physical Society of Japan</i> , 2008 , 77, 40-43	1.5	5
203	A Resistive Transition between the Normal and Superconducting State of BaNi2P2Single Crystals. Journal of the Physical Society of Japan, 2008 , 77, 136-137	1.5	5
202	Evidence for Fully Gapped Superconductivity from Microwave Penetration Depth Measurements in PrFeAsO1-ySingle Crystals. <i>Journal of the Physical Society of Japan</i> , 2008 , 77, 145-146	1.5	5
201	Reduction of NBI temperature of CeIn3 by La doping. <i>Journal of Magnetism and Magnetic Materials</i> , 2007 , 310, 300-302	2.8	5
2 00	Epitaxial growth of (Cu,C)Ba2CanflCunOx (n=1) film deposited on SrTiO3 substrate by r.f. sputtering. <i>Vacuum</i> , 2004 , 74, 585-590	3.7	5
199	Microscopic coexistence of antiferromagnetism and superconductivity in HgBa2Ca4Cu5Oy:Cu-NMR study. <i>Physica C: Superconductivity and Its Applications</i> , 2003 , 388-389, 237-238	1.3	5
198	Annealing effect of the irreversibility fields in (Cu,C)Ba2CanflCunOy (n=3 and 4). <i>Physica C: Superconductivity and Its Applications</i> , 2003 , 388-389, 427-428	1.3	5

197	Heavy-ions irradiation dependence of superconducting properties of the Cu-based (Cu,C)Ba2Ca3Cu4O11[] <i>Physica C: Superconductivity and Its Applications</i> , 2003 , 392-396, 181-184	1.3	5
196	Carrier reentrance by selective reduction in Tl1223-system. <i>Physica C: Superconductivity and Its Applications</i> , 2001 , 357-360, 153-157	1.3	5
195	In-situ characterization of doping-effect on electronic structure of epitaxial films of infinite layer SrCuO2. <i>European Physical Journal D</i> , 1996 , 46, 2683-2684		5
194	63Cu NMR investigation of HgBa2Ca2Cu3O8+\(\mathbb{Q}\)Physica C: Superconductivity and Its Applications, 1996 , 263, 375-377	1.3	5
193	Superconductivity induced by Mg deficiency in noncentrosymmetric phosphide Mg2Rh3P. <i>Physical Review Materials</i> , 2019 , 3,	3.2	5
192	Imbalance of Hole Density between Inner and Outer Planes and Superconducting Transition Temperature in Multilayered Cuprates 2014 ,		5
191	Structural Phase Transitions and Superconductivity Induced in Antiperovskite Phosphide CaPdP. <i>Inorganic Chemistry</i> , 2020 , 59, 12397-12403	5.1	5
190	Superconducting-Gap Anisotropy of Iron Pnictides Investigated via Combinatorial Microwave Measurements. <i>Scientific Reports</i> , 2020 , 10, 7064	4.9	4
189	Superconductivity at 4.4 K in Ba2Bi3. Superconductor Science and Technology, 2014, 27, 072001	3.1	4
188	Selective Raman Scattering Detection of the Dirac Node and the Anti-node of the Spin Density Wave Gap and Magnetic Excitations in BaFe2As2. <i>Journal of Superconductivity and Novel Magnetism</i> , 2013 , 26, 1179-1183	1.5	4
187	Pressure Effects on Superconducting Properties of the BiS2-Based Superconductor Bi2(O,F)S2. Journal of the Physical Society of Japan, 2015 , 84, 084703	1.5	4
186	Understanding the reentrant superconducting phase diagram of the iron pnictide Ca4Al2O6Fe2(As1\(\text{NPx}\)2: First-principles calculations. <i>Physical Review B</i> , 2013 , 87,	3.3	4
185	Inelastic neutron scattering on iron-based superconductor BaFe2(As,P)2. <i>Physica C: Superconductivity and Its Applications</i> , 2011 , 471, 643-646	1.3	4
184	Vortex molecule, fractional flux quanta, and interband phase difference soliton in multi-band superconductivity and multi-component superconductivity. <i>Journal of Physics: Conference Series</i> , 2009 , 150, 052267	0.3	4
183	75As-NMR study of the iron pnictide Ba1⊠KxFe2As2under high pressure. <i>Journal of Physics:</i> Conference Series, 2010 , 215, 012041	0.3	4
182	Thermodynamic properties of five-layered HgBa2Ca4Cu5O12+y from equilibrium magnetization. <i>Current Applied Physics</i> , 2010 , 10, 1033-1036	2.6	4
181	Superexchange interaction and magnetic moment in antiferromagnetic high-Tc cuprate superconductors. <i>Physica C: Superconductivity and Its Applications</i> , 2010 , 470, S7-S11	1.3	4
180	Resonant inelastic X-ray scattering in single-crystal superconducting PrFeAsO0.7. <i>Physica C:</i> Superconductivity and Its Applications, 2010 , 470, S377-S378	1.3	4

179	Optical response of FeAs-based compounds. <i>Physica C: Superconductivity and Its Applications</i> , 2010 , 470, S326-S327	1.3	4	
178	Synthesis and Superconductivity of Fluorine-Substituted NdFeAsO1-y-xFxand Oxygen-Deficient NdFeAsO1-y. <i>Journal of the Physical Society of Japan</i> , 2008 , 77, 127-128	1.5	4	
177	Structural Analysis of Fluorine-Free Oxypnictide Superconductor NdFeAsO1-y by Electron Diffraction Analysis and Electron Microscopy. <i>Journal of the Physical Society of Japan</i> , 2008 , 77, 105003	1.5	4	
176	Search of Long-Range Magnetic Ordering in Superconducting Five-Layered Cuprate. <i>Journal of the Physical Society of Japan</i> , 2008 , 77, 073706	1.5	4	
175	Muon spin rotation study of magnetism in multilayer HgBa2Ca4Cu5Oy superconductor. <i>Physica C: Superconductivity and Its Applications</i> , 2007 , 460-462, 892-895	1.3	4	
174	Self-doped superconductivity in tri-layered Ba2Ca2Cu3O6F2: A 63Cu-NMR study. <i>Physica B: Condensed Matter</i> , 2008 , 403, 1041-1043	2.8	4	
173	Tc dependence on the number of CuO2 planes in multilayered Ba2Can-1CunO2n(O, F)2 superconductors. <i>Journal of Physics: Conference Series</i> , 2006 , 43, 333-336	0.3	4	
172	High pressure synthesis and superconducting properties for the multi-layered Ba2CanflCunO2n(O,F)2 (n=4 and 5). <i>Physica C: Superconductivity and Its Applications</i> , 2006 , 445-448, 120-122	1.3	4	
171	Effect of surface needles on microwave surface resistance in Tl(Ba,Sr)2Ca2Cu3Oysuperconductor films on a LSAT substrate. <i>Superconductor Science and Technology</i> , 2004 , 17, 350-353	3.1	4	
170	Dynamics of multiple order parameters in the multi-band superconductor studied by Raman spectroscopy. <i>Physica C: Superconductivity and Its Applications</i> , 2003 , 392-396, 161-165	1.3	4	
169	Superconducting properties from AC susceptibility and harmonic generation in CuBa2Ca3Cu4Oy bulk superconductors. <i>Physica C: Superconductivity and Its Applications</i> , 2001 , 353, 227-240	1.3	4	
168	Unconventional superconducting characteristics in the multilayered high-Tc cuprate (Cu0.6C0.4)Ba2Ca3Cu4O12+y probed by 63Cu NMR. <i>Physica C: Superconductivity and Its Applications</i> , 2000 , 341-348, 2121-2122	1.3	4	
167	Research Update: Structural and transport properties of (Ca,La)FeAs2 single crystal. <i>APL Materials</i> , 2016 , 4, 020702	5.7	4	
166	Novel Interplay between High-TcSuperconductivity and Antiferromagnetism in Tl-Based Six-CuO2-Layered Cuprates:205Tl- and63Cu-NMR Probes. <i>Journal of the Physical Society of Japan</i> , 2016 , 85, 083701	1.5	4	
165	Effect of non-magnetic rare earth substitution for Zr on mixed anion Zr(P, Se)2 superconductors. Journal of Physics: Conference Series, 2018 , 1054, 012002	0.3	4	
164	High-Tc iron phosphide superconductivity enhanced by reemergent antiferromagnetic spin fluctuations in [Sr4Sc2O6]Fe2(As1NPx)2 probed by NMR. <i>Physical Review B</i> , 2019 , 100,	3.3	3	
163	Direct observation of in-plane anisotropy of the superconducting critical current density in Ba(Fe1\(\text{MCox}\))2As2 crystals. <i>Physical Review B</i> , 2018 , 97,	3.3	3	
162	Iron isotope effect in SmFeAsO0.65 and SmFeAsO0.77H0.12 superconductors: A Raman study. <i>AIP Advances</i> , 2016 , 6, 105310	1.5	3	

161	Fe-Based Superconductors of (LnNa)FeAs (Ln = Ce, Pr). <i>Inorganic Chemistry</i> , 2018 , 57, 9223-9229	5.1	3
160	Superconductivity in a Scandium Borocarbide with a Layered Crystal Structure. <i>Inorganic Chemistry</i> , 2019 , 58, 15629-15636	5.1	3
159	Synthesis, Crystal Structure and Physical Properties of Ba4Ti12O27. <i>Key Engineering Materials</i> , 2013 , 566, 211-214	0.4	3
158	Inverse Iron Isotope Effect in FeSe0.35Te0.65. <i>Physics Procedia</i> , 2012 , 36, 731-734		3
157	Synthesis, structure and physical properties of reduced barium titanate Ba2Ti13O22. <i>Journal of Solid State Chemistry</i> , 2011 , 184, 3117-3120	3.3	3
156	Superconducting gap in iron pnictides studied by optical spectroscopy. <i>Journal of Physics and Chemistry of Solids</i> , 2011 , 72, 511-513	3.9	3
155	Iodine intercalation into Ba2Ca3Cu4O8(O,F)2multilayered superconductors. <i>Journal of Physics: Conference Series</i> , 2009 , 150, 052082	0.3	3
154	Magnetic properties of the TlBa2Ca2Cu3OywithTC~130K. <i>Journal of Physics: Conference Series</i> , 2009 , 150, 052161	0.3	3
153	Superconducting state of iron arsenide Ba1-xKxFe2As2: 57Fe and 75As NMR studies. <i>Physica C: Superconductivity and Its Applications</i> , 2010 , 470, S466-S467	1.3	3
152	Pressure effect on Tc in (B1\(\text{LC}\) (Ba1\(\text{LS}\) (Sy)2Ca2Cu3Oz (x=0.3, y=0.25; x=0.35, y=0.3) and B0.8C0.2(Ba0.75Sr0.25)2Ca3Cu4Oz. <i>Physica C: Superconductivity and Its Applications</i> , 1998 , 307, 17-22	1.3	3
151	A structure in a phonon spectral function induced by superconductivity. <i>Physica C: Superconductivity and Its Applications</i> , 1998 , 307, 327-334	1.3	3
150	Magnetic Property of BaFe2As2Probed by75As NMR. <i>Journal of the Physical Society of Japan</i> , 2008 , 77, 138-139	1.5	3
149	Critical current densities and irreversibility fields of new high-Tc Ba2CaCu2O4(O,F)2 superconductor. <i>Physica C: Superconductivity and Its Applications</i> , 2008 , 468, 773-776	1.3	3
148	AC-Susceptibility study on vortex-molecule lattice in supermultilayer cuprate HgBa2Ca-1Cu O2+2+ (n= 14). <i>Physica C: Superconductivity and Its Applications</i> , 2008 , 468, 1281-1286	1.3	3
147	Vortex observation in Tl-based superconductors with a scanning SQUID microscopy. <i>Physica C: Superconductivity and Its Applications</i> , 2006 , 437-438, 239-241	1.3	3
146	Annealing effects on (Cu,C)-1223 superconductors by high oxygen pressure treatment using an O2-HIP apparatus. <i>Physica C: Superconductivity and Its Applications</i> , 2004 , 412-414, 120-124	1.3	3
145	AC susceptibility and higher harmonics studies of heavy-ion irradiated CuBa2Ca3Cu4Oy bulk superconductor with highest irreversibility field above liquid-nitrogen temperature. <i>Physica C: Superconductivity and Its Applications</i> , 2002 , 378-381, 112-117	1.3	3
144	The role of multiple gaps on the Raman spectrum of (CuxC1🛭)Ba2CandCunOy. <i>Physica C:</i> Superconductivity and Its Applications, 2002 , 378-381, 283-286	1.3	3

143	Oxygen isotope effect of high-pressure synthesized (Cu,C)Ba2Ca3Cu4Oy. <i>Physica C:</i> Superconductivity and Its Applications, 2002 , 378-381, 298-302	1.3	3	
142	Annealing study of superconducting properties in a Cu-1223 superconductor using O2-HIP apparatus. <i>Physica C: Superconductivity and Its Applications</i> , 2003 , 392-396, 77-81	1.3	3	
141	i-soliton, fractional flux and breakdown of time reversal symmetry in multi-band superconductor. <i>Physica C: Superconductivity and Its Applications</i> , 2003 , 388-389, 70-71	1.3	3	
140	CRYSTAL GROWTH OF MULTI-LAYERED Ba2Ca4Cu5O10(O,F)2 (F-0245) SUPERCONDUCTOR UNDER HIGH PRESSURE. <i>International Journal of Modern Physics B</i> , 2005 , 19, 263-266	1.1	3	
139	Superconducting and magnetic properties of HgBa2Ca3Cu4O10+ CuBa2Ca3Cu4O10+ and B0.6C0.4(Sr0.25Ba0.75)2Ca2Cu3O9 superconductors with Tc above 115 K. <i>Physica C: Superconductivity and Its Applications</i> , 2000 , 341-348, 379-382	1.3	3	
138	Photoemission study of (Cu,Tl)-1223 and Tl-1223 with T/sub c/ above 130 K. <i>IEEE Transactions on Applied Superconductivity</i> , 2001 , 11, 3126-3129	1.8	3	
137	Synthesis and Physical Properties of (Cu,M)Ba2Ca3Cu4Oz (M=C,Mg,Ni,Al,Zn,Tl). <i>Journal of Low Temperature Physics</i> , 1999 , 117, 753-757	1.3	3	
136	Tunneling spectra of Cu1Ba2Ca3Cu4Oy (Cu-1234). European Physical Journal D, 1996, 46, 1343-1344		3	
135	Superconducting properties in oxygen-deficient Ba1\(\mathbb{R}\)KxBiO3\(\mathbb{I}\)Physica C: Superconductivity and Its Applications, 1994 , 235-240, 2525-2526	1.3	3	
134	Unconventional Variation of Tc in the Multilayered Cuprate Superconductor (Cu,C)Ba2Ca4Cu5Oy. <i>Journal of the Physical Society of Japan</i> , 2007 , 76, 054701	1.5	3	
133	Sn addition effects on CaKFe4As4 superconductors. <i>Superconductor Science and Technology</i> , 2020 , 33, 104004	3.1	3	
132	Preparation and Jc of (Cu,Ag)Ba2Ca3Cu4Oy and CuxBa2Ca3Cu4Oy 1995 , 825-828		3	
131	Anomalous peak effect in iron-based superconductors Ba1½KxFe2As2 (x 🖸 .69 and 0.76) for magnetic-field directions close to the ab plane and its possible relation to the spin paramagnetic effect. <i>Physical Review B</i> , 2019 , 99,	3.3	2	
130	Superconductivity at the highest transition temperature of 8.1 K in a simple cubic AuxSb1\(\mathbb{M}\)Teyalloy system synthesized under high pressure. Superconductor Science and Technology, 2014, 27, 025005	3.1	2	
129	Reversible magnetization and superconducting properties of the four-layered superconductor with. <i>Solid State Communications</i> , 2012 , 152, 1870-1873	1.6	2	
128	Fast Spin Fluctuation Viewed by Muon Spin Relaxation in Optimally Doped and Overdoped Iron-Based Oxypnictide Superconductors LaFeAsO1-xFx. <i>Journal of the Physical Society of Japan</i> , 2011 , 80, 024703	1.5	2	
127	The Nodal SDW Gap and the Superconducting Gap in BaFe2⊠ Co x As2. <i>Journal of Superconductivity and Novel Magnetism</i> , 2011 , 24, 1185-1189	1.5	2	
126	High pressure synthesis and magnetic properties of CaFe2O4-type NaMn2O4and LiMn2O4. <i>Journal of Physics: Conference Series</i> , 2009 , 150, 042210	0.3	2	

125	Phase diagram of a lattice of pancake vortex molecules. <i>Physica C: Superconductivity and Its Applications</i> , 2009 , 469, 1129-1131	1.3	2
124	Magnetic Penetration Depth in the FeAs-Based Superconductor KFe2As2. <i>Journal of the Physical Society of Japan</i> , 2012 , 81, SB046	1.5	2
123	Inverse isotope effect in iron-based superconductor. <i>Physica C: Superconductivity and Its Applications</i> , 2010 , 470, S291-S293	1.3	2
122	Growth of PrFeAsO1¶ single crystals and its characterization. <i>Physica C: Superconductivity and Its Applications</i> , 2010 , 470, S322-S323	1.3	2
121	Topology of two-band superconductors. <i>Physica C: Superconductivity and Its Applications</i> , 2010 , 470, S9	96 6-5 96	57 2
120	De Haas�an Alphen oscillations in KFe2As2. <i>Physica C: Superconductivity and Its Applications</i> , 2010 , 470, S351-S352	1.3	2
119	75As-NMR study of hole-doped iron-based superconductor Ba1\(\mathbb{U}\)KxFe2As2. <i>Physica C:</i> Superconductivity and Its Applications, 2010 , 470, S464-S465	1.3	2
118	Iron isotope effect on T in optimally-doped (Ba,K)Fe2As2 (T= 38 K) and SmFeAsO1[[T= 54 K) superconductors. <i>Physica C: Superconductivity and Its Applications</i> , 2010 , 470, 986-988	1.3	2
117	Local transport properties of PrFeAsO0.7 using FIB micro-fabrication technique. <i>Physica C: Superconductivity and Its Applications</i> , 2010 , 470, 1473-1476	1.3	2
116	Surface study and fabrication of low-resistivity contacts on Cu-1234 superconductor. <i>IEEE Transactions on Applied Superconductivity</i> , 1997 , 7, 2157-2160	1.8	2
115	High pressure electrical resistivity in la doped CeIn3. <i>Journal of Physics: Conference Series</i> , 2008 , 121, 012002	0.3	2
114	Temperature Dependence of Crystal Structure of theTc= 51 K Superconductor NdFeAsO1-y(1-y= 0.85). <i>Journal of the Physical Society of Japan</i> , 2008 , 77, 134-135	1.5	2
113	NMR initiatives on understanding high-temperature superconductivity. <i>Journal of Magnetism and Magnetic Materials</i> , 2007 , 310, 467-473	2.8	2
112	Superconducting gap of overdoped Tl2Ba2CuO6+lbbserved by Raman scattering. <i>Journal of Physics and Chemistry of Solids</i> , 2008 , 69, 3074-3077	3.9	2
111	ANISOTROPY OF MULTILAYERED (CU,C)BA2CA3CU4OY SUPERCONDUCTORS STUDIED BY TORQUE MAGNETOMETRY. <i>International Journal of Modern Physics B</i> , 2007 , 21, 3285-3289	1.1	2
110	Growth by rf magnetron sputtering of electron-doped Sr1´xCaxCuO2´înfinite-layer films and their structural properties. <i>Superconductor Science and Technology</i> , 2003 , 16, 94-99	3.1	2
109	Ion irradiation dependence of the superconducting properties of (Cu,C)Ba2Ca3Cu4O10.5 <i>Physica C: Superconductivity and Its Applications</i> , 2004 , 408-410, 657-658	1.3	2
108	Anomalous suppression of Tc in an overdoped region of TlBa2Ca2Cu3O9[IPhysica C: Superconductivity and Its Applications, 2003 , 388-389, 365-366	1.3	2

107	Ba/Zr=1:1 freeze-dried and conventional chloride powders: synthesis of BaZrO3 and phase formation. <i>Materials Letters</i> , 2004 , 58, 250-256	3.3	2	
106	Preparation and Thermal Stability of (Cu,M)Ba2Ca3Cu4Oy (M = CO3, SO4, NO3) 1996 , 289-292		2	
105	Preparation of Ba1⊠AxBiO3(A=K,Rb) and Phase Separation in Nitrogen Atmosphere 1992 , 211-214		2	
104	Intrinsic defect structures of polycrystalline CaKFeAs superconductors. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 19827-19833	3.6	2	
103	Superconductivity of centrosymmetric and non-centrosymmetric phases in antiperovskite (Ca,Sr)Pd3P. <i>Journal of Alloys and Compounds</i> , 2021 , 882, 160733	5.7	2	
102	Unusual nodal behaviors of the superconducting gap in the iron-based superconductor Ba(Fe0.65Ru0.35)2As2: Effects of spin-orbit coupling. <i>Physical Review B</i> , 2017 , 95,	3.3	1	
101	Doping dependence of the pinning efficiency in K-doped Ba122 single crystals prior to and after fast neutron irradiation. <i>Superconductor Science and Technology</i> , 2019 , 32, 094004	3.1	1	
100	Iron isotope effect in the iron arsenide superconductor (Ca0.4Na0.6)Fe2As2. <i>Journal of Physics: Conference Series</i> , 2014 , 507, 012037	0.3	1	
99	Anisotropic magnetic form factor in a detwinned single crystal of BaFe2As2. <i>Physical Review B</i> , 2014 , 90,	3.3	1	
98	Quantum oscillations in iron-based superconductors: BaFe2As2vs. KFe2As2. <i>Journal of Physics:</i> Conference Series, 2013 , 449, 012022	0.3	1	
97	Pressure and K doping induced superconductivity in BaFe2As2. <i>Journal of Physics: Conference Series</i> , 2011 , 273, 012096	0.3	1	
96	Electronic Structure of PrFeAsO1🛘An Investigation Using X-ray Absorption and Emission Spectroscopy. <i>Journal of Physics: Conference Series</i> , 2011 , 273, 012092	0.3	1	
95	Neutron scattering of iron-based superconductors. <i>Physica C: Superconductivity and Its Applications</i> , 2011 , 471, 639-642	1.3	1	
94	Synthesis and Magnetic Properties of Bi2Sr2CaCu2Oy Superconductor by Using Nitrate Precursors. Journal of Superconductivity and Novel Magnetism, 2009 , 22, 827-831	1.5	1	
93	Transport properties of single crystal BaNi2P2. <i>Physica C: Superconductivity and Its Applications</i> , 2009 , 469, 905-907	1.3	1	
92	Doping effect on the carrier scattering in iron-pnictide superconductors studied by charge transport. <i>Journal of Physics and Chemistry of Solids</i> , 2011 , 72, 407-409	3.9	1	
91	75As-NQR and 57Fe-NMR Studies on Heavily Overdoped LaFeAsO-Based Superconductors. <i>Journal of the Physical Society of Japan</i> , 2012 , 81, SB044	1.5	1	
90	Flux-line lattice state in FeAs-based superconductor KFe2As2. <i>Journal of Physics: Conference Series</i> , 2012 , 400, 022087	0.3	1	

89	NMR study of hole-doped iron-pnictide superconductor Ba1\(\mathbb{U}\)KxFe2As2(x= 0.27\(\mathbb{I}\)). <i>Journal of Physics: Conference Series</i> , 2012 , 400, 022026	0.3	1
88	Synthesis and superconductivity of F-free NdFeAsO1-y. <i>Journal of Physics: Conference Series</i> , 2009 , 150, 052083	0.3	1
87	Genuine phase diagram of high-Tcsuperconductors based on site-selective Cu-NMR studies on five-layered cuprates. <i>Journal of Physics: Conference Series</i> , 2009 , 150, 052176	0.3	1
86	Reply to Comment on 'Isotope Effect in Multi-Band and Multi-Channel Attractive Systems and Inverse Isotope Effect in Iron-Based Superconductors Journal of the Physical Society of Japan, 2010, 79, 126002	1.5	1
85	Interlayer Josephson couplings in Hg-based multi-layered cuprates. <i>Physica C: Superconductivity and Its Applications</i> , 2010 , 470, S44-S46	1.3	1
84	Disorder and flux pinning in superconducting pnictide single crystals. <i>Physica C: Superconductivity and Its Applications</i> , 2010 , 470, S385-S386	1.3	1
83	Synthesis of smooth and superconducting (Cu, C)BaD/CaCuO2/(Cu, C)BaD films using SrCuO2 buffer. <i>Physica C: Superconductivity and Its Applications</i> , 2010 , 470, S71-S72	1.3	1
82	Vortex melting line and anisotropy of a Ba2Ca3Cu4O8(O1IJFy)2multilayered superconductor. Superconductor Science and Technology, 2008, 21, 095002	3.1	1
81	Material synthesis of HgBa2Can-1CunOymultilayered cuprates under high pressure. <i>Journal of Physics: Conference Series</i> , 2008 , 108, 012046	0.3	1
80	Superconductivity at 108 K in the simplest non-toxic double-layer cuprate of Ba2CaCu2O4(O,F)2. Journal of Physics: Conference Series, 2008 , 97, 012163	0.3	1
79	Vortex dynamics in Hg-based multi- and super-multi-layered cuprates. <i>Journal of Physics:</i> Conference Series, 2008 , 97, 012013	0.3	1
78	Uniform mixing of high-Tc superconductivity and antiferromagnetism on a single CuO2 plane in five-layered cuprates. <i>Physica C: Superconductivity and Its Applications</i> , 2007 , 460-462, 36-39	1.3	1
77	Pancake vortex molecules in HgBa2CanflCunOy (n ? 6) superconductors. <i>Physica C:</i> Superconductivity and Its Applications, 2008 , 468, 714-717	1.3	1
76	Phase diagram of high-Tc superconductor: Cu-NMR studies on multi-layered cuprates. <i>Physica B:</i> Condensed Matter, 2008 , 403, 1059-1061	2.8	1
75	PREPARATION AND CHARACTERIZATION OF TlBa2Ca2Cu3Oy WITH A DIFFERENT MAXIMUM Tc. International Journal of Modern Physics B, 2007 , 21, 3230-3232	1.1	1
74	Enhancement of TC (~130K) in TlBa2Ca2Cu3Oy Synthesized under Ambient Pressure. <i>AIP Conference Proceedings</i> , 2006 ,	Ο	1
73	Uniform mixing of high- superconductivity and antiferromagnetism in. <i>Physica B: Condensed Matter</i> , 2006 , 378-380, 457-458	2.8	1
72	Vortex imaging in Tl-based superconductors with a scanning SQUID microscopy. <i>Physica C:</i> Superconductivity and Its Applications, 2006 , 445-448, 245-248	1.3	1

71	Defective structure in the high-Tc superconductor Hg-1234. <i>Physica C: Superconductivity and Its Applications</i> , 2004 , 408-410, 50-51	1.3	1
70	Thermal conductivity in HgBa2Ca4Cu5Oy (Hg-1245). <i>Physica C: Superconductivity and Its Applications</i> , 2003 , 388-389, 353-354	1.3	1
69	Intra- and inter-grain critical current density in (Cu,C):1234 superconductors. <i>Physica C: Superconductivity and Its Applications</i> , 2003 , 388-389, 421-422	1.3	1
68	A study of the Nb3Ge system by Ge K-edge extended x-ray absorption fine structure and x-ray absorption near-edge structure spectroscopy. <i>Journal of Physics Condensed Matter</i> , 2002 , 14, 13543-13	5 5 0 ⁸	1
67	Third-harmonic susceptibility for studying dissipation in heavy ion irradiated (Cu,C)Ba2Ca3Cu4O12\$minus\$y high-temperature superconductors. <i>Superconductor Science and Technology</i> , 2002 , 15, 1240-1243	3.1	1
66	Transport properties of Cu-1234 superconductors. European Physical Journal D, 1996, 46, 1373-1374		1
65	Phonon Spectra of PrFeAsO1-yvia Inelastic X-ray Scattering. <i>Journal of the Physical Society of Japan</i> , 2011 , 80, SB015	1.5	1
64	The influence of neutron irradiation on (B0.65C0.35)Ba1.4Sr0.6Ca2Cu3O z superconducting phase: The role of the grain edge. <i>Journal of Superconductivity and Novel Magnetism</i> , 2005 , 18, 461-467		1
63	Antiperovskite Superconductor LaPdP with Noncentrosymmetric Cubic Structure. <i>Inorganic Chemistry</i> , 2021 , 60, 18017-18023	5.1	1
62	Origin of Least Superconducting Anisotropy of CuBa2Ca3Cu4O12-y (Cu-1234) Among High-Tc Superconductors 1996 , 247-250		1
61	Preparation of CuBa2Ca3Cu4O12-y Single Crystals Under High-Pressure 1996 , 297-300		1
60	Preparation, Pressure Effect, and Structural Phase Transition in Ba1⊠KxBiO3 and Ba1⊠RbxBiO3 1991 , 113-116		1
59	Gap-related structure in a phonon spectrum of CuxBa2Ca3Cu4Oy 1999 , 327-330		1
58	Hybridization Effect in BaFe2(As1NPx)2Observed by Hard X-ray Photoemission Spectroscopy. <i>Journal of the Physical Society of Japan</i> , 2017 , 86, 053702	1.5	1
57	Temperature Dependence of the Local Structure and Iron Magnetic Moment in the Self-Doped CaKFe4As4 Iron-Based Superconductor. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 10810-10816	3.8	1
56	Unconventional Multi-gap Superconductivity and Antiferromagnetic Spin Fluctuations in New Iron-arsenide LaFe2As2 in Heavily Electron-doped Regime. <i>Journal of the Physical Society of Japan</i> , 2019 , 88, 113702	1.5	1
55	Calcium-free double-layered cuprate superconductors with critical temperature above 100 K. <i>Communications Materials</i> , 2021 , 2,	6	1
54	Single Crystal growth of mixed anion Zr(P, Se)2 superconductor and related materials. <i>Journal of Physics: Conference Series</i> , 2018 , 1054, 012003	0.3	1

53	Electronic Structure of Novel Binary Superconductor SrGe2: A First-Principles Study. <i>Journal of Physics: Conference Series</i> , 2018 , 1054, 012004	0.3	1
52	Superconductivity-driven ferromagnetism and spin manipulation using vortices in the magnetic superconductor EuRbFeAs. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	1
51	Effect of non-magnetic rare earth substitution for Zr on mixed anion Zr(P, Se)2 superconductors II. <i>Journal of Physics: Conference Series</i> , 2019 , 1293, 012003	0.3	O
50	Multi-band nature of superconducting anisotropy in PrFeAsO1Isingle crystal. <i>Physica C:</i> Superconductivity and Its Applications, 2010 , 470, 1109-1111	1.3	O
49	Vortex melting line and dimensional crossover in Ba2CanflCunO2n(O1,Fy)2 cuprate superconductors. <i>Physica C: Superconductivity and Its Applications</i> , 2008 , 468, 749-752	1.3	O
48	Superconducting properties of the ternary boride YRh4B4. <i>Superconductor Science and Technology</i> , 2020 , 33, 125006	3.1	O
47	Experimental and Computational Determination of Optimal Boron Content in Layered Superconductor ScCBC. <i>Inorganic Chemistry</i> , 2020 , 59, 14290-14295	5.1	О
46	Superconductivity in a 122-type Fe-based compound (La,Na,K)FeAs. <i>Scientific Reports</i> , 2018 , 8, 16827	4.9	O
45	Electronic Structure of Novel Superconductor (Ca1-x Sr x)Pd3P. <i>Journal of Physics: Conference Series</i> , 2021 , 1975, 012004	0.3	O
44	Effect of non-magnetic rare earth substitution for A site in mixed anion APX superconductors. Journal of Physics: Conference Series, 2020 , 1590, 012007	0.3	
43	Search for New Superconductors Using Cubic-Anvil-Type High-Pressure Apparatus. <i>Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu</i> , 2016 , 26, 232-239	0	
42	Deposition of superconducting Ba2Can-1CunO2n(O,F)2thin films by pulsed laser ablation. <i>Journal of Physics: Conference Series</i> , 2014 , 568, 022023	0.3	
41	Pressure dependence of TcinLnFeAsO1-y(Ln= La, Ce, Nd, Tb). <i>Journal of Physics: Conference Series</i> , 2014 , 568, 022047	0.3	
40	Superconducting properties of Ba2Ca7Cu8O16(O0.8+IF1.2) studied via reversible magnetization. Journal of the Korean Physical Society, 2012 , 61, 1802-1806	0.6	
39	New intermetallic MIrP (M=Ti, Zr, Nb, Mo) and MgRuP compounds related with MoM'P (M'=Ni and Ru) superconductor. <i>Journal of Physics: Conference Series</i> , 2011 , 273, 012095	0.3	
38	Stabilization of ErFeAsO-based superconductor by hydrogen doping under high pressure. <i>Physica C:</i> Superconductivity and Its Applications, 2011 , 471, 597-599	1.3	
37	63Cu-NMR/NQR studies on apical-F bi-layered cuprates Ba2CaCu2O4F2 and Ba2CaCu2O4(F1.6O0.4). <i>Physica B: Condensed Matter</i> , 2009 , 404, 3095-3098	2.8	
36	Inverse-photoemission spectroscopy of iron-based superconductors NdFeAsO1Ind Ba(Fe1IICox)2As2. <i>Journal of Physics: Conference Series</i> , 2012 , 391, 012137	0.3	

35	Elastic Anomalies Associated with superconducting phase transitions in Iron-based Superconductor Ba(Fe1\(\mathbb{R}\)Cox)2As2. <i>Journal of Physics: Conference Series</i> , 2012 , 400, 022037	0.3
34	Cyclotron Resonance in Fe-based Superconductor KFe2As2. <i>Journal of Physics: Conference Series</i> , 2012 , 400, 022054	0.3
33	Pressure dependence of Tcin Ba2CaCu2O4(O,F)2. Journal of Physics: Conference Series, 2009, 150, 0522	.6 2).3
32	Overdoping effect on pair breaking peak energy in the electronic Raman spectra of high-Tccuprate superconductors. <i>Journal of Physics: Conference Series</i> , 2009 , 150, 052153	0.3
31	57Fe-NMR study on iron-oxypnictide superconductor LaFeAsO1 J. <i>Journal of Physics: Conference Series</i> , 2010 , 200, 012132	0.3
30	A63Cu-NMR study on four-layered high-Tcsuperconductors Ba2Ca3Cu4O8(FyO1囗)2. <i>Journal of Physics: Conference Series</i> , 2010 , 200, 012186	0.3
29	A zero-field Cu-NMR study on antiferromagnetic ordered state in four-layered high-Tc superconductors Ba2Ca3Cu4O8(FyO1-y)2. <i>Physica C: Superconductivity and Its Applications</i> , 2010 , 470, S211-S212	1.3
28	Anisotropy in Superconductivity and Magnetism of PrFeAsO1lsingle Crystal. <i>Journal of Superconductivity and Novel Magnetism</i> , 2010 , 23, 1067-1070	1.5
27	Lower critical fields and the anisotropy in PrFeAsO1 single crystals. <i>Physica C: Superconductivity and Its Applications</i> , 2010 , 470, S485-S486	1.3
26	Characteristic charge transport in oxygen-deficiency-controlled LnFeAsO1-y (Ln = La and Nd). <i>Physica C: Superconductivity and Its Applications</i> , 2010 , 470, S324-S325	1.3
25	Abnormal Magnetoresistance on Non-superconducting NdFeAsO1-y. <i>Journal of the Physical Society of Japan</i> , 2008 , 77, 095002	1.5
24	Critical current densities and irreversibility field of high-Tc Ba2Ca3Cu4O(O,F)2 superconductor. <i>Journal of Physics: Conference Series</i> , 2008 , 108, 012047	0.3
23	75As-NQR Study on Iron-Based Oxypnictide Superconductor LaFeAsO0.6. <i>Journal of the Physical Society of Japan</i> , 2008 , 77, 140-141	1.5
22	Crystallographic Structure of Fluorine-Free Oxypnictide NdFeAsO1-yby Electron Microscopy. Journal of the Physical Society of Japan, 2008 , 77, 129-130	1.5
21	High-pressure effect onTcof HgBa2Ca3Cu4O10+lip to 30 GPa. <i>Journal of Physics: Conference Series</i> , 2008 , 121, 052009	0.3
20	Annealing effect on Tc in the multi-layered cuprate superconductor (Cu,C)Ba2Ca4Cu5Oy. <i>Physica C: Superconductivity and Its Applications</i> , 2007 , 460-462, 450-451	1.3
19	Cu and F NMR studies on four-layered cuprates Ba2Ca3Cu4O8(O1JFy)2. <i>Physica C:</i> Superconductivity and Its Applications, 2007 , 460-462, 900-901	1.3
18	Antiferromagnetism and high-Tc superconductivity in F-substituted four-layered cuprates probed by Cu-NMR. <i>Journal of Magnetism and Magnetic Materials</i> , 2007 , 310, 507-508	2.8

17	Effect of the fluorine substitution on superconducting properties for the multi-layered Ba2CandCunO2n(O, F)2 (n=5). <i>Physica C: Superconductivity and Its Applications</i> , 2008 , 468, 1192-1194	1.3
16	Heavy-ion irradiation dependence of the superconducting properties of (Cu,C)Ba2Ca3Cu4O10.5D <i>Physica C: Superconductivity and Its Applications</i> , 2003 , 388-389, 711-712	1.3
15	LiF addition to (Cu,C) Ba2Ca3Cu4Oy superconductor. <i>Physica C: Superconductivity and Its Applications</i> , 2003 , 388-389, 395-396	1.3
14	Fish-Tail Effect and Irreversibility Field of (Cu, C)Ba2Ca3Cu4O x -(LiF) y Superconductor. <i>Journal of Superconductivity and Novel Magnetism</i> , 2005 , 18, 489-497	
13	The Influence of Neutron Irradiation on (B0.65C0.35)Ba1.4Sr0.6Ca2Cu3O z Superconducting Phase: The Role of the Grain Edge. <i>Journal of Superconductivity and Novel Magnetism</i> , 2005 , 18, 461-467	
12	Photoemission spectroscopy of Cu1 lkBa2Can ll CunO2n + 4 lkeramics and thin films. <i>Journal of Physics and Chemistry of Solids</i> , 1995 , 56, 1883-1884	3.9
11	Infrared reflection and Raman scattering on Ba1\(\mathbb{R}\)DbxBiO3. <i>Physica C: Superconductivity and Its Applications</i> , 1991 , 185-189, 985-986	1.3
10	Fish-Tail effect and irreversibility field of (Cu,C)Ba2Ca3Cu4O x -(LiF) y superconductor. <i>Journal of Superconductivity and Novel Magnetism</i> , 2005 , 18, 489-497	
9	Discovery of Mg2Rh3P and Superconductivity Induced by Mg-Deficiency. <i>Nihon Kessho Gakkaishi</i> , 2020 , 62, 219-220	0
8	Elastic Constants and Superconductivity in Ba1-xKxBiO3(x=0.3-0.42) 1994 , 327-330	
7	Structural Characterization of Nonstoichiometry in CuxBa2Ca3Cu4Oy Superconductor 1996 , 301-304	
6	Critical Current Density and Irreversibility Line of CuBa2Ca3Cu4Oy 1996 , 623-628	
5	High-Pressure Synthesis of Ba2Can-1CunO2n(O,F)2 ($n=2\sim5$) with the highest Tc of 120 K ($n=3$) 1999 , 37	' 1-374
4	Superconducting Electronics Group, Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST). <i>Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu</i> , 2012 , 22, 58-59	O
3	Synthesis PbFCl-Type Mixed Anion APX(A=Hf, X=S, Se) Superconductors Related with Topological Materials by High-Pressure Technique. <i>Materials Science Forum</i> ,1016, 708-714	0.4
2	NMR investigations toward understanding the variety of ground states in iron-based superconductors. <i>Journal of Physics: Conference Series</i> , 2021 , 1975, 012008	0.3
1	Posttreatment Effects on the Crystal Structure and Superconductivity of Ca-Free Double-Layered Cuprate Sr2SrCu2O4+yF2Ŋ. <i>Chemistry of Materials</i> , 2021 , 33, 9690-9697	9.6