Brian A Bergamaschi

List of Publications by Citations

Source: https://exaly.com/author-pdf/6993948/brian-a-bergamaschi-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

80 6,271 35 79 g-index

88 7,190 4.6 5.38 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
80	Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. <i>Environmental Science & Environmental S</i>	10.3	2727
79	Optical properties of dissolved organic matter (DOM): Effects of biological and photolytic degradation. <i>Limnology and Oceanography</i> , 2016 , 61, 1015-1032	4.8	368
78	The effect of grain size and surface area on organic matter, lignin and carbohydrate concentration, and molecular compositions in Peru Margin sediments. <i>Geochimica Et Cosmochimica Acta</i> , 1997 , 61, 124	7 ⁵ 1 ⁵ 260) ²¹³
77	Taking the pulse of snowmelt: in situ sensors reveal seasonal, event and diurnal patterns of nitrate and dissolved organic matter variability in an upland forest stream. <i>Biogeochemistry</i> , 2012 , 108, 183-19	8 ^{3.8}	187
76	The river as a chemostat: fresh perspectives on dissolved organic matter flowing down the river continuum. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 2015 , 72, 1272-1285	2.4	162
75	Use and environmental occurrence of antibiotics in freestall dairy farms with manured forage fields. <i>Environmental Science & Technology</i> , 2010 , 44, 6591-600	10.3	157
74	Tannin diagenesis in mangrove leaves from a tropical estuary: a novel molecular approach. <i>Geochimica Et Cosmochimica Acta</i> , 2001 , 65, 3109-3122	5.5	153
73	Diurnal variability in riverine dissolved organic matter composition determined by in situ optical measurement in the San Joaquin River (California, USA). <i>Hydrological Processes</i> , 2007 , 21, 3181-3189	3.3	137
72	High-frequency in situ optical measurements during a storm event: Assessing relationships between dissolved organic matter, sediment concentrations, and hydrologic processes. <i>Journal of Geophysical Research</i> , 2009 , 114,		121
71	Seeing the light: The effects of particles, dissolved materials, and temperature on in situ measurements of DOM fluorescence in rivers and streams. <i>Limnology and Oceanography: Methods</i> , 2012 , 10, 767-775	2.6	106
70	Fluorescence-based proxies for lignin in freshwater dissolved organic matter. <i>Journal of Geophysical Research</i> , 2009 , 114,		102
69	Tidally driven export of dissolved organic carbon, total mercury, and methylmercury from a mangrove-dominated estuary. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	100
68	The role of hydrologic regimes on dissolved organic carbon composition in an agricultural watershed. <i>Geochimica Et Cosmochimica Acta</i> , 2008 , 72, 5266-5277	5.5	96
67	Comparative analyses of DOC and DON in natural waters. <i>Marine Chemistry</i> , 1993 , 41, 121-134	3.7	79
66	Quantifying fluxes and characterizing compositional changes of dissolved organic matter in aquatic systems in situ using combined acoustic and optical measurements. <i>Limnology and Oceanography: Methods</i> , 2009 , 7, 119-131	2.6	78
65	Environmental occurrence and shallow ground water detection of the antibiotic monensin from dairy farms. <i>Journal of Environmental Quality</i> , 2008 , 37, S78-85	3.4	76
64	Mississippi River nitrate loads from high frequency sensor measurements and regression-based load estimation. <i>Environmental Science & Environmental & Environ</i>	10.3	74

(2005-2009)

63	(California) with an in situ optical nitrate sensor and dual nitrate isotopes. <i>Freshwater Biology</i> , 2009 , 54, 376-387	3.1	73	
62	High-Resolution Remote Sensing of Water Quality in the San Francisco Bay-Delta Estuary. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	66	
61	Assessing the contribution of wetlands and subsided islands to dissolved organic matter and disinfection byproduct precursors in the SacramentoBan Joaquin River Delta: A geochemical approach. Organic Geochemistry, 2008, 39, 1302-1318	3.1	55	
60	Comparison of XAD with other dissolved lignin isolation techniques and a compilation of analytical improvements for the analysis of lignin in aquatic settings. <i>Organic Geochemistry</i> , 2010 , 41, 445-453	3.1	54	
59	Landscape scale controls on the vascular plant component of dissolved organic carbon across a freshwater delta. <i>Geochimica Et Cosmochimica Acta</i> , 2007 , 71, 5968-5984	5.5	52	
58	Concurrent photolytic degradation of aqueous methylmercury and dissolved organic matter. <i>Science of the Total Environment</i> , 2014 , 484, 263-75	10.2	51	
57	Identifying sources of dissolved organic carbon in agriculturally dominated rivers using radiocarbon age dating: SacramentoBan Joaquin River Basin, California. <i>Biogeochemistry</i> , 2010 , 99, 79-96	3.8	51	
56	Microbial degradation of plant leachate alters lignin phenols and trihalomethane precursors. Journal of Environmental Quality, 2010 , 39, 946-54	3.4	47	
55	Dissolved organic matter reduces algal accumulation of methylmercury. <i>Environmental Toxicology and Chemistry</i> , 2012 , 31, 1712-9	3.8	45	
54	How reservoirs alter drinking water quality: Organic matter sources, sinks, and transformations. <i>Lake and Reservoir Management</i> , 2011 , 27, 205-219	1.3	45	
53	DON subgroup report. Marine Chemistry, 1993, 41, 23-36	3.7	42	
52	Pesticides associated with suspended sediemnts entering San Francisco Bay following the first major storm of water year 1996. <i>Estuaries and Coasts</i> , 2001 , 24, 368		41	
51	Variation of energy and carbon fluxes from a restored temperate freshwater wetland and implications for carbon market verification protocols. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2016 , 121, 777-795	3.7	40	
50	Direct and Indirect Effects of Tides on Ecosystem-Scale CO2 Exchange in a Brackish Tidal Marsh in Northern California. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2018 , 123, 787-806	3.7	39	
49	Determining sources of dissolved organic carbon and disinfection byproduct precursors to the McKenzie River, Oregon. <i>Journal of Environmental Quality</i> , 2010 , 39, 2100-12	3.4	37	
48	Suspended sediment fluxes in a tidal wetland: Measurement, controlling factors, and error analysis. <i>Estuaries and Coasts</i> , 2005 , 28, 812-822		37	
47	The role of irrigation runoff and winter rainfall on dissolved organic carbon loads in an agricultural watershed. <i>Agriculture, Ecosystems and Environment</i> , 2013 , 179, 1-10	5.7	36	
46	Sources, bioavailability, and photoreactivity of dissolved organic carbon in the SacramentoBan Joaquin River Delta. <i>Biogeochemistry</i> , 2005 , 74, 131-149	3.8	36	

45	From deposition to erosion: Spatial and temporal variability of sediment sources, storage, and transport in a small agricultural watershed. <i>Geomorphology</i> , 2011 , 132, 272-286	4.3	34
44	Methyl mercury dynamics in a tidal wetland quantified using in situ optical measurements. Limnology and Oceanography, 2011 , 56, 1355-1371	4.8	34
43	Distributions of uronic acids and O-methyl sugars in sinking and sedimentary particles in two coastal marine environments. <i>Geochimica Et Cosmochimica Acta</i> , 1999 , 63, 413-425	5.5	33
42	Optical techniques for the determination of nitrate in environmental waters: Guidelines for instrument selection, operation, deployment, maintenance, quality assurance, and data reporting. *US Geological Survey Techniques and Methods,*		31
41	Fecal Indicator and Pathogenic Bacteria and Their Antibiotic Resistance in Alluvial Groundwater of an Irrigated Agricultural Region with Dairies. <i>Journal of Environmental Quality</i> , 2015 , 44, 1435-47	3.4	28
40	Carbon isotopic constraints on the contribution of plant material to the natural precursors of trihalomethanes. <i>Organic Geochemistry</i> , 1999 , 30, 835-842	3.1	26
39	Land management impacts on dairy-derived dissolved organic carbon in ground water. <i>Journal of Environmental Quality</i> , 2008 , 37, 333-43	3.4	22
38	Dissolved Organic Matter Compositional Change and Biolability During Two Storm Runoff Events in a Small Agricultural Watershed. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2017 , 122, 2634-26.	50 ^{3.7}	21
37	Using Continuous Underway Isotope Measurements To Map Water Residence Time in Hydrodynamically Complex Tidal Environments. <i>Environmental Science & Environmental Science & En</i>	387-13:	39 ⁶
36	Assessing contribution of DOC from sediments to a drinking-water reservoir using optical profiling. <i>Lake and Reservoir Management</i> , 2008 , 24, 381-391	1.3	19
35	Mercury Dynamics in a San Francisco Estuary Tidal Wetland: Assessing Dynamics Using In Situ Measurements. <i>Estuaries and Coasts</i> , 2012 , 35, 1036-1048	2.8	17
34	A method for assessing carbon stocks, carbon sequestration, and greenhouse-gas fluxes in ecosystems of the United States under present conditions and future scenarios. <i>USGS Scientific Investigations Report</i> ,		17
33	Plant detritus is selectively consumed by estuarine copepods and can augment their survival. <i>Scientific Reports</i> , 2019 , 9, 9076	4.9	15
32	Hydrologic Export Is a Major Component of Coastal Wetland Carbon Budgets. <i>Global Biogeochemical Cycles</i> , 2020 , 34, e2019GB006430	5.9	15
31	Tidal Wetland Gross Primary Production Across the Continental United States, 2000 2 019. <i>Global Biogeochemical Cycles</i> , 2020 , 34, e2019GB006349	5.9	14
30	DOM composition in an agricultural watershed: Assessing patterns and variability in the context of spatial scales. <i>Geochimica Et Cosmochimica Acta</i> , 2013 , 121, 599-610	5.5	13
29	Spatial variability of phytoplankton in a shallow tidal freshwater system reveals complex controls on abundance and community structure. <i>Science of the Total Environment</i> , 2020 , 700, 134392	10.2	12
28	Using Paired In Situ High Frequency Nitrate Measurements to Better Understand Controls on Nitrate Concentrations and Estimate Nitrification Rates in a Wastewater-Impacted River. Water Resources Research 2017, 53, 8423-8442	5.4	11

(1996-2017)

27	A river-scale Lagrangian experiment examining controls on phytoplankton dynamics in the presence and absence of treated wastewater effluent high in ammonium. <i>Limnology and Oceanography</i> , 2017 , 62, 1234-1253	4.8	10
26	The Use of Stable Isotope-Based Water Age to Evaluate a Hydrodynamic Model. <i>Water</i> (Switzerland), 2019 , 11, 2207	3	10
25	Low-tide rainfall effects on metal content of suspended sediment in the Sacramento-San Joaquin Delta. <i>Continental Shelf Research</i> , 2013 , 56, 39-55	2.4	9
24	Sources and characteristics of organic matter in the Clackamas River, Oregon, related to the formation of disinfection by-products in treated drinking water. <i>USGS Scientific Investigations Report</i> ,		9
23	In situ optical water-quality sensor networks - Workshop summary report. <i>US Geological Survey Open-File Report</i> ,		7
22	Nutrient Dynamics of the Delta: Effects on Primary Producers. San Francisco Estuary and Watershed Science, 2016 , 14,	1.4	5
21	Water-quality monitoring and studies of the formation and fate of trihalomethanes during the third injection, storage and recovery test at Lancaster, Antelope Valley, California, March 1998 through April 1999. <i>US Geological Survey Open-File Report</i> ,		5
20	Effects of solid-liquid separation and storage on monensin attenuation in dairy waste management systems. <i>Journal of Environmental Management</i> , 2017 , 190, 28-34	7.9	4
19	Recent Advances in Understanding Flow Dynamics and Transport of Water-Quality Constituents in the SacramentoBan Joaquin River Delta. <i>San Francisco Estuary and Watershed Science</i> , 2016 , 14,	1.4	4
18	A multichambered apparatus for HF solvolysis experiments: reaction of cellulose HF solvolysis products with acetic acid and acetic anhydride. <i>Carbohydrate Research</i> , 1995 , 267, 115-126	2.9	4
17	Dissolved pesticides in the Alamo River and the Salton Sea, California, 1996-97. <i>US Geological Survey Open-File Report</i> ,		4
16	Procedures for using the Horiba Scientific Aqualog fluorometer to measure absorbance and fluorescence from dissolved organic matter. <i>US Geological Survey Open-File Report</i> ,		4
15	An assessment of optical properties of dissolved organic material as quantitative source indicators in the Santa Ana River basin, Southern California. <i>USGS Scientific Investigations Report</i> ,		4
14	Irrigation as a fuel pump to freshwater ecosystems. <i>Biogeochemistry</i> , 2017 , 136, 71-90	3.8	3
13	Trihalomethanes Formed from Natural Organic Matter Isolates: Using Isotopic and Compositional Data To Help Understand Sources. <i>ACS Symposium Series</i> , 2000 , 206-222	0.4	3
12	Microbial and Dissolved Organic Carbon Characterization of Stormflow in the Santa Ana River at Imperial Highway, Southern California, 1999-2002. <i>USGS Scientific Investigations Report</i> ,		3
11	Organic Matter Integration, Overprinting, and the Relative Fraction of Optically Active Organic Carbon in a Human-Impacted Watershed. <i>Frontiers in Earth Science</i> , 2020 , 8,	3.5	2
10	A one-pot procedure for the quantitative conversion of glycosides into acetylated glycosyl fluorides. <i>Carbohydrate Research</i> , 1996 , 280, 345-350	2.9	2

9	Assessing wildlife benefits and carbon storage from restored and natural coastal marshes in the Nisqually River Delta: Determining marsh net ecosystem carbon balance. <i>U S Geological Survey Fact Sheet</i> ,		2
8	Method of analysis at the U.S. Geological Survey California Water Science Center, Sacramento Laboratory - determination of haloacetic acid formation potential, method validation, and quality-control practices. <i>USGS Scientific Investigations Report</i> ,		2
7	Synthesis of data from high-frequency nutrient and associated biogeochemical monitoring for the SacramentoBan Joaquin Delta, northern California. <i>USGS Scientific Investigations Report</i> ,		2
6	Reassessing Particulate Organic Carbon Dynamics in the Highly Disturbed San Francisco Bay Estuary. <i>Frontiers in Earth Science</i> , 2020 , 8,	3.5	1
5	Trihalomethane precursors: Land use hot spots, persistence during transport, and management options. <i>Science of the Total Environment</i> , 2020 , 742, 140571	10.2	1
4	Optical Properties of Water for Prediction of Wastewater Contamination, Human-Associated Bacteria, and Fecal Indicator Bacteria in Surface Water at Three Watershed Scales. <i>Environmental Science & Environmental Science & E</i>	10.3	1
3	Coordinating standards and applications for optical water quality sensor networks. <i>Eos</i> , 2011 , 92, 251-2	2 51 1.5	
2	Winter Flooding to Conserve Agricultural Peat Soils in a Temperate Climate. <i>Geophysical Monograph Series</i> , 2021 , 321-337	1.1	
1	Carbon Flux, Storage, and Wildlife Co-Benefits in a Restoring Estuary. <i>Geophysical Monograph Series</i> , 2021 , 103-125	1.1	