Mikhail Tsvetkov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6993848/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	All-fibre interrogation technique for fibre Bragg sensors using a biconical fibre filter. Electronics Letters, 1996, 32, 382.	1.0	59
2	Surface-Enhanced Raman Scattering Substrates Based on Self-Assembled PEGylated Gold and Gold–Silver Core–Shell Nanorods. Journal of Physical Chemistry C, 2013, 117, 23162-23171.	3.1	56
3	SERS substrates formed by gold nanorods deposited on colloidal silica films. Nanoscale Research Letters, 2013, 8, 250.	5.7	42
4	Large-scale high-quality 2D silica crystals: dip-drawing formation and decoration with gold nanorods and nanospheres for SERS analysis. Nanotechnology, 2014, 25, 405602.	2.6	18
5	Artificial opal structures for 3D-optoelectronics. Microelectronic Engineering, 2003, 69, 237-247.	2.4	17
6	Synthesis of silver nanocomposites by SCF impregnation of matrices of synthetic opal and Vycor glass by the Ag(hfac)COD precursor. Russian Journal of Physical Chemistry B, 2009, 3, 1106-1112.	1.3	17
7	[INVITED] On the mechanisms of single-pulse laser-induced backside wet etching. Optics and Laser Technology, 2017, 88, 17-23.	4.6	17
8	Periodontitis diagnostics using resonance Raman spectroscopy on saliva. Laser Physics Letters, 2013, 10, 075610.	1.4	13
9	Effects of thermo-plasmonics on laser-induced backside wet etching of silicate glass. Laser Physics Letters, 2016, 13, 106001.	1.4	11
10	Thermoplasmonic laser-induced backside wet etching of sapphire. Quantum Electronics, 2019, 49, 133-140.	1.0	11
11	Erbium photoluminescence in opal matrix and porous anodic alumina nanocomposites. Microelectronic Engineering, 2005, 81, 273-280.	2.4	9
12	Modification of erbium photoluminescence excitation spectra for the emission wavelength 1.54μm in mesoscopic structures. Journal of Luminescence, 2006, 121, 217-221.	3.1	9
13	On the Role of Supercritical Water in Laser-Induced Backside Wet Etching of Glass. Russian Journal of Physical Chemistry B, 2017, 11, 1061-1069.	1.3	8
14	Etching of Sapphire in Supercritical Water at Ultrahigh Temperatures and Pressures under the Conditions of Pulsed Laser Thermoplasmonics. Russian Journal of Physical Chemistry B, 2017, 11, 1288-1295.	1.3	8
15	Plasmon resonances of silver nanoparticles in silica based meso-structured films. Nanotechnologies in Russia, 2011, 6, 619-624.	0.7	7
16	Optical, magnetic, and dielectric properties of opal matrices with intersphere nanocavities filled with crystalline multiferroic, piezoelectric, and segnetoelectric materials. Russian Journal of General Chemistry, 2013, 83, 2132-2147.	0.8	7
17	A Nanoscale Modification of Materials at Thermoplasmonic Laser-Induced Backside Wet Etching of Sapphire. Plasmonics, 2020, 15, 599-608.	3.4	7
18	Surface-enhanced raman scattering platforms on the basis of assembled gold nanorods. Nanotechnologies in Russia, 2012, 7, 359-369.	0.7	6

ΜΙΚΗΑΙL ΤSVETKOV

#	Article	IF	CITATIONS
19	Whispering-gallery waves in optical fibres. Quantum Electronics, 2002, 32, 738-742.	1.0	5
20	Improving the efficiency of laser-induced backside wet etching of optically transparent materials as a result of generation of carbon and silver nanoparticles. Nanotechnologies in Russia, 2017, 12, 86-97.	0.7	5
21	Spectroscopic investigations of nanoporous SiO2 impregnated with Ag $\hat{1}^2$ -diketonates from supercritical solution of carbon dioxide. Optical Materials, 2011, 34, 169-174.	3.6	4
22	Gold nanorods as a perspective technology platform for SERS analytics. Russian Journal of General Chemistry, 2013, 83, 2203-2211.	0.8	4
23	Ag on carbon nanowalls mesostructures for SERS. , 2015, , .		4
24	From nanoparticles generation to nanostructures diversity at thermoplasmonics laser-induced backside wet etching of sapphire. Applied Surface Science, 2021, 536, 147837.	6.1	4
25	Thermostimulated formation of silver and gold nanoparticles in porous silicon dioxide matrices. Russian Journal of General Chemistry, 2013, 83, 2212-2216.	0.8	3
26	Efficiency of laser-induced backside wet microstructuring of sapphire increases with pressure. Laser Physics Letters, 2019, 16, 086001.	1.4	3
27	Erbium luminescence in 3D- and 2D-mesoporous matrices. , 2004, , .		2
28	Rare-earth doped opal nanocomposites: technologies, photoluminescence and optimization. , 0, , .		0
29	<title>Opal photonic crystals as fiber components</title> . , 2006, , .		0
30	Single Crystal SBN:Yb / Opal Matrix (SiO2):Er Composite as a Nanophotonic Structure. NATO Science Series Series II, Mathematics, Physics and Chemistry, 2004, , 279-284.	0.1	0
31	THE FEATURES OF ERBIUM PHOTOLUMINESCENCE IN 2D AND 3D MESOSCOPIC STRUCTURES. , 2007, , .		Ο