
Teresa J Leo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6993732/publications.pdf Version: 2024-02-01

TEDESALLEO

#	Article	IF	CITATIONS
1	Optimization of a commercial aircraft environmental control system. Applied Thermal Engineering, 2002, 22, 1885-1904.	3.0	100
2	Toward Digitalization of Maritime Transport?. Sensors, 2019, 19, 926.	2.1	98
3	Sustainable Hydrogen Production from Offshore Marine Renewable Farms: Techno-Energetic Insight on Seawater Electrolysis Technologies. ACS Sustainable Chemistry and Engineering, 2019, 7, 8006-8022.	3.2	78
4	CO2 emissions from a spark ignition engine operating on natural gas–hydrogen blends (HCNG). Applied Energy, 2013, 101, 112-120.	5.1	77
5	Review of implantable and external abiotically catalysed glucose fuel cells and the differences between their membranes and catalysts. Applied Energy, 2016, 179, 497-522.	5.1	77
6	Current State of Technology of Fuel Cell Power Systems for Autonomous Underwater Vehicles. Energies, 2014, 7, 4676-4693.	1.6	76
7	Multicriteria analysis of seawater electrolysis technologies for green hydrogen production at sea. Renewable and Sustainable Energy Reviews, 2020, 133, 110166.	8.2	75
8	Exergy analysis of PEM fuel cells for marine applications. Energy, 2010, 35, 1164-1171.	4.5	67
9	Direct methanol fuel cell (DMFC) and H2 proton exchange membrane fuel (PEMFC/H2) cell performance under atmospheric flight conditions of Unmanned Aerial Vehicles. Renewable Energy, 2019, 130, 762-773.	4.3	64
10	Fuel Cells: A Real Option for Unmanned Aerial Vehicles Propulsion. Scientific World Journal, The, 2014, 2014, 1-12.	0.8	52
11	Conceptual design of offshore platform supply vessel based on hybrid diesel generator-fuel cell power plant. Applied Energy, 2014, 116, 91-100.	5.1	51
12	Autonomous underwater vehicles powered by fuel cells: Design guidelines. Ocean Engineering, 2018, 153, 387-398.	1.9	29
13	A thermoeconomic analysis of a commercial aircraft environmental control system. Applied Thermal Engineering, 2005, 25, 309-325.	3.0	24
14	Bulk power transmission at sea: Life cycle cost comparison of electricity and hydrogen as energy vectors. Applied Energy, 2021, 288, 116625.	5.1	24
15	Vertical tube length calculation based on available heat transfer coefficient expressions for the subcooled flow boiling region. Applied Thermal Engineering, 2008, 28, 499-513.	3.0	17
16	Electrochemical study of platinum deposited by electron beam evaporation for application as fuel cell electrodes. International Journal of Hydrogen Energy, 2014, 39, 5301-5308.	3.8	17
17	Large-Scale Maritime Transport of Hydrogen: Economic Comparison of Liquid Hydrogen and Methanol. ACS Sustainable Chemistry and Engineering, 2022, 10, 4300-4311.	3.2	17
18	Long Term Performance Study of a Direct Methanol Fuel Cell Fed with Alcohol Blends. Energies, 2013, 6, 282-293.	1.6	15

Teresa J Leo

#	Article	IF	CITATIONS
19	Response of a direct methanol fuel cell to fuel change. International Journal of Hydrogen Energy, 2010, 35, 11642-11648.	3.8	14
20	Comparative exergy analysis of direct alcohol fuel cells using fuel mixtures. Journal of Power Sources, 2011, 196, 1178-1183.	4.0	13
21	Gas turbine turbocharged by a steam turbine: a gas turbine solution increasing combined power plant efficiency and power. Applied Thermal Engineering, 2003, 23, 1913-1929.	3.0	12
22	Thermodynamic evaluation of the Al2O3–H2O binary system at pressures up to 30MPa. Ceramics International, 2009, 35, 3081-3090.	2.3	12
23	Selection of thermoplastic polymers for use as bipolar plates in direct methanol fuel cell applications. Materials and Design, 2019, 183, 108148.	3.3	11
24	Polypyrrole and platinum deposited onto carbon substrate to enhance direct methanol fuel cell electrodes behaviour. International Journal of Hydrogen Energy, 2018, 43, 16913-16921.	3.8	10
25	Fuel cell electrodes prepared by e-beam evaporation of Pt compared with commercial cathodes: Electrochemical and DMFC behaviour. International Journal of Hydrogen Energy, 2015, 40, 11315-11321.	3.8	9
26	New expressions to determine the water diffusion coefficient in the membrane of PEM fuel cells. International Journal of Hydrogen Energy, 2016, 41, 19766-19770.	3.8	9
27	Automated design of direct methanol fuel cell stacks: A quick optimization. International Journal of Hydrogen Energy, 2019, 44, 10933-10950.	3.8	7
28	Performance of Sulfonated Poly(Vinyl Alcohol)/Graphene Oxide Polyelectrolytes for Direct Methanol Fuel Cells. Energy Technology, 2020, 8, 2000124.	1.8	5
29	A Generalized Deduction of the Ideal-Solution Model. Journal of Chemical Education, 2006, 83, 145.	1.1	4
30	40SiO2–40P2O5–20ZrO2 sol-gel infiltrated sSEBS membranes with improved methanol crossover and cell performance for direct methanol fuel cell applications. International Journal of Hydrogen Energy, 2020, 45, 20620-20631.	3.8	4
31	Structure and equilibria of purine in ethanol. An UV study. Journal of Molecular Structure, 1988, 174, 83-88.	1.8	3
32	Carbon dioxide treatment method for autonomous underwater vehicles powered by direct methanol fuel cells: A multi-criteria decision analysis approach. Journal of Power Sources, 2021, 512, 230322.	4.0	3
33	CNDO energies and stability of hydrogen-bonded selfassociated purine and oxipurine dimers Computational and Theoretical Chemistry, 1988, 166, 487-492.	1.5	2
34	A division of the thermomechanical exergy into two components with very different economic values. Energy, 2007, 32, 328-334.	4.5	2
35	Conceptual Design of an Autonomous Underwater Vehicle Powered by a Direct Methanol Fuel Cell to Enlarge Endurance. , 2018, , .		2
36	Autonomous Underwater Vehicle Powered by Direct Methanol Fuel Cell-Based Power Plants: A Quick Preliminary Design Model. Applied Sciences (Switzerland), 2020, 10, 7687.	1.3	2

#	Article	IF	CITATIONS
37	Alkaline Electrolysis at Sea for Green Hydrogen Production: A Solution to Electrolyte Deterioration. , 2018, , .		1
38	Emissions and noise reduction on-board an oceanographic vessel thanks to the use of proton-exchange membrane fuel cells. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 2020, 234, 298-310.	0.3	1
39	Zero emissions wellboat powered by hydrogen fuel cells hybridised with batteries. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 0, , 147509022110461.	0.3	0