
Jeunghun Ku

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6993689/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Clinical Application of Virtual Reality for Upper Limb Motor Rehabilitation in Stroke: Review of Technologies and Clinical Evidence. Journal of Clinical Medicine, 2020, 9, 3369.	2.4	97
2	Resting-state synchrony between anterior cingulate cortex and precuneus relates to body shape concern in anorexia nervosa and bulimia nervosa. Psychiatry Research - Neuroimaging, 2014, 221, 43-48.	1.8	83
3	Mobile game-based virtual reality rehabilitation program for upper limb dysfunction after ischemic stroke. Restorative Neurology and Neuroscience, 2016, 34, 455-463.	0.7	74
4	Randomized, Sham Controlled Trial of Transcranial Direct Current Stimulation for Painful Diabetic Polyneuropathy. Annals of Rehabilitation Medicine, 2013, 37, 766.	1.6	67
5	Upper extremity rehabilitation of stroke: Facilitation of corticospinal excitability using virtual mirror paradigm. Journal of NeuroEngineering and Rehabilitation, 2012, 9, 71.	4.6	61
6	The left middle temporal gyrus in the middle of an impaired social-affective communication network in social anxiety disorder. Journal of Affective Disorders, 2017, 214, 53-59.	4.1	43
7	Three-Dimensional Augmented Reality System for Balance and Mobility Rehabilitation in the Elderly: A Randomized Controlled Trial. Cyberpsychology, Behavior, and Social Networking, 2019, 22, 132-141.	3.9	37
8	Facilitation of Corticospinal Excitability According to Motor Imagery and Mirror Therapy in Healthy Subjects and Stroke Patients. Annals of Rehabilitation Medicine, 2011, 35, 747.	1.6	34
9	Looking at the self in front of others: Neural correlates of attentional bias in social anxiety. Journal of Psychiatric Research, 2016, 75, 31-40.	3.1	32
10	Utility of a Three-Dimensional Interactive Augmented Reality Program for Balance and Mobility Rehabilitation in the Elderly: A Feasibility Study. Annals of Rehabilitation Medicine, 2015, 39, 462.	1.6	31
11	Effect of hypertension on the resting-state functional connectivity in patients with Alzheimer's disease (AD). Archives of Gerontology and Geriatrics, 2015, 60, 210-216.	3.0	20
12	Distinct functional connectivity of limbic network in the washing type obsessive–compulsive disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2014, 53, 149-155.	4.8	19
13	A Brain–Computer Interface-Based Action Observation Game That Enhances Mu Suppression. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 2290-2296.	4.9	17
14	Virtual Reality-Guided Motor Imagery Increases Corticomotor Excitability in Healthy Volunteers and Stroke Patients. Annals of Rehabilitation Medicine, 2016, 40, 420.	1.6	17
15	Brain Computer Interface-Based Action Observation Game Enhances Mu Suppression in Patients with Stroke. Electronics (Switzerland), 2019, 8, 1466.	3.1	12
16	Flickering exercise video produces mirror neuron system (MNS) activation and steady state visually evoked potentials (SSVEPs). Biomedical Engineering Letters, 2017, 7, 281-286.	4.1	11
17	A comparison of MRI tissue relaxometry and ROI methods used to determine regional brain iron concentrations in restless legs syndrome. Medical Devices: Evidence and Research, 2015, 8, 341.	0.8	9
18	Multiple-command single-frequency SSVEP-based BCI system using flickering action video. Journal of Neuroscience Methods, 2019, 314, 21-27.	2.5	5

Jeunghun Ku

#	Article	IF	CITATIONS
19	Development of a flickering action video based steady state visual evoked potential triggered brain computer interface-functional electrical stimulation for a rehabilitative action observation game. Technology and Health Care, 2020, 28, 509-519.	1.2	5
20	Mobile Game Induces Active Engagement on Neuromuscular Electrical Stimulation Training in Patients with Stroke. Cyberpsychology, Behavior, and Social Networking, 2018, 21, 504-510.	3.9	4
21	High engagement in BCI action observation game by relevant character's movement. , 2019, , .		4
22	Distraction Classification During Target Tracking Tasks Involving Target and Cursor Flickering Using EEGNet. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30, 1113-1119.	4.9	4
23	Brain mechanism involved in the real motion interaction with a virtual avatar. Biomedical Engineering Letters, 2012, 2, 164-172.	4.1	3
24	Deactivation of anterior cingulate cortex during virtual social interaction in obsessive-compulsive disorder. Psychiatry Research - Neuroimaging, 2020, 304, 111154.	1.8	3
25	Novel Virtual Reality Application in Field of Neurorehabilitation. Brain & Neurorehabilitation, 2018, 11,	1.0	2
26	Transcranial Direct Current Stimulation Effect on Virtual Hand Illusion. Cyberpsychology, Behavior, and Social Networking, 2020, 23, 541-549.	3.9	2
27	Brain–computer interface-based action observation combined with peripheral electrical stimulation enhances corticospinal excitability in healthy subjects and stroke patients. Journal of Neural Engineering, 2022, 19, 036039.	3.5	2
28	Upper Extremity Rehabilitation using Virtual Reality after Stroke. Brain & Neurorehabilitation, 2014, 7, 30.	1.0	1
29	Mirror neuron system (MNS) activation and steady state visually evoked potential (SSVEP) evocation by flickering exercise video. , 2017, , .		0
30	Development of Brain Computer Interface based Action Observation Program with Functional Electrical Stimulation device(FES). , 2019, , .		0
31	Superior Facilitation of an Action Observation Network by Congruent Character Movements in Brain–Computer Interface Action-Observation Games. Cyberpsychology, Behavior, and Social Networking, 2020, 24, 566-572.	3.9	0